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Abstract
The aim of this paper is to explore the phenomenon of aperiodic stochastic resonance in neural systems with colored noise.

For nonlinear dynamical systems driven by Gaussian colored noise, we prove that the stochastic sample trajectory can

converge to the corresponding deterministic trajectory as noise intensity tends to zero in mean square, under global and

local Lipschitz conditions, respectively. Then, following forbidden interval theorem we predict the phenomenon of ape-

riodic stochastic resonance in bistable and excitable neural systems. Two neuron models are further used to verify the

theoretical prediction. Moreover, we disclose the phenomenon of aperiodic stochastic resonance induced by correlation

time and this finding suggests that adjusting noise correlation might be a biologically more plausible mechanism in neural

signal processing.

Keywords Ornstein–Ulenbeck process � Local Lipschitz condition � Aperiodic stochastic resonance � Mutual information

Introduction

Dynamical models from cellular level to network and

cortical level usually play a necessary role in cognitive

neuroscience (Levin and Miller 1996; Wang et al. 2014;

Déli et al. 2017; Mizraji and Lin 2017; Song et al. 2019).

Due to the random release of neurotransmitter, the

stochastic bombing of synaptic inputs and the random

opening and closing of ion channels, noise is ubiquitous in

neural systems. Various noise-induced non-equilibrium

phenomena disclosed in experimental or dynamical mod-

els, such as stochastic synchronization (Kim and Lim

2018), noise induced phase transition (Lee et al. 2014) and

stochastic integer multiple discharge (Gu and Pan 2015),

are helpful in explaining the biophysical mechanisms

underlying neural information processing and coding.

Stochastic resonance, initially proposed in exploring the

periodicity of the continental ice volume in the quaternary

era (Benzi et al. 1981), is such an anti-intuitive phe-

nomenon (Gammaitoni et al. 1998; Nakamura and Tateno

2019; Xu et al. 2020; Zhao et al. 2020), where weak

coherent signal can be amplified by noise through certain

nonlinearity. In general, a suitable external weak signal is

prerequisite for stochastic resonance. When the external

weak signal is absent or replaced by an intrinsic periodic-

ity, it is referred to as coherence resonance (Guan et al.

2020), which often appears in systems close to Hopf

bifurcation. When the external weak signal is not periodic,

it is called aperiodic stochastic resonance (Collins et al.

1995; 1996a, b; Tiwari et al. 2016).

Thanks to the aperiodicity of the weak signal, the

spectral amplification factor or the output signal-to-noise

ratio, typical for periodic signals (Liu and Kang 2018; Yan

et al. 2013), is no longer suitable to be a quantifying index.

In fact, for aperiodic stochastic resonance, instead of

emphasizing frequency matching, shape matching should

be emphasized, thus the cross-correlation measure (Collins

et al. 1995; 1996a, b) and the input–output mutual infor-

mation (Patel and Kosko 2005, 2008) are commonly used

indexes. Although the quantification is seemingly complex,

the principle of aperiodic stochastic resonance has found
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much significance in neural processing and coding, since

the spike trains of action potential observed in hearing

enhancement (Zeng et al. 2000) and visual perception

experiments (Dylov and Fleischer 2010; Liu and Li 2015;

Yang 1998) tend to be nonharmonic. Very recently, the

principle of aperiodic stochastic resonance has been

effectively applied to design visual perception algorithm

using spiking networks (Fu et al. 2020).

Noise correlation is common in cortical firing activi-

ties. Nevertheless, most of the literatures took Gaus-

sian white noise for grant, except that a few (Averbeck

et al. 2006; Guo 2011; Sakai et al.1999) paid attention to

the ‘‘color’’ of noise but far from enough. Therefore, in this

paper we investigate the effect of (Orenstein-Ulunbeck

type) Gaussian colored noise (Floris 2015; Wang and Wu

2016) of nonzero correlation time on the aperiodic

stochastic resonance. As a starting point, we will generalize

the existing zeroth order perturbation results (Freidlin et al.

2012) of nonlinear dynamical systems from Gaussian white

noise to Gaussian colored noise. And then, we follow the

‘‘forbidden interval’’ theorem (Kosko et al. 2009) and

direct simulation to explore the aperiodic stochastic reso-

nance in bistable and excitable neural systems.

The paper is structured as follows. In ‘‘General results’’

section, we introduce some preliminaries and main results.

In ‘‘Proof of general results’’, we provide the proof for the

perturbation property under global and local Lipschitz

conditions, respectively. And then we predict the phe-

nomenon of aperiodic stochastic resonance based on

information theory measure through Theorem 3 in the same

section. In ‘‘Numerical verification’’ section, numerical

results based on two types of neuron models are shown to

disclose the functional role of noise correlation time.

Finally, conclusions are drawn in ‘‘Conclusion and dis-

cussion’’ section.

General results

Suppose that XðtÞ satisfy the general d-dimensional

stochastic differential equation driven by an m-dimensional

Ornstein–Ulenbeck process

d

dt
Xt ¼ f ðXt; tÞ þ gðXt; tÞUðtÞ; Xð0Þ ¼ X0 ð1Þ

where Xt ¼ ðX1ðtÞ X2ðtÞ . . . XdðtÞÞ0 and f ðXt; tÞ ¼
ðf 1ðXt; tÞ f 2ðXt; tÞ . . . f dðXt; tÞÞ0 is the state vector and the

field vector, the function matrix gðXt; tÞ ¼ ðgi
jðXt; tÞÞd�m

describes the noise intensity, and UðtÞ ¼
ðu1ðtÞ u2ðtÞ . . . umðtÞ Þ0 is the m-dimensional Ornstein–

Ulenbeck process. Equation (1) is essentially shorthand for

the following equations

d

dt
Xi

t ¼ f iðXt; tÞ þ
Xm

j¼1

gi
jðXt; tÞUjðtÞ ð1aÞ

dujðtÞ ¼ � 1

s
ujðtÞdt þ rdWjðtÞ ð1bÞ

for i ¼ 1; 2; . . .; d and j ¼ 1; 2; . . .;m. Here, each scalar

Ornstein–Ulenbeck process ujðtÞ, also referred to as

Gaussian colored noise, is defined on complete probability

space ðX;F; fFtgt � 0;PÞ with a filtration fFtgt � 0, which

satisfies the usual conventions (Øksendal 2005; Mao 2007):

it is increasing and right continuous and F0 contains all P-

null sets. In Eq. (1b), where WiðtÞ(1� i�m) are statisti-

cally independent Wiener processes satisfying

WiðtÞh i ¼ 0; WiðtÞWjðsÞ
� �

¼ dijmin(t; sÞ:

In this paper, we assume that the Ornstein–Ulenbeck pro-

cess ujðtÞ is stationary. That is, ujðtÞ�Nð0; 0:5sr2Þ for all
t� 0. It is also known from Ito formula that

E jujðtÞj2k
h i

¼ ð2k � 1Þ!!ð0:5sr2Þk; k ¼ 1; 2; . . .

Suppose that X̂ðtÞ satisfy
d

dt
X̂t ¼ f ðX̂t; tÞ; X̂ð0Þ ¼ X0 ð2Þ

Then, the following main results in Theorems 1 and 2 state

that

E sup
0� t� T

Xt � X̂t

�� ��2
� �

! 0 ð3Þ

as r ! 0 under the global and local Lipschitz conditions,

respectively.

Theorem 1 Let f i : Rd ! R and gi
j : Rd ! R in the sys-

tem (1) be Borel measurable functions. Assume that there is

a positive constant L such that f i and gi
j satisfy

f iðx1; �Þ � f iðx2; �Þ
�� ��2 � L x1 � x2j j2;

gi
jðx1; �Þ � gi

jðx2; �Þ
���

���
2

� L x1 � x2j j2
ð4Þ

for 8x1; x2 2 Rd, namely, f i and gi
j are global Lipschitz

continuous. Also, assume that there is a pair of positive

constants K and c 2 ð0; 1Þ such that f i and gi
j satisfy the

global growth conditions

f iðx; tÞ
�� ���Kð1þ xj jÞ; gi

jðx; tÞ
���

����Kð1þ xj jcÞ ð5Þ

for 8ðx; tÞ 2 Rd � ½0; T�. Here i ¼ 1; 2; . . .; d and

j ¼ 1; 2; . . .;m. Then, for every T [ 0, there exist positive

constants a4 and b4 (see Eqs. (11) and (12) in ‘‘Proof of

general results’’ section, respectively) such that
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E sup
0� t� T

Xt � X̂t

�� ��2
� �

� r2A1 expðB1TÞ\1; ð6Þ

where A1 ¼ 2dmðm þ 1ÞT2K2ð4n1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2a4 expðb4TÞ

p
Þ,

B1 ¼ ðm þ 1ÞdTL, and

nk ¼ ð0:5sÞk�1ð0:5sþ KTÞ þ 2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tð4k � 3Þ!!ð0:5sÞ2k�1

q

ð7Þ

for k ¼ 1; 2; . . ..

Theorem 2 Let f i : Rd ! R and gi
j : Rd ! R in the sys-

tem (1) for all i ¼ 1; 2; . . .; d and j ¼ 1; 2; . . .;m be Borel

measurable functions, satisfying the local Lipschitz

condition

f iðx1; �Þ � f iðx2; �Þ
�� ��2 � LN x1 � x2j j2; gi

jðx1; �Þ � gi
jðx2; �Þ

���
���
2

� LN x1 � x2j j2

ð8Þ

for all x1,x2 2 Rd with x1k k�N and x2k k�N and the

growth conditions (5) . Here LN is a positive constant for

any N [ 0. Then, for every T [ 0, there holds

E sup
0� t� T

Xt � X̂t

�� ��2
� �

! 0 as r ! 0.

Throughout the context, we use �j j to denote the

Euclidean norm in Rd or the trace norm of matrices, that is

to say that for a vector X, Xj j2¼
P

i Xij j2 and for a matrix

A, Aj j2¼
P

i;j Aij

�� ��2. Here, we remark that Theorem 1 states

that the solution of the perturbed system (1) satisfying

global Liptschitz condition and the growth condition can be

approximated by the unperturbed system when the noise

intensity of the Gaussian colored noise tends to zero, while

Theorem 2 states the same conclusion but relaxs the global

Liptschitz condition into the local Lipschitz condition.

Both of them can be regarded as the generalization of the

perturbation results associated with zeroth order approxi-

mation (Freidlin et al. 2012). More exactly, the corre-

sponding perturbation result in the book of Freidlin and

Wentzell can be recovered from Theorem 1 when s ! 0

(i.e. in the Gaussian white noise limit). By utilizing the two

theorems, we can provide an assertion in the theorem 3

below for the existence of aperiodic stochastic resonance in

certain nonlinear systems with Gaussian colored noise.

The aperiodic stochastic resonance phenomenon is

usually referred to as a kind of special stochastic resonance

where the weak drive signal is aperiodic. As pointed in the

introduction section, the mutual information is more

qualified as the index to quantify aperiodic stochastic res-

onance than the signal-to-noise ratio. To this end, we

suppose that the nonlinear system receives binary random

signals, denoted by SðtÞ 2 s1; s2f g and its output YðtÞ 2
0; 1f g is a quantized signal as well, depending on whether

the output response xðtÞ is below or over a certain thresh-

old. We emphasize that this kind of quantized treatment is

very common in the background of stochastic resonance

and neural dynamics.

Let IðS;YÞ be the Shannon mutual information of the

discrete input signal S and the discrete output signal Y , then

it can be defined by the difference of the output’s uncon-

ditional entropy and conditional entropy (Cover and Tho-

mas 1991), namely IðS; YÞ ¼ HðYÞ � HðY Sj Þ. Denote by

PSðsÞ the probability density of the input signal, PYðyÞ the
probability density of the output signal, PY Sj ðy sj Þ the con-

ditional density of the output given the input, and PS;Yðs; yÞ
the joint density of the input and the output. Then,

IðS; YÞ ¼ HðYÞ � HðY Sj Þ
¼ �

X

y

PYðyÞlogPYðyÞ þ
X

s

X

y

PS;Yðs; yÞlogPY Sj ðy sj Þ

¼ �
X

s

X

y

PS;Yðs; yÞlogPYðyÞ þ
X

s

X

y

PS;Yðs; yÞlog
PS;Yðs; yÞ

PSðsÞ

¼
X

s

X

y

PS;Yðs; yÞlog PS;Yðs; yÞ
PSðsÞPYðyÞ

ð9Þ

From the above final equation, it is clear to see that

IðS; YÞ ¼ 0 if and only if PS;Yðs; yÞ ¼ PSðsÞPYðyÞ. More-

over, by mean of Jensen’s inequality one can find that

IðS; YÞ� 0, where the equal sign holds true if and only if

the input signal and the output signal are mutually inde-

pendent. Hence, Shannon mutual information, capable of

measuring the statistical correlation between the input and

output signals, is suitable for detecting how much of the

subthreshold aperiodic signal being contained in the output

spike trains. Noise deteriorates the transmission perfor-

mance of dynamical systems, however, when aperiodic

stochastic resonance occurs, the transmission capacity can

be optimally enhanced at an intermediate noise level.

Note that the nonmonotonic dependence of the input–

output mutual information on noise intensity signifies the

occurrence of aperiodic stochastic resonance, thus a direct

proof for the existence of aperiodic stochastic resonance

should contain a basic deduction of the extreme point of the

mutual information. But, the explicit formulaes for mutual

information are often hard to acquire, thus such a direct

proof is almost impossible. In order to make our results

generally applicable, we adopt an indirect proof based on

the ‘‘forbidden interval’’ theorem (Patel and Kosko 2008),

as stated by Theorem 3.

Theorem 3 Consider stochastic resonant systems of the

form in Eq. (1) with f ðXt; tÞ ¼ ~f ðXtÞ þ ~SðtÞ and
~SðtÞ ¼ ½SðtÞ 0 . . . 0�0. Suppose that ~f ðxÞ and gðxÞ satisfy

local Lipschitz condition and the growth condition (5).
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Suppose that the input signal SðtÞ 2 fs1; s2g is subthresh-

old, that is, SðtÞ\h with h being some crossing threshold.

Suppose that for some sufficiently larger noise intensity,

there is some statistical dependence between the binary

input and the impulsive output, that is to say, IðS; YÞ[ 0

holds true for some r0 [ 0. Then, the stochastic resonant

systems can exhibit the aperiodic stochastic resonance

effect in the sense that IðS; YÞ ! 0 as r ! 0.

Theorem 3 gives a sufficient condition for the aperiodic

stochastic resonance in the system (1) with subthreshold

signals. As is known from Jensen’s inequality that

IðS; YÞ� 0 and IðS; YÞ ¼ 0 if and only if S and Y are sta-

tistically independent. Then, we can reasonably suppose

there exist some r0 [ 0 such that IðS; YÞ[ 0. The ‘‘for-

bidden interval’’ theorem states that what goes down must

go up (Patel and Kosko 2005, 2008; Kosko et al. 2009),

thus the assertion in Theorem 3 can be proven if one can

verify that IðS; YÞ ! 0 as r ! 0. Therefore, the increase of

noise intensity will lead to the increase of the mutual

information and then will enhance the discriminating

ability to subthreshold signals.

Proof of general results

In this section we list the proofs of the above theorems. To

avoid too lengthy and tedious deduction, we only list the

involving Lemmas here but move their proof to appendix.

Lemma 1 Let k � 1 be an integer. The stationary OU

process (1b) has the property that for 8T � 0,

E sup
0� t �T

ujðtÞ
�� ��2k

� �
� r2kðð0:5sÞk�1ð0:5sþ KTÞ

þ 2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tð4k � 3Þ!!ð0:5sÞ2k�1

q
Þ

¼ r2knk

Lemma 2 Let f i : Rd ! R and gi
j : Rd ! R in Eq. (1) be

Borel measurable functions that satisfy the global Lipschitz

condition (4) or the local Lipschitz condition (8) and the

growth conditions (5). Then for any initial value X0 2 Rd,

Eq. (1) has a unique global solution Xt on t � 0. Moreover,

for any integer p� 2, the solution has the property that

E sup
0� t� T

Xtj jp
� �

� apexp(bpTÞ\1 ð10Þ

with

ap ¼ d
p
2
þ1ðm þ 2Þp�1

X0j jpþTp2p�1Kp 1þ mrpn
1
2
p þ mr

p
1�cn

p

2ð1�cÞ �k
�k

� 	� 	
;

ð11Þ

bp ¼ ðm þ 1Þd
p
2
þ1ðm þ 2Þp�1Tp�12p�1Kp; ð12Þ

and �k is an integer satisfying

�k � p

2ð1� cÞ : ð13Þ

Proof of Theorem 1 Fix T [ 0 arbitrarily. Using the ele-

mentary inequality uc � 1þ u for any u� 0, we see from

(5) that

gðx; tÞj j �Kð2þ xj jÞ; 8ðx; tÞ 2 Rd � 0;1½ Þ ð14Þ

To show the assertion (6), let us start with the scalar

equation

Xi
t � X̂i

t ¼
Z t

0

ðf iðXs; sÞ � f iðX̂s; sÞÞds

þ
Xm

j¼1

Z t

0

gi
jðXs; sÞujðsÞds;

Using the inequality ðu1 þ � � � þ unÞ2 � nðu2
1 þ � � � þ u2

nÞ,
we get

Xi
t � X̂i

t

�� ��2 �ðm þ 1Þ
Z t

0

f iðXs; sÞ � f iðX̂s; sÞ
�� ��ds

� 	2
(

þ
Xm

j¼1

Z t

0

gi
jðXs; sÞujðsÞds

����

����
2
)

�ðm þ 1Þ t

Z t

0

f iðXs; sÞ � f iðX̂s; sÞ
�� ��2ds




þ
Xm

j¼1

t

Z t

0

gi
jðXs; sÞujðsÞ

���
���
2

ds

)

�ðm þ 1Þ tL

Z t

0

Xs � X̂s

�� ��2ds




þ2tK2
Xm

j¼1

Z t

0

ð4þ Xsj j2Þ ujðsÞ
�� ��2ds

)

for 0\t\T . We emphasize that the inequality (14) has

been used here. As the right-hand-side terms are increasing

in t, we derive
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E sup
0� s� t

Xi
s � X̂i

s

�� ��2
� �

�ðm þ 1ÞTL

Z t

0

E Xs � X̂s

�� ��2
h i

ds

þ 2mðm þ 1ÞT2K2 4E sup
0� s� t

ujðsÞ
�� ��2

� ��

þE sup
0� s� t

Xsj j2 sup
0� s� t

ujðsÞ
�� ��2

� �	

�ðm þ 1ÞTL

Z t

0

E sup
0� r � s

Xr � X̂r

�� ��2
� �

ds

þ 2r2mðm þ 1ÞT2K2 4E sup
0� s�T

ujðsÞ
�� ��2

� ��

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E sup
0� s� T

Xsj j4
� �

E sup
0� s� T

ujðsÞ
�� ��4

� �s !

and then by Lemmas 1 and 2,

E sup
0� s� t

Xi � X̂i

�� ��2
� �

�ðm þ 1ÞdTL

Z t

0

E Xs � X̂s

�� ��2
h i

ds

þ 2r2dmðm þ 1ÞT2K2 4n1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2a4 expðb4TÞ

p� �
:

An application of the Gronwall inequality implies the

required assertion (6). h

Lemma 3 Let f i : Rd ! R in Eq. (1) be Borel measurable

functions that satisfy the local Lipschitz condition (8) and

the growth condition (5). Then for any initial value

X0 2 Rd, Eq. (3) has a unique global solution X̂t on t� 0.

Moreover, for any T [ 0, the solution has the property that

sup
0� t� T

X̂t

�� ��p\cp\1 ð15Þ

with cp ¼ d
p
2 2p�1 X0j jpþTp22ðp�1Þd

p
2KpTp


 �
.

Proof of Theorem 2 The local Lipschitz condition and the

growth condition ensure that the existence of the unique

solution of the system (1). We are going to use the tech-

nique adapted from the work of Mao and Sababis (2003) to

show the required assertion (3). For each

N [
ffiffiffi
d

p
ð X0j j þ TKÞ expð

ffiffiffi
d

p
KTÞ, then by Lemma 3,

sup
0� t� T

X̂t

�� ��\N Let us define the stopping time

sN ¼ infft� 0 : Xtj j �Ng. Clearly

E sup
0� t �T

Xt � X̂t

�� ��2
� �

¼ E sup
0� t � T

Xt � X̂t

�� ��21fsN �Tg

� �

þ E sup
0� t �T

Xt � X̂t

�� ��21fsN [Tg

� �

ð16Þ

where 1A is the indicator function of set A.
Let us estimate the first term in the right-hand side of

Eq. (16). Noting that the Young inequality (Prato and

Zabczyk 1992) ab� g al
l þ al

l
v
l

bv

v holds true for all a; b; g; l

and v when u�1 þ v�1 ¼ 1, we have

E sup
0� t� T

Xt � X̂t

�� ��21fsN � Tg

� �
� g

p=2
E sup

0� t � T
Xt � X̂t

�� ��2
� �p=2

� �

þ E
1

p=ðp � 2Þ
1

g2=ðp�2Þ ð1fsN � TgÞp=ðp�2Þ
� �

where p[ 2 is an integer and g is a positive number from

which it can be deduced that

E sup
0� t �T

Xt � X̂t

�� ��21fsN � Tg

� �
� 2g

p
E sup

0� t �T
Xt � X̂t

�� ��p
� �

þ p � 2

pg2=ðp�2Þ PðsN � TÞ:

ð17Þ

We know

E sup
0� t �T

Xtj jp
� �

� ap expðbpTÞ

from Lemma 2 and

E sup
0� t �T

X̂t

�� ��p
� �

� cp

from Lemma 3, then,

PðsN �TÞ ¼ E 1fsN � Tg
XsN
j jp

Np

� �
� 1

Np
E XsN
j jp½ � � 1

Np
ap expðbpTÞ; ð18Þ

E sup
0� t �T

Xt � X̂t

�� ��p
� �

� 2p�1E sup
0� t� T

Xtj jpþ sup
0� t� T

X̂t

�� ��p
� �

� 2p�1 ap expðbpTÞ þ cp


 �
:

ð19Þ

Substitution of Eqs. (18) and (19) into Eq. (17) yields

E sup
0� t �T

Xt � X̂t

�� ��21fsN\Tg

� �
� 2pg

p
ðap expðbpTÞ þ cpÞ

þ p � 2

pg2=ðp�2Þ
1

Np
ap expðbpTÞ:

ð20Þ

Next, we estimate the second term in the right-hand side of

Eq. (16). The involving process is very close to the proof

for Theorem 1, and here we list details to enhance the

reader’s readability. Clearly,

E sup
0� t �T

Xt � X̂t

�� ��21fsN\Tg

� �

¼ E sup
0� t� T

Xt^sN
� X̂t^sN

�� ��21fsN\Tg

� �

�E sup
0� t �T

Xt^sN
� X̂t^sN

�� ��2
� �

:

ð21Þ

Noting that
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Xt^sN
� X̂t^sN

�� ��2¼
Z t^sN

0

ðf iðXs; sÞ � f iðX̂s; sÞÞds

����

þ
Xm

j¼1

Z t^sN

0

gi
jðXs; sÞujðsÞds

�����

2

;

then using the Hölder inequality, the local Lipschitz con-

dition (8) and the growth condition (5) in turn arrives at

Xt^sN
� X̂t^sN

�� ��2 � ðm þ 1Þ
Z t^sN

0

f iðXs; sÞ � f iðX̂s; sÞ
�� ��ds

� 	2
(

þ
Xm

j¼1

Z t^sN

0

gi
jðXs; sÞujðsÞds

����

����
2
)

� ðm þ 1Þ t

Z t^sN

0

f iðXs; sÞ � f iðX̂s; sÞ
�� ��2ds




þt
Xm

j¼1

Z t^sN

0

gi
jðXs; sÞujðsÞ

���
���
2

ds

)

� ðm þ 1Þ TLN

Z t^sN

0

Xs � X̂s

�� ��2ds




þ2TK2
Xm

j¼1

Z t^sN

0

ð4þ Xsj j2Þ ujðsÞ
�� ��2ds

)

As the right-hand-side terms are increasing in t, we derive

E Xt^sN
� X̂t^sN

�� ��2
h i

�ðm þ 1ÞT LNE

Z t^sN

0

Xs � X̂s

�� ��2ds

� �


þ2K2
Xm

j¼1

E

Z t^sN

0

4þ Xsj j2
� �

ujðsÞ
�� ��2ds

� �)

¼ ðm þ 1ÞT LN

Z t

0

E Xs^sN
� X̂s^sN

�� ��2
h i

ds




þ2K2
Xm

j¼1

Z t

0

E 4þ Xs^sN
j j2

� �
ujðs ^ sNÞ
�� ��2

h i
ds

)

�ðm þ 1Þ LNT

Z t

0

E sup
0� r � s

Xr^sN
� X̂r^sN

�� ��2
� �

ds




þ2K2T2m 4E sup
0� t�T

ujðtÞ
�� ��2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E sup

0� t� T
Xtj j4

� �
E sup

0� t� T
ujðtÞ
�� ��4

� �s !)

�ðm þ 1Þ LNT

Z t

0

E sup
0� r � s

Xr^sN
� X̂r^sN

�� ��2
� �

ds




þ2r2K2T2m 4n1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2a4 expðb4TÞ

p� �o

and then

E sup
0� s� t

Xt^sN
� X̂t^sN

�� ��2
� �

� dðm þ 1Þ

TLN

Z t

0

E sup
0� r � s

Xr^sN
� X̂r^sN

�� ��2
� �

ds

�

þ2r2mT2K2 4n1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2a4 expðb4TÞ

p� ��

By the Gronwall inequality we obtain

E sup
0� s� t

Xt^sN
� X̂t^sN

�� ��2
� �

� 2dr2mðm

þ 1ÞT2K2 4n1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2a4 expðb4TÞ

p� �
edðmþ1ÞTLN ð22Þ

Combination of Eqs. (21) and (22) yields

E sup
0� t �T

Xt � X̂t

�� ��21 sN [ Tf g

� �
� 2dr2mðm

þ 1ÞT2K2 4n1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2a4 expðb4TÞ

p� �
edðmþ1ÞTLN ð23Þ

With Eqs. (20) and (23) substituted into Eq. (16), it is

obtained that

E sup
0� t �T

Xt � X̂t

�� ��2
� �

� 2pg
p

apexp(bpTÞ þ cp


 �

þ p � 2

pg2=ðp�2Þ
1

Np
apexp(bpTÞ

þ 2dr2mðm þ 1ÞT2K2

4n1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2a4exp(b4TÞ

p� �
exp dðm þ 1ÞTLNð Þ

ð24Þ

For any e[ 0, we choose g sufficiently small to get
2pg
p ap expðbpTÞ þ cp


 �
\ e

3
and N sufficiently large such

that p�2

pg2=ðp�2Þ
1

Np ap expðbpTÞ\ e
3
. Then, we can choose r

small enough to ensure 2dr2mðm þ 1ÞT2K2 4n1þðffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2a4 expðb4TÞ

p
Þ exp dðm þ 1ÞTLNð Þ\ e

3
: Hence, there

exists a critical value rc such that E sup
0� t �T

Xt � X̂t

�� ��2
� �

\e

when r\rc. h

Lemma 4 Consider a nonlinear system with

f ðXt; tÞ ¼ ~f ðXtÞ þ SðtÞ. Assume ~f xð Þ and g xð Þ satisfy the

local Lipschitz condition and g xð Þ obey the growth condi-

tion. Suppose that the system receives a binay input

SðtÞ 2 fs1; s2g. Then for every T [ 0 and e[ 0, as r ! 0

there hold

E sup
0� t �T

Xt � X̂t

�� ��2 S ¼ sij
� �

! 0; ð25Þ

and

lim
k!1

P sup
0� t� T

XkðtÞ � X̂kðtÞ
�� ��[ e S ¼ sij

� 	
¼ 0: ð26Þ

Proof of Theorem 3 Let rkf g1k¼1 be arbitrary decreasing

sequence of intensity parameter of Gaussian colored noise

such that rk ! 0 as k ! 1. Denote the corresponding

solution process and the discrete output process of ‘‘0’’ and

‘‘1’’ by XkðtÞ and YkðtÞ with Gaussian colored noise
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parameter rk instead of r. Recalling that IðS; YÞ ¼ 0 if and

only if S and Y are statistically independent, so one only

needs to show that FS;Yðs; yÞ ¼ FSðsÞFYðyÞ or FY Sj ðy sj Þ ¼
FYðyÞ as r ! 0 for signal symbols s 2 s1; s2f g and for all

y� 0. Here FS;Y represents for the joint distribution func-

tion and FY Sj is the conditional distribution function.

Note that y� 0 means that X1ðtÞ is capable of crossing

the firing threshold from below, then

PðYkðtÞ S ¼ sij Þ �P sup
t1 � t� t2

X1
k ðtÞ[ h S ¼ sij

� 	

,

and by Lemma 4,

lim
k!1

PðYk [ y S ¼ sij Þ� lim
k!1

P sup
t1 � t � t2

X1
k ðtÞ[ h S ¼ sij

� 	

¼ lim
k!1

lim
n!1

P sup
t1 � t � t2

X1
k ðtÞ[ h;X1

k ðtÞ\h� 1

n
S ¼ sij

� 	

� lim
n!1

lim
k!1

P sup
t1 � t � t2

X1
k ðtÞ � X1

k ðtÞ
�� ��2 [ 1

n
S ¼ sij

� 	

where the first equality is owing to that the input signal is

subthreshold. Thus,

lim
k!1

PðYk [ y S ¼ s1j Þ ¼ lim
k!1

P Yk [ y S ¼ s2jð Þ ¼ 0

or equivalently

lim
k!1

PðYk � y S ¼ s1j Þ � lim
k!1

P Yk � y S ¼ s2jð Þ ¼ 0

Then, using the total probability formula,

FYk
ðyÞ ¼ FYk Sj ðy s1j ÞPSðs1Þ þ FYk Sj ðy s2j ÞPSðs2Þ

¼ FYk Sj ðy s1j ÞPSðs1Þ þ FYk Sj ðy s2j Þð1� PSðs1ÞÞ
¼ FYk Sj ðy s1j Þ � FYk Sj ðy s2j Þ

 �

PSðs1Þ þ FYk Sj ðy s2j Þ

Taking the k ! 1 limit on the both sides of this equation,

we arrive at

FYðyÞ ¼ FY Sj ðy s2j Þ

This demonstrates that S and Y are statistically indepen-

dent, and hence IðS; YÞ ¼ 0 as r ! 0. h

Numerical verification

Theorem 3 builds a bridge between the perturbation theo-

rem and the existence of stochastic resonance. In order to

have an intuitive verification of Theorem 3, let us take two

examples into account. The first example is the noisy

feedback neuron models with a quantized output into

account (Patel and Kosko 2008; Gao et al. 2018). Let x

denote the membrane voltage, then

dx

dt
¼ �x þ hðxÞ þ SðtÞ þ uðtÞ;

duðtÞ ¼ � 1

s
uðtÞdt þ rdWðtÞ

8
><

>:
ð27Þ

where the logistic function hðxÞ ¼ ð1þ e�axÞ�1
(a ¼ 8)

gives a bistable artificial neuron model, the signal SðtÞ 2
A; Bf g represents the net excitatory or inhibitory input.

Here the value of SðtÞ is taken from the binary distribu-

tion:PðSðtÞ ¼ AÞ ¼ p,PðSðtÞ ¼ BÞ ¼ 1� p, and the dura-

tion time of each value of SðtÞ is considerably larger than

the decay time constant s. The more details are can be

found from the subsequent figures and the numerical steps

for mutual information. The neuron feeds its activation

back to itself through �xðtÞ þ hðxðtÞÞ and action potential

can be generated if the membrane potential (spike) is larger

than zero. Here note that the vector field

f ðxÞ ¼ �xðtÞ þ hðxðtÞÞ. According to the graphic method it

can be seen in Fig. 1 that if the input signal SðtÞ 2 A; Bf g
take opposite value between the two dot lines, that is,

�0:63\A\B\�0:37, then by linear stability analysis,

the neuron has three equilibrium points, namely, two

stable and one unstable. Since the neuron information is

mainly transmitted by the spiking train, the quantized

output yðtÞ can be defined as

yðtÞ ¼ 1; xðtÞ[ 0;
0; xðtÞ� 0:

n

Note that

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

x

f(x
)

Fig. 1 Schemata of the vector field function of f ðxÞ (blue solid line).

The value of the above dot line is 0.63, and the value of the bottom

dotted line is 0.37. In the figure, the intersection of the dash line with

the S-shaped curve stands for the equilibrium points, and the one-

order derivative of the vector field just is the resultant slope of tangent

line. Since two of the three slopes are negative and one is positive,

two of the three equilibrium points are stable, and one is unstable.

(Color figure online)
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x2 � ð1þ e�8x2Þ�1 � x1 þ ð1þ e�8x1Þ�1
�� ��2 � 2 x2 � x1j j2

þ 2
e�8x2 � e�8x1

ð1þ e�8x1Þð1þ e�8x2Þ

����

����
2

� 18 x2 � x1j j2

and

f ðxÞj j ¼ �x þ hðxÞj j � 1þ jxj:

The two inequalities together imply the vector field of the

bistable neuron model f ðxÞ satisfies global Lipschitz con-

dition (4) and growth condition (5). Note that the global

Lipschitz condition implies the local Lipschitz condition,

which can assure the existence and uniqueness of the

solution of the model, thus according to Theorem 3, the

phenomenon of aperiodic stochastic resonance should exist

for a subthreshold input signal. Here, by ‘‘subthreshold’’, it

means that the weak signal cannot spontaneously emit

action potential without the help of noise. We can guar-

antee that when the constant value of the input signal

enables the model to be bistable, the input signal is

subthresold.

Before exhibiting the numerical results of aperiodic

stochastic resonance, let us list the numerical steps for

mutual information calculation for the sake of the reader’s

reference.

(I) Initialize the parameters A, B, p and xð0Þ.
(II) Given the time step-length Dt ¼ 0:01 and a series

of the duration time Ti(i� 1).

(III) For each time span of duration time Ti, generate a

uniformly distributed number r, and then let

SðtÞ ¼ A if r [ p. Otherwise, SðtÞ ¼ B.

(IV) Apply Euler difference scheme and Box-Mueller

algorithm to Eq. (27) (or Eq. (28)) to generate the

output spike train yðtÞ.
(V) Calculate the marginal probability laws PðSðtÞÞ

and PðyðtÞÞ and the joint probability law

PðSðtÞ; yðtÞÞ.

(VI) Substitute the above probability laws into Eq. (9)

for the mutual information.

We remark that in the above Step (V), the involving

probabilities (also refer to Table 1) are approximated by

statistical frequencies. In all numerical implements except

Fig. 4, the dimensionless duration time parameter for the

input signal SðtÞ is fixed as T ¼ 40, and the simulating time

span is taken as 50 such constant duration times. Over one

time span, one membrane evolution trajectory or output

spike train can be tracked, and then the mutual information

can be acquired from one trial. Note that the definition in

Eq. (9) can be rewritten into

IðS; YÞ ¼ E log
PSYðs; yÞ

PSðsÞPYðyÞ

� �
;

thus the mutual information is actually the mathematical

expectation of the random variable log
PSY ðs;yÞ

PSðsÞPY ðyÞ (Patel and

Kosko 2008). So, in order to improve the accuracy of the

above calculation, for each set of given parameters, we

employ 100 trials to obtain the averaged mutual informa-

tion, as shown in all the involving figures.

The non-monotonic dependence of mutual information

on noise intensity signifies the occurrence of stochastic

resonance, as shown in Fig. 2. Since the binary input is

subthreshold, there is no spike in absent of Gaussian col-

ored noise (Fig. 2b). As the noise of small amount is added,

the neuron starts to spike (Fig. 2c), but the output signal is

much different from the binary input (Fig. 2a). When the

noise is at an appropriate level, the output signal greatly

resembles the input signal in shape (Fig. 2d), but the

resemblance in shape is gradually broken as overmuch

amount of noise could cause too frequent spikes (Fig. 2e).

The non-monotonic dependence of the input–output mutual

information on noise intensity exactly reflects the change in

the resemblance (Fig. 2f), thus the phenomenon of

stochastic resonance is confirmed.

From Fig. 2f one further sees that the correlation time

has a certain effect on the bell shaped curve of the input–

Table 1 Marginal and joint probability laws
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output mutual information. That is, the peak height of the

mutual information is a decreasing function of the corre-

lation time, but at the same time, the optimal noise inten-

sity at which the resonant peak locates shifts to a weaker

noise level. In order to more systematically disclose the

influence of colored noise, we plot the mutual information

as function of correlation time in Fig. 3. Surprisingly, the

correlation time induced aperiodic stochastic resonance is

observed for given noise intensity, and there exists optimal

correlation time at which the shape matching between the

input signal and the output signal. Moreover, as noise

intensity increases, the optimal correlation time of the

maximal mutual information decreases. The similarity

between Fig. 2 and Fig. 3 suggests noise intensity and
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Fig. 2 Stochastic resonance in the bistable neuron model with

quantized output. The binary signal is shown in panel (a). Here

A ¼ �0:6, B ¼ �0:4 and p ¼ 0:7. Since the input signal is sub-

threshold, there is no 1 in the quantized output when the Gaussian

colored noise is absent (r ¼ 0,s ¼ 0:4), as shown in panel (b). As the
noise intensity of the Gaussian colored noise is introduced, more and

more ‘‘1s’’ occur in the quantized output, as shown in panel (c)

(r ¼ 0:1, s ¼ 0:4), (d) (r ¼ 0:4, s ¼ 0:4) and (e) (r ¼ 1, s ¼ 0:4),
but obviously too much Gaussian colored noise will reduce the input–

output coherence, so there is a mono-peak structure in the curves of

mutual information via noise intensity as shown in panel (f):
s ¼ 0:2(blue dot curve),s ¼ 0:4(red broken curve) and s ¼ 0:6 (green

solid curve). (Color figure online)
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Fig. 3 Stochastic resonance in the bistable neuron model with

quantized output. The binary signal is shown in panel (a). Here

A ¼ �0:6, B ¼ �0:4 and p ¼ 0:7. There is no 1 in the quantized

output when the correlation time constant of Gaussian colored noise is

close to zero (s ¼ 0:001,r ¼ 0:3), as shown in panel (b). As the

correlation time constant increases, more and more ‘‘1s’’ occur in the

quantized output, as shown in panel (c) (s ¼ 0:2, r ¼ 0:3)

(d) (s ¼ 0:5, r ¼ 0:3), and (e) (s ¼ 1:5, r ¼ 0:3), but obviously too

large correlation time constant will reduce the input–output coher-

ence, so there is a mono-peak structure in the curves of mutual

information via correlation time constant as shown in panel (f): r ¼
0:3 (blue dot curve), r ¼ 0:5 (red broken curve) and r ¼ 0:7(green
solid curve). (Color figure online)
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correlation time play a similar role. In fact, our conjecture

can be confirmed by checking the steady fluctuation of

Gaussian colored noise. After a simple calculation it can be

found that the steady noise variance is proportional to the

correlation time and the square of noise intensity, namely

DðuÞ ¼ sr2
�
2. Although this finding is a bit different from

the observation related in Gaussian colored noise induced

conventional (periodic) stochastic resonance (Gammaitoni

et al. 1998), where the resonant peak tends to shift to a

larger noise level as the correlation time increases, it is

meaningful, since in neural circuit design noise intensity

might be usually hard to change; one may tune the corre-

lation time to realize the enhancement of information

capacity instead. Additionally, the influence of different

duration time parameter for the input signal on the aperi-

odic stochastic resonance is also checked in Fig. 4. It is

observed that as the duration time decreases, both the effect

of resonance induced by Gaussian colored noise and cor-

relation time become weak. This is common with the

conventional stochastic resonance, where only a slowly

varying periodic signal can be amplified by noise rather

than a high frequency signal (Kang et al. 2005).

The second example is the FitzHugh–Nagumo neuron

model (Capurro et al. 1998), governed by

e
dv

dt
¼ vðv � aÞð1� vÞ � w þ A0 þ SðtÞ þ gðvÞuðtÞ;

dw

dt
¼ v � w � b;

duðtÞ ¼ � 1

s
uðtÞdt þ rdWðtÞ

8
>>>>><

>>>>>:

ð28Þ

where v stands for the transmembrane voltage, w denotes a

slow recovery variable, and the input signal SðtÞ 2 A; Bf g
is again taken as the subthreshold binary signal. Whenever

the membrane voltage crosses the threshold value h ¼ 0:5

from below, the neuron emits a spike, and the output

spiking train can be formulated as

YðtÞ ¼
X

i

dðt�tiÞ ð29Þ

with ti being the occurring time of the ith spike.

Note that

v1ðv1 � aÞð1� v1Þ � w1 � v2ðv2 � aÞð1� v2Þ þ w2j j2

¼ ðv2 � v1Þðv21 þ v1v2 þ v22Þ þ ðv1 � v2Þðv1 þ v2Þ
��

þaðv2 � v1Þ þ w2 � w1j2

� 4 ðv2 � v1Þðv21 þ v1v2 þ v22Þ
�� ��2þ4 ðv1 � v2Þðv1 þ v2Þj j2

þ 4 aðv2 � v1Þj j2þ4 w2 � w1j j2

� 4ð9N4 þ 4N2 þ a2 þ 1Þ v2 � v1j j2þ w2 � w1j j2
� �

and

v1 � w1 � v2 þ w2j j2 � 2 v2 � v1j j2þ w2 � w1j j2
� �

for all v1; v2 2 R with vj j1 �N and v2j j �N. Here, the

region-dependent Lipschitz constant

LN ¼ 4ð9N4 þ 4N2 þ a2 þ 1Þ. Thus, the vector field of the

FitzHugh–Nagumo model is local Lipschitz. Actually, the

local but not global Lipschitz property of the vector field

has been proven by the mean value theorem (Patel and

Kosko 2008). On the other hand, since the transmembrane

voltage and the slow recovery variable are always bounded,
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Fig. 4 Mutual information between input signal S and quantized output signal Y as a function of (a) the noise intensity r with and (b) correlation
time constant s under different duration time parameters for the input signal. Here A ¼ �0:6, B ¼ �0:4 and p ¼ 0:7
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Fig. 5 Stochastic resonance in the FitzHugh–Nagumo neuron model.

Here gðvÞ ¼ 1,A ¼ �0:035, B ¼ �0:125 and p ¼ 0:7. (a) The sub-

threshold binary signal. (b) Output spikes when the Gaussian colored

noise is absent (r ¼ 0,s ¼ 0:4). (c) Output spikes when the noise

intensity of Gaussian colored noise is small (r ¼ 0:003, s ¼ 0:4).
(d) Stochastic resonance effect: Output spikes when the noise

intensity of Gaussian colored noise is moderate (r ¼ 0:01, s ¼ 0:4).

(e) Output spikes when the noise intensity of Gaussian colored noise

is large (r ¼ 0:04,s ¼ 0:4). Obviously too much Gaussian colored

noise will reduce the input–output coherence, so there is a mono-peak

structure in the curves of mutual information via noise intensity as

shown in panel (f): s ¼ 0:2 (blue dot curve),s ¼ 0:4(red broken

curve) and s ¼ 0:6 (green solid curve). (Color figure online)
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Fig. 6 Stochastic resonance in the FitzHugh–Nagumo neuron model.

Here gðvÞ ¼ 1, A ¼ �0:035, B ¼ �0:125 and p ¼ 0:7. (a) The

subthreshold binary signal. (b) Output spikes when the correlation

time constant of Gaussian colored noise is close to zero

(s ¼ 0:001,r ¼ 0:03). (c) Output spikes when the correlation time

constant is small (s ¼ 0:01, r ¼ 0:03). (d) Stochastic resonance

effect: Output spikes when the correlation time constant is moderate

(s ¼ 0:05, r ¼ 0:03). (e) Output spikes when the correlation time

constant is large (s ¼ 0:2, r ¼ 0:03). Obviously too large correlation

time constant will reduce the input–output coherence, so there is a

mono-peak structure in the curves of mutual information via

correlation time constant as shown in panel (f): r ¼ 0:03 (blue dot

curve), r ¼ 0:05 (red broken curve) and r ¼ 0:07 (green solid curve).

(Color figure online)
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one can assume that there exists constant C such that for

any t[ 0, maxð vj j; wj jÞ �C, then

vðv � aÞð1� vÞ � w � A0j j � A0j j þ vðv � aÞð1� vÞ � wj j

� A0j j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðv � aÞð1� vÞj j2þ wj j2

q

�ð A0j j þ ð1þ aÞC2 þ C4 þ a2Þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ w2

p� �

and

v � w � bj j � bj j þ v � wj j � ð
ffiffiffi
2

p
þ bj jÞ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ w2

p� �
;

that is, the growth condition is satisfied. Again we can

choose gðvÞ ¼ 1 (Figs. 5 and 6) to denote the additive

intensity, or gðvÞ ¼ v2ffiffiffiffiffiffiffiffi
1þv4

p (Fig. 7) such that it stands for the

multiplicative noise intensity but is easy to verify the

Lipschitz and growth conditions. Then according to The-

orem 3, the Gaussian colored noise induced aperiodic

stochastic resonance in the neuron model can be

anticipated.

In the numerical simulation of the second example, we

take a ¼ 0:5,A0 ¼ 0:04,e ¼ 0:005,b ¼ 0:2466, Dt ¼ 0:001

and the duration time of SðtÞ is again taken as 40 time

units. We point out that the input binary signals in Figs. 5,

6a are still subthreshold, although a spike generation hap-

pens at the moment the signal is switched from one value to

the other in Figs. 5, 6b in absence of noise, (Patel and

Kosko 2005). Figures 5, 6d demonstrate again that the best

shape matching can happen at a suitable noise intensity or

correlation time, at which the input–output mutual infor-

mation in Figs. 5, 6f attains its maximum. Thus, the

aperiodic stochastic resonance induced by Gaussian col-

ored noise is confirmed. Moreover, Fig. 7 shows that this

phenomenon can also be induced by the multiplicative

Gaussian colored noise. From Fig. 7, a similar effect of

correlation time on resonant peak is observed. This simi-

larity implies that increasing correlation time inhibits the

aperiodic stochastic resonance effect but reduces the opti-

mal noise intensity. This feature reflects the noise intensity

and the correlation time play the same role here. Note that

the ‘‘color’’ of the Gaussian noise always restrains the

effect of conventional periodic stochastic resonance and

shifts the resonant peak to larger noise intensity (Gam-

maitoni et al. 1998), thus the properties of aperiodic

stochastic resonance seems not suitable for being directly

generalized from the conventional stochastic resonance. In

fact, we infer the properties of aperiodic stochastic reso-

nance should be similar to stochastic synchronization, since

they can be measured by the same quantifying index.

The above neuron models have verified the assertion in

Theorem 3. In fact, Theorem 3 gives necessary conditions

for aperiodic stochastic resonance effect of Gaussian col-

ored noise in neuron models for subthreshold input signals.

By utilizing the statement of Theorem 3, the investigation

of the aperiodic stochastic resonance under Gaussian col-

ored noise can be reduced to a simple task of showing that

a zero limit of the input–output mutual information exists.

Then, just as the theorems stated in the work of Patel and

Kosko (2005, 2008) and Kosko et al. (2009), Theorem 3

again acts as a type of screening device to filter whether

noise benefits in the detection of subthreshold signals based

on the measurement of mutual information.
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Fig. 7 Mutual information between input signal S and output spike train Y as a function of (a) the noise intensity r and (b) correlation time

constant s. Here gðvÞ ¼ v2ffiffiffiffiffiffiffiffi
1þv4

p , A ¼ �0:035, B ¼ �0:125 and p ¼ 0:7. (Color figure online)
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Conclusion and discussion

After proving that under certain conditions the solution of

nonlinear dynamic systems perturbed by Gaussian colored

noise can converge to the solution of the deterministic

counterpart as noise intensity tends to zero, we theoreti-

cally predicted the occurrence of the aperiodic stochastic

resonance induced by Gaussian colored noise in

bistable and excitable neuron systems based on the ‘‘for-

bidden interval’’ theorem. The theoretical prediction actu-

ally presents a technical tool that screen for whether the

mutual-information measured stochastic resonance occurs

in the detection of subthreshold signals in the background

of Gaussian colored noise. The simulated results with two

typical neuron models further verified the occurrence of

aperiodic stochastic resonance for weak input signals.

Particularly, we disclose the novel inhibitive effect of the

correlation time of Gaussian colored noise on the aperiodic

stochastic resonance, and found the ‘‘color’’ of noise plays

the same role as noise intensity. Since in the design of

neural circuits, the noise intensity is not always easy to be

tuned for utilizing the benefit of noise, our finding provides

an alternative way to implement the effect of aperiodic

stochastic resonance by adjusting the correlation time.

At the end, let us stress the main difference from the

existing theoretical proofs, and let us also have some

prospect. As it is known, Gaussian white noise, as the

formal derivative of Wiener process of stationary inde-

pendent increments, cannot describe the correlation of

environmental fluctuations, the fractional Gaussian noise,

as the formal derivative of fractional Brownian motion, has

power-law feature in power spectral density and can model

the fluctuations of long range temporal correlation, while

the Gaussian colored noise, generated by the Ornstein–

Ulenbeck process, is applicable for modeling the short-time

correlation. Thus, the work of this paper actually shrinks

the gap between the aperiodic stochastic resonance induced

by Gaussian white noise (Patel and Kosko 2005) and

induced by fractional Gaussian noise (Gao et al. 2018).

Moreover, Levy noises are the formal derivative of the

jump-diffusion Levy processes of stationary independent

increments, thus the aperiodic stochastic resonance with

Levy noise (Patel and Kosko 2008) did not consider the

effect of ‘‘color’’. Note that Gaussian colored noise is only

a special member of the family of Levy colored noise (Lü

and Lu 2019), which is capable of describing the sub-

quantal release of neurotransmitter, thus it will be mean-

ingful to explore the beneficial role of the more general

Levy colored noise in neural processing in the future.
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Appendix

Proof of Lemma 1

Proof Fix T � 0 arbitrarily. The Ito formula (Øksendal

2005; Mao 2007) shows that

ujðtÞ
�� ��2k¼ ujð0Þ

�� ��2kþ
Z t

0

� 2k

s
ujðsÞ
�� ��2kþkð2k � 1Þr2 ujðsÞ

�� ��2ðk�1Þ
� 	

ds

þ 2kr
Z t

0

ðujðsÞÞ2k�1dWjðsÞ

for 0� t� T . By the moment property (3) of the stationary

OU process, we get

E sup
0� t� T

ujðtÞ
�� ��2k

� �
� r2kð2k � 1Þ!!ð0:5sÞk�1ð0:5sþ kTÞ

þ 2krE sup
0� t �T

Z t

0

ðujðsÞÞ2k�1dWjðsÞ
� �

By the Burkholder–Davis–Gundy inequality (Prato and

Zabczyk 1992),

E sup
0� t� T

ujðtÞ
�� ��2k

� �
� r2kð2k � 1Þ!!ð0:5sÞk�1ð0:5sþ kTÞ

þ 2
ffiffiffi
3

p
krE

Z T

0

ujðsÞ
�� ��4k�2

ds

� 	1
2

" #
:

Using the Hölder inequality we then derive

E sup
0� t �T

ujðtÞ
�� ��2k

� �
� r2kð2k � 1Þ!!ð0:5sÞk�1ð0:5sþ kTÞ

þ 2
ffiffiffi
3

p
kr

Z T

0

E ujðsÞ
�� ��4k�2
h i

ds

� 	1
2

� r2kð2k � 1Þ!!ð0:5sÞk�1ð0:5sþ kTÞ

þ 2
ffiffiffi
3

p
kr Tð4k � 3Þ!!ð0:5sr2Þ2k�1
� �1

2

� r2k ð0:5sÞk�1ð0:5sþ kTÞ
�

þ2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tð4k � 3Þ!!ð0:5sÞ2k�1

q 	
:

h

Proof of Lemma 2

Proof It is well known that almost all sample paths of the

Ornstein–Ulenbeck process are continuous. It is therefore

easy to see from the classical theory of ordinary differential

equations that for any initial value X0 2 Rd, Eq. (1) has a

unique global solution Xt on t� 0. Fix T � 0 arbitrarily.

According to Lemma 1,
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E sup
0� t� T

ujðtÞ
�� ��2k

� �
� r2knk ð30Þ

with nk given by Eq. (7).

Define the stopping times sh ¼ infft � 0 : Xtj j � hg for

all integers h[ X0j j, where throughout this paper we set

inf U ¼ 1. Here U stands for the empty set. Clearly, sh !
1 almost surely as h ! 1. For t 2 0; T½ �, it follows from
Eq. (1a) that

Xi
t^sh

�� ��p �ðm þ 2Þp�1 Xi
0

�� ��pþ
Z t^sh

0

f iðXs; sÞds

����

����
p�

þ
Xm

j¼1

Z t^sh

0

gi
jðXs; sÞujðsÞds

����

����
p
!

�ðm þ 2Þp�1 Xi
0

�� ��pþtp�1

Z t^sh

0

f iðXs; sÞ
�� ��pds

�

þtp�1
Xm

j¼1

Z t^sh

0

gi
jðXs; sÞujðsÞ

���
���
p

ds

!

�ðm þ 2Þp�1 Xi
0

�� ��pþtp�1

Z t

0

f i Xs^sh
; s ^ shð Þ

�� ��pds

�

þtp�1
Xm

j¼1

Z t

0

gi
j Xs^sh

; s ^ shð Þujðs ^ shÞ
���

���
p

ds

!

�ðm þ 2Þp�1 Xi
0

�� ��pþtp�1Kp

Z t

0

1þ Xs^sh
ð Þpds

�

þtp�1Kp
Xm

j¼1

Z t

0

1þ Xs^sh
j jcð Þp

ujðs ^ shÞ
�� ��pds

!

�ðm þ 2Þp�1 Xi
0

�� ��pþtp�12p�1Kp

Z t

0

1þ Xs^sh
j jpð Þds þ tp�12p�1Kp

�

Xm

j¼1

Z t

0

1þ Xs^sh
j jpcð Þ ujðs ^ shÞ

�� ��pds

!

Here, the first inequality is due to

ða1 þ � � � þ amÞp �mp�1ð a1j jpþ � � � þ amj jpÞ, the second

inequality is owing to the Hölder inequality; the growth

conditions are adopted for the last second equality; and the

inequality ð aj j þ bj jÞp � 2p�1ð aj jpþ bj jpÞ is used in the last

inequality. As the right-hand-side terms are increasing in t,

we see easily that

E sup
0� s� t

Xi
s^sh

�� ��p
� �

�ðm þ 2Þp�1 Xi
0

�� ��pþTp�12p�1Kp�



Z t

0

1þ E Xs^sh
j jp½ �ð Þds

	
þ ðm þ 2Þp�1Tp�12p�1Kp�

Xm

j¼1

Z t

0

E 1þ Xs^sh
j jpcð Þ ujðs ^ shÞ

�� ��p� �
ds

and then by

Xi
0

�� ��p¼ Xi
0

�� ��2
� �p

2 �
Xd

i¼1

Xi
0

�� ��2
 !p

2

¼ X0j jp;

E sup
0� s� t

Xi
s^sh

�� ��p
� �

�ðm þ 2Þp�1 X0j jpþTp�12p�1Kp�



Z t

0

1þ E sup
0� r � s

Xr^sh
j jp

� �� 	
ds

	

þ ðm þ 2Þp�1Tp�12p�1Kp
Xm

j¼1
Z t

0

E 1þ sup
0� r � s

Xr^sh
j jpc

� 	
sup

0� r � s
ujðr ^ shÞ
�� ��p

� �
ds

By the well-known Young inequality xy� xp

p þ yq

q for

x; y� 0 and p; q[ 0 with 1
p þ 1

q ¼ 1,

E sup
0� r � s

Xr^sh
j jpc sup

0� r � s
ujðr ^ shÞ
�� ��p

� �
� cE sup

0� r � s
Xr^sh
j jp

� �

þ ð1� cÞE sup
0� r � s

ujðr ^ shÞ
�� �� p

1�c

� �

�E sup
0� r � s

Xr^sh
j jp

� �
þ E sup

0� r � s
ujðr ^ shÞ
�� �� p

1�c

� �

while recalling that �k � p
2ð1�cÞ in Eq. (13), then by the

Hölder inequality,

E sup
0� r � s

ujðr ^ shÞ
�� �� p

1�c

� �
�E sup

0� r � s
ujðr ^ shÞ
�� ��2 �k

� � p

2ð1�cÞ �k

�E sup
0� r �T

ujðr ^ shÞ
�� ��2 �k

� � p

2ð1�cÞ �k

Hence, by Eq. (30),

E sup
0� s� t

Xi
s^sh

�� ��p
� �

�ðm þ 2Þp�1

ð X0j jpþTp�12p�1Kp 1þ mrpn
1
2
p þ mr

p
1�cn

p

2ð1�cÞ �k
�k

� 	

þ ðm þ 2Þp�1Tp�12p�1Kpðm þ 1Þ
Z t

0

E sup
0� r � s

Xr^sh
j jp

� �
ds

Considering

sup
0� s� t

Xs^sh
j jp ¼ sup

0� s� t

Xd

i¼1

Xi
s^sh

�� ��2
 !p

2

:

� d max
1� i� d

sup
0� s� t

Xi
s^sh

�� ��2
� 	p

2

¼ d
p
2
max

1� i� d
sup

0� s� t
Xi

s^sh

�� ��p;

then

E sup
0� s� t

Xs^sh
j jp

� �
� d

p
2E max

1� i� d
sup

0� s� t
Xi

s^sh

�� ��p
� �

:

� d
p
2
þ1

max
1� i� d

E sup
0� s� t

Xi
s^sh

�� ��p
� �

:
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Here, the distribution property for the maximum of mul-

tiple mutually independent random variables is adopted.

Then for any 0� t� T ,

E sup
0� s� t

Xs^sh
j jp

� �
� ap þ bp

Z t

0

E sup
0� r � s

Xr^sh
j jp

� �
ds ð31Þ

with ap and bp given in Eqs. (11) and (12). And then, the

application of the Gronwall inequality to Eq. (31) yields

E sup
0� s�T

Xs^sh
j jp

� �
� ap expðbpTÞ\1

Letting h ! 1 implies the required assertion (10). h

Proof of Lemma 3

Proof Note the inequality (15) can be proven with tech-

nique somehow parallel to that of Lemma 2. It is well

known that under given conditions Eq. (3) has a unique

global solution X̂t on t� 0. Define a sequence vh ¼
infft � 0 : X̂t

�� ��� hg for all integers h� X0j j, with inf U ¼
1 for an empty set U. Clearly, vh ! 1 almost surely as

h ! 1. For t 2 0; T½ �, it can be deduced from (3) that for

0\t\T ,

sup
0� s� t

X̂s^vh

�� ��p � d
p
2ð2p�1 X0j jpþTp22ðp�1ÞKpÞ

þ Tp�122ðp�1Þd
p
2Kp

Z t

0

sup
0� r � s

X̂r^vh

�� ��pds

Then, the Gronwall inequality implies

sup
0� s� t

X̂s^vh

�� ��p � d
p
2ð2p�1 X0j jpþTp22ðp�1ÞKpÞ exp 22ðp�1Þd

p
2Tp

� �

Letting h ! 1 implies the assertion (15) immediately. h

Proof of Lemma 4

Proof Recalling the duplicate property of the conditional

probability distribution

E E sup
0� t �T

Xt � X̂t

�� ��2 S ¼ s1j
� �� �

¼ E sup
0� t� T

Xt � X̂t

�� ��2
� �

;

we obtain

E sup
0� t �T

Xt � X̂t

�� ��2
� �

¼ P S ¼ s1f gE sup
0� t� T

Xt � X̂t

�� ��2 S ¼ s1j
� �

þ P S ¼ s2f gE sup
0� t� T

Xt � X̂t

�� ��2 S ¼ s2j
� �

;

from which it can be deduced that

E sup
0� t � T

Xt � X̂t

�� ��2 S ¼ sij
� �

� 1

P S ¼ sif gE sup
0� t � T

Xt � X̂t

�� ��2
� �

;

and thus by Theorem 2, Eq. (25) is found true. Then,

application of Markov’s inequality immediately gives

Eq. (26). h
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