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Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder in which changes in brain connectivity, associated

with autistic-like traits in some individuals. First-degree relatives of children with autism may show mild deficits in social

interaction. The present study investigates electroencephalography (EEG) brain connectivity patterns of the fathers who

have children with autism while performing facial emotion labeling task. Fifteen biological fathers of children with the

diagnosis of autism (Test Group) and fifteen fathers of neurotypical children with no personal or family history of autism

(Control Group) participated in this study. Facial emotion labeling task was evaluated using a set of photos consisting of six

categories (mild and extreme: anger, happiness, and sadness). Group Independent Component Analysis method was

applied to EEG data to extract neural sources. Dynamic causal connectivity of neural sources signals was estimated using

the multivariate autoregressive model and quantified by using the Granger causality-based methods. Statistical analysis

showed significant differences (p value\ 0.01) in the connectivity of neural sources in recognition of some emotions in

two groups, which the most differences observed in the mild anger and mild sadness emotions. Short-range connectivity

appeared in Test Group and conversely, long-range and interhemispheric connections are observed in Control Group.

Finally, it can be concluded that the Test Group showed abnormal activity and connectivity in the brain network for the

processing of emotional faces compared to the Control Group. We conclude that neural source connectivity analysis in

fathers may be considered as a potential and promising biomarker of ASD.

Keywords Broader autism phenotype (BAP) � Facial emotion recognition � Group independent component analysis

(gICA) � Connectivity analysis � Granger causality

Introduction

Nonverbal communications in human interactions convey

signals to others about an individuals’ thinking, intentions,

and feelings have been a crucial part of human communi-

cations (Black et al. 2017). Facial gesture plays an

important role in social interactions and helps to find out

internal emotional and mental moods. Problems in

recognizing other’s facial expressions have been observed

in children and adults diagnosed with ASD (American

Psychiatric Association 2013).

Some relatives of individuals with ASD, especially first-

degree relatives show milder traits of the ASD phenotype,

referred to as the Broader Autism Phenotype (BAP) (Bil-

leci et al. 2019; Cruz et al. 2013; Sucksmith et al. 2011;

Tajmirriyahi et al. 2013). These sub-threshold character-

istics are similar, although less severe, to those of ASD

patients and they are more common in the parents of ASD

individuals (Rubenstein et al. 2018). Only a few studies

have considered facial expression recognition among first-

degree relatives of people with autism (Hu et al. 2018;

Kadak et al. 2014; Palermo et al. 2006; Wallace

et al. 2010). In Palermo et al. (2006) emotion recognition

abilities of parents of ASD individuals and the Control

Group were analyzed behaviorally. Parents were asked to

label five basic facial emotions (happiness, anger, sadness,

surprise, and disgust), and the findings showed impaired
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results of Test Group for sadness or disgust (p value\
0.01). Another behavioral study reported poor perfor-

mance of relatives of autism individuals in identifying

facial emotions happiness and surprise by evaluating

Emotion Recognition Test (p value\ 0.05) (Kadak

et al. 2014). The number of correct responses to the emo-

tion recognition task was analyzed in Hu et al. (2018) and

the results showed that the number of correct responses

was significantly lower (p value\ 0.05) for parents of

ASD children in all emotions (fear, sadness, anger, disgust,

happiness, and surprise). Wallace et al. analyzed the per-

formance of ASD parents on the task of facial emotion

recognition (Wallace et al. 2010). The results showed

significantly worse recognition of disgust and fear in ASD

parents than neurotypical adults (p value\ 0.01). A few

studies have analyzed facial expression recognition in

parents of children with ASD using neuroimaging tech-

niques (Baron-Cohen et al. 2006; Greimel et al. 2010;

Yucel et al. 2015). The first study that evaluated parents of

children with ASD through the fMRI technique used the

‘‘Reading the Mind in the Eyes’’ test to investigate if the

parents had a similar atypical brain function observed in

the ASD individuals. Results indicated that ASD parents

illustrated atypical brain activity compared with healthy

control (Baron-Cohen et al. 2006). Responding to emotions

of others in the ASD fathers was explored in Greimel

et al. (2010). ASD fathers showed abnormal brain activa-

tion in the fusiform gyrus and inferior frontal gyrus.

Another fMRI study conducted in ASD parents examined

neural substrates of face processing using an emotional

matching paradigm. The authors reported that ASD parents

had lower activation of right insula and higher activation of

the fusiform gyrus and amygdala compared with healthy

control (Yucel et al. 2015).

Brain connectivity alterations are associated with

autistic symptoms in some individuals. The search for

autism endophenotypes in brain connectivity is an emerg-

ing field, and a limited number of studies have addressed

this issue (Billeci et al. 2016). Connectivity abnormalities

in ASD parents were reported in a MEG study, evidently in

language and visual areas (Buard et al. 2013). In Billeci

et al. (2019), diffusion network analysis was applied to

MRI to investigate network organizations in the ASD

fathers. The results showed some brain regions that are

crucial for social functioning in the autism group and ASD

fathers, so it may help in clarifying the endophenotype of

autism. Atypical white matter structure in siblings of

individuals with ASD in Lisiecka et al. (2015) and altered

functional connectivity in high-risk infants in Fields and

Glazebrook (2017), Keehn et al. (2015), Orekhova et al.

(2014) and Righi et al. (2014) have been reported in the

literature but no study has previously investigated a brain

connectivity endophenotype in parents using Electroen-

cephalogram (EEG) signals.

This study aims to examine the brain connectivity in the

fathers of children with autism (Test Group) compared to

the fathers of neurotypical children (Control Group) while

performing emotion labeling task using EEG signals. The

hypothesis was that there would be an impairment in

recognition of basic facial expressions in the fathers of

children with ASD, in comparison with the fathers of

neurotypical children.

Materials and methods

Participants

Fifteen biological fathers (age = 40.60 ± 3.97 years) of

children with ASD diagnosis, whom were screened by a

pediatric neurologist/psychiatrist, participated in this study.

Fathers had one child meeting the fifth edition of the

Diagnostic and Statistical Manual of Mental Disorders

[DSM-V (American Psychiatric Association 2013)]. Par-

ticipants had no history of psychiatric or neurological

diseases such as depression, schizophrenia, and bipolar

disorder. Fifteen subjects (fathers of neurotypical children)

(age = 37.33 ± 3.70 years) with no personal or family

history of any neurodevelopmental disorders participated

in the Control Group. Ethical approval was obtained from

the local ethics committee in the university of medical

sciences. All participants signed a consent form before

starting the experiment in accordance with the Helsinki

Declaration. After the registration step, all participants

were requested to complete the Autism Spectrum Quotient

(AQ), questionnaire for quantifying ASD traits (Baron-

cohen et al. 2001). The average AQ score for Test Group

was 19.46 (SD = 4.77) and for the Control Group, fathers

were 14.2 (SD = 3.52). Statistical analysis of the AQ score

showed a significant main effect of group, with the Test

Group scoring higher than the Control Group (p value =

0.0019). Demographic characteristics of study participants

are summarized in Table 1.

Table 1 Demographic characteristics of study participants

Test group Control group

Age 40.60 (SD = 3.97) 37.33 (SD = 3.70)

AQ score 19.46 (SD = 4.77) 14.2 (SD = 3.52)

min/max 15/24 8/16
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Task and stimuli

A set of human emotional faces consist of happy, sad, and

anger, each with two emotional intensities levels (mild and

extreme intensity), were selected from the extended Cohn-

Kanade (ck?) dataset (Lucey et al. 2010). 70 volunteers

evaluated the selected images and they labeled the facial

expressions and intensity levels. Finally, emotional faces

with the highest percentage of agreement (above 80%)

were selected for the task design. The contrast and

brightness of these images were equalized using Photoshop

CS6 (www.adobe.com). The black and white images

(400 9 480 pixels) were placed in an oval frame to provide

participants’ focus on facial expression and reduce hair and

ears.

The emotional faces were presented for a duration of

3000 ms on a computer screen and immediately replaced

by a black screen for 1000 ms. The task was developed in

three blocks using version 3.0.14 of Psychtoolbox software

(Brainard et al. 1997). Each block included 60 trials; Six

emotional faces (mild and extreme anger, sadness, and

happiness) of 5 persons that were presented two times

randomly. Participants were requested to determine the

emotion category that is depicted by pressing a key. A

gamepad with three buttons corresponding to each

expression was used to labeling the emotions. The exem-

plar stimuli for the six emotional faces and the schematic

representation of the employed task are illustrated in

Fig. 1.

Participants were seated in a comfortable chair in a

sound-attenuated room during EEG data acquisition. A

monitor screen was placed at a distance of approximately

60 cm and participants were allowed to adjust it to a

suitable distance. In the beginning of each recording ses-

sion, the task was explained to the participants and they

were requested to complete a training stage to ensure they

had understood how to use the gamepad and do the task.

They were asked to look at the center of the screen and

attempt to reduce blinks and eye movements as much as

possible. Participants were instructed to answer by pressing

the corresponding key immediately after they recognize the

emotion. At the end of each block, a two-minute rest period

was considered.

EEG data acquisition

EEG signal was continuously recorded using 32 active

electrodes situated on a standard cap according to the

10–20 system using a g.tec amplifier and digitized at

1200 Hz. Impedances of all active electrodes were kept

below 10 kX throughout data acquisition. Three electrodes

were used to record electrooculography (EOG) signals, two

electrodes located outside the outer canthus of each eye and

another below the right eye.

EEG analysis

The flowchart represented in Fig. 2 outlines the summary

of the procedure in this study. As shown in Fig. 2a, EEG

data of all participants are preprocessed at first. Indepen-

dent components are extracted from temporal concatenated

data and then ‘‘non- neural’’ components are removed as

illustrated in Fig. 2b. The multivariate autoregressive

(MVAR) representation of EEG source signals is utilized to

find out the information flow between neural sources and

directional interactions between them as shown in Fig. 2c.

Data are analyzed using EEGLAB (Delorme et al. 2011)

and the SIFT toolbox (Mullen 2010). Finally, statistical

analysis is used to compare the source connectivity of two

groups, as summarized in Fig. 2d.

Preprocessing

After re-referencing the data to the average of the two

earlobe electrodes and baseline removing, low-pass filter at

80 Hz, high-pass filter at 0.5 Hz, and a 50 Hz notch filter

were implemented. Each participantt’s EEG data is

checked separately, and stereotypical artifacts are removed.

Independent component analysis (ICA) with the Infomax

algorithm was applied (Bell and Sejnowski 1995) to reduce

eye movement and blink artifacts. The data of six emotions

were epoched (pre-stimulus time = 500 ms, post-stimulus

time = 1500 ms). Trials with improbable data of trend and

amplitude (out of 3 standard deviations from average) were

excluded from further analysis with expert supervision.

Group independent component analysis (gICA)

Due to a non-trivial problem in identifying and ordering

similar components across individuals, ICA is not suit-

able for a group of participants. The brain sources that are

activated in different people when performing the same

task may present in different regions and also follow a

different cognitive strategy. On the other hand, differences

in brain anatomy can lead to variations in sources’ mixing

that are recorded at the head surface (Huster et al. 2015).

One proposed method to solve this problem is the group–

ICA (gICA), namely, data of all participants are concate-

nated and a single set of independent components extrac-

ted. Finally, the individual data were rebuilt based on the

weights of group-level components (Huster et al. 2015;

Ponomarev et al. 2014).

Let xki ðtÞ; i ¼ 1; . . .; n be EEG recordings of the k-th

participant from n electrodes at the head surface and
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sjðtÞ; j ¼ 1; . . .;m be all sources generated potentials which

are recorded by electrodes. The concatenated data XK
i ðtÞ ¼

½x1i ; . . .; xki ; . . .; xKi � is given by the temporal concatenation

of individual EEG data with K being the number of par-

ticipants included in the group analysis. The simplest

mixture model in the linear instantaneous ICA method is

considered as XðtÞ ¼ ATotalSðtÞ, where ATotal (n 9 n) is

invertible mixing matrix (i.e. columns of ATotal denote the

gIC topographies). To extract the source signals from the

mixed signals, which is the purpose of the BSS method, the

estimated sources ~SðtÞ are formulated as ~SðtÞ ¼ WTotalXðtÞ,
where WTotal ¼ ATotal

�1 is an un-mixing matrix (Koz-

hushko et al. 2018). Participants in one group are con-

catenated the same as the method described. The

concatenated data are used for the estimation of the WTotal

matrix. Then the EEG signal of each individual was back

reconstructed. Since all participants in one group have

common sources, this model naturally explains the group-

level inferences in analyzing a given facial emotion and the

sources are equivalent in group comparisons.

Measuring time-varying information flow

MVAR modeling has proved to be a practical approach for

connectivity analysis of biological signals, specially EEG

signals (Afshani et al. 2019; Omidvarnia 2014). This pro-

cess can model interactions between neural sources time

series based on linear differential equations. Neural sources

time series are used as input of the MVAR model in order

to measure time-varying information flow each evaluate

different properties in the time series and has some

advantages and disadvantages (Koichi and Antonio 2014).

In this study two measures, Granger Causality Index (GCI)

and generalized Partial Directed Coherence (gPDC), have

been considered. The measure GCI is a time-domain con-

nectivity metric based on the Granger causality concept

(Geweke 1982) and gPDC (Baccalá et al. 2007) is a

combination of the idea of PDC, to show influenced effects

and Directed Transfer Function (DTF), to show the influ-

encing effects between two time series.

Granger causality (GC) states that if one stochastic

process Xh(t) contains information in past values that

Fig. 1 Task and photographs. a Exemplar facial stimuli. b Schematic representation of one block the facial emotion labeling task. The task

consisted of three blocks and each block included 60 trials of emotional faces
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permits a more accurate prediction of Xi(t), then Xh(t) could

be called a casual to Xi(t) (Blinowska 2011). Assume Xi(t)

is represented by a multivariate AR model using k previous

values of all m time series with a prediction error uðtÞ;

XiðtÞ ¼
Xm

j¼1

XP

k¼1

Ai;jðkÞXjðt � kÞ þ uðtÞ 1\i\m ð1Þ

To investigate the effect of the time series h on the time

series i, the Xi(t) is rewritten after elimination of the time

series h with the u0ðtÞ prediction error:

XiðtÞ ¼
Xm

j¼1
j 6¼h

XP

k¼1

Ai;jðkÞXjðt � kÞ þ u
0 ðtÞ 1\i;h\m ð2Þ

If the variance of u0ðtÞ (d2ðu0ðtÞÞ) is more than the

variance of uðtÞ (d2ðuðtÞÞ), then it is an explanation of a

causal interaction from Xh(t) to Xi(t).

Granger Causality Index (GCI) Granger causality index

(GCI) is defined based on the Granger causality definition.

So, GCI from Xh(t) to Xi(t) is defined as,

Fig. 2 Summary of EEG data analysis pipeline. a Steps of all

preprocessing procedures. b Temporal group ICA: Concatenating

EEG data of specified emotion corresponding to all participants of

one group temporally and then applying ICA. Eliminating ‘‘non-

neural’’ components like muscle activity, eye blink, line noise based

on the power spectrum, time-trial plot, and scalp map. c Estimating

the MVAR model of the data and then calculating connectivity

measure (here GCI and gPDC) in different frequency bands.

d Multiple comparisons of groups using the unbalanced ANOVA
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GCIXh!Xi
¼ ln

\u0ðtÞ2 [
\uðtÞ2 [

 !
ð3Þ

The asymmetry in GCIxh!xiand GCIxi!xh shows the

directionality of causality between X1(t) and X2(t).

Generalized partial directed coherence (gPDC) The PDC

was defined in the following form (Baccalá and

Sameshima 2001):

pijðf Þ ¼
Aijðf Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�j ðf Þajðf Þ

q ð4Þ

In this equation, Aijðf Þ is the Fourier transform of

MVAR model coefficients AðtÞ and ajðf Þ is a column with

index j of Aðf Þ matrix.

As previously mentioned, gPDC is a combination of the

idea of PDC and DTF between two time series (Baccalá

et al. 2007). Generalized Partial Directed Coherence was

defined by the formula:

gPDCj!iðf Þ ¼
Aijðf Þ

Pk
i¼1 Aijðf Þ
�� ��2 ð5Þ

The normalization factor in the denominator of this

equation is similar to the one employed in the DTF defi-

nition to show the influencing effects.

Statistical analysis

In this study, the unbalanced analysis of variance was

employed for comparison of groups in order to detect

meaningful differences in the connectivity measures. An

unbalanced ANOVA indicates the particular layout of

ANOVA in which the numbers of observations in each

group are unequal. Welch’s test is a well-accepted method

to solve the problem and due to its simplicity and accuracy,

commonly used in practical applications (Krishnamoorthy

Table 2 Comparison of group-IC connectivity (GCI) in recognition of

different facial expressions in different frequency bands

Emotions Delta Theta Alpha Beta Gamma

p value

F value

Partial eta squared

Mild anger 0.002** 0.001*** 0.003** 0.02* 0.075

10.501 13.089 9.804 6.864 3.575

0.272 0.318 0.259 0.196 0.113

Extreme anger 0.066 0.077 0.036* 0.084 0.089

3.850 3.541 5.181 3.259 2.875

0.120 0.112 0.156 0.104 0.093

Mild sadness 0.002** 0.002** 0.035* 0.079 0.07

10.347 11.215 5.292 3.459 3.741

0.269 0.285 0.158 0.109 0.117

Extreme sadness 0.088 0.08 0.095 0.09 0.098

2.990 3.440 2.629 2.825 2.500

0.096 0.109 0.085 0.091 0.081

Mild happiness 0.072 0.035* 0.051 0.053 0.085

3.632 5.330 4.125 4.122 3.246

0.114 0.160 0.128 0.127 0.103

Extreme

happiness

0.096 0.023* 0.046* 0.113 0.129

2.586 6.119 4.421 2.443 2.437

0.84 0.179 0.136 0.080 0.08

*p\ 0.05; **p\ 0.01 and ***p\ 0.001

Fig. 3 Time-frequency grid representation of gPDC connectivity of the neural sources while watching the mild anger expression. Sources are

shown at the columns and sinks at the rows. Left: One participant in the Control Group. Right: One participant in the Test group
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et al. 2007). This test is based on the Student’s t distribu-

tion and considers both the sample sizes and the variance of

the samples. Facial expression as the within-participants

factor, groups as the between participant factor, and con-

nectivity measure as the dependent variable were selected.

Multiple comparisons were followed up with Games-

Howell post-hoc analysis. In this study, the statistical sig-

nificance level was considered as p value less than 0.05. To

determine the important effects, the partial eta squared is

used as effect size and a value of eta squared larger than 0.2

is condidered as relatively high effect sizes.

Results

The effective brain connectivity was compared between the

Test and Control group within the frequency bands (d: 0.1–
4 Hz,h: 4–8 Hz, a alpha: 8–13 Hz,b: 13–30 Hz and c:
[30 Hz). The results consisted of 2 different analyses:

First, testing group differences for the GCI connectivity

measure and second for gPDC connectivity measure, sep-

arately for each frequency band. The unbalanced ANOVA

(emotion 9 group [6 9 2]) was applied to the connectivity

measures in five frequency bands to find possible

differences in brain connectivity. Connectivity measure as

the dependent variable, groups and emotion (mild and

extreme anger, happiness, and sadness) as the independent

variables yielded significant differences (p values\ 0.05)

in the group-ICs’ brain connectivity in some frequency

bands. In the case of significant differences between groups

for a given facial expression, additional post-hoc test was

applied. The results of comparisons are demonstrated in

Tables 2 and 3 for GCI and gPDC respectively. Only

p values, which are below the alpha significance level, are

reported.

According to the results presented in Tables 2 and 3, the

mild anger and mild sadness emotion categories are the

most apparent differences between the two groups. Thus, in

this article, source-level brain connectivity analysis has

been studied in these two emotion categories. It should be

noted that the magnitude of connectivity in the Control

Group is greater than the Test Group.

The gPDC is an upgraded version of PDC and a higher

level connectivity measure in the frequency domain and

seems to provide more reliable information than simpler

metrics. Some limitations of other measures, such as sen-

sitivity to the scale of signals, have been corrected in

gPDC. So, the results are represented for this metric in the

rest of the paper. The time-frequency grid representations

of connectivity between neural sources are displayed in

Figs. 3 and 4 for mild anger and mild sadness expressions,

respectively. The corresponding gPDC expresses the

dynamic causal connections between each sink and source.

As shown in Figs. 3 and 4, different connectivity patterns

appear in the neural source network at low frequencies

(delta, theta, and alpha). Time-frequency representations

qualitatively confirm the results presented in Table 3, in

which the differences between the two groups were

observed at low frequencies.

The gPDC connectivity for component dipoles and the

changes over time are presented in Figs. 5 , 6, 7 and 8. The

neural sources are shown by nodes with different sizes and

colors, with the magnitude of causal information outflow

illustrated by color and the power illustrated by size. Lar-

ger size nodes show larger power and warmer colored

nodes show larger information outflow. Cylinders display

the gPDC connectivity between nodes with different

diameters and colors. The direction of information flow is

represented by cylinder and flow magnitude are showed by

color, with warmer colors for higher magnitude. Effective

connectivity is integrated across 0.5–80 Hz and is repre-

sented in Figs. 5 , 6, 7 and 8 for four time points throughout

an epoch. As shown in Fig. 5, five components were

selected for mild anger/Control Group category with their

dipoles being localized to the following regions: right and

left inferior frontal gyrus (Brodmann 47), right associative

visual cortex (Brodmann 19), left angular gyrus (Brodmann

Table 3 Comparison of group-IC connectivity (gPDC) in recognition

of different facial expressions in different frequency bands

Emotions Delta Theta Alpha Beta Gamma

p value

F value

Partial eta squared

Mild anger 0.058 0.001*** 0.01** 0.023* 0.057

4.012 18.621 8.590 6.355 4.011

0.125 0.401 0.234 0.184 0.125

Extreme anger 0.081 0.069 0.068 0.083 0.98

3.421 3.745 3.978 3.310 2.531

0.108 0.117 0.124 0.105 0.082

Mild sadness 0.01** 0.01** 0.018* 0.084 0.075

7.611 8.939 7.160 3.305 3.580

0.213 0.241 0.203 0.105 0.113

Extreme sadness 0.088 0.062 0.088 0.082 0.095

2.995 4.001 3.002 3.350 2.617

0.096 0.125 0.096 0.106 0.085

Mild happiness 0.047* 0.040* 0.05 0.072 0.089

4.130 4.983 4.128 3.628 2.860

0.128 0.151 0.128 0.114 0.092

Extreme happiness 0.054 0.002** 0.02* 0.1 0.093

4.118 12.193 6.927 2.500 2.738

0.127 0.303 0.198 0.081 0.089

*p\ 0.05; **p\ 0.01 and ***p\ 0.001
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39), and right somatosensory association cortex (Brodmann

7). As shown in Fig. 5, great couplings are displayed over

right and left inferior frontal gyrus, visual cortex and

inferior frontal gyrus in right hemisphere, and additionally

between somatosensory and visual cortex over time. One of

the superiorities of this type of representation is that it

includes causality information and how it changes over

time. Figure 6 shows this finding for four components

selected for mild anger/Test Group category with their

dipoles being localized to the following regions: left

Fig. 4 Time-frequency grid representation of gPDC connectivity of the neural sources while watching the mild sadness expression. Sources are

shown at the columns and sinks at the rows. Left: One participant in the Control Group. Right: One participant in the Test Group

Fig. 5 Representation of gPDC

causality for neural sources and

how they change over time. The

sequence corresponds to mild

anger recognition in one

participant of the control group
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anterior cingulate (Brodmann 24), right posterior cingulate

(Brodmann 31), right and the left angular gyrus (Brodmann

39). In Fig. 6, some weak short-range connectivity (smaller

than 30% of maximum amplitude of connectivity) are

observed over these four regions among which right pos-

terior cingulate and the right angular gyrus have slightly

stronger couplings (larger than 80% of maximum ampli-

tude of connectivity).

Figure 7 shows connectivity between four components

which were selected for mild sadness/Control Group cate-

gory with their dipoles being localized to the following

regions: right posterior cingulate (Brodmann 31), left

somatosensory association cortex (Brodmann 7), right

superior frontal gyrus (Brodmann 10), and fusiform gyrus

(Brodmann 37). As seen in Fig. 8, some long-range causal

connectivities are revealed between superior frontal gyrus in

right hemisphere and fusiform gyrus in the left hemisphere.

A short-range connectivity between right posterior cingulate

and left somatosensory cortex is observed too. In Fig. 8, five

components were selected for mild sadness/Test Group

category with their dipoles being localized to the following

regions: left motor cortex (Brodmann 6), left somatosensory

association cortex (Brodmann 7), right and left angular gyrus

(Brodmann 39), and right somatosensory association cortex

(Brodmann 5). As shown in Fig. 8, some short-range

couplings are displayed over the left and right somatosen-

sory association cortex and also between the angular gyrus

and somatosensory cortex in the right hemisphere

Discussion

The purpose of the current paper was to examine brain

connectivity in fathers of individuals with autism compared

to fathers of children without autism while performing

facial emotion recognition task. Along with other neu-

roimaging technologies, the use of EEG for investigation of

connectivity is of important additional utility due to high

temporal resolution. To minimize the signal processing

confounds caused by volume conduction and to obtain a

finer spatial resolution, a solution is to apply the connec-

tivity analysis at the source level.

The current study indicates that effective connectivity

can be evaluated in the time-frequency domain from

multivariate neural sources signals, and it can be statisti-

cally assessed to compare two groups. The proposed

method utilizes group independent component analysis,

time-frequency representation of MVAR processes, and the

concept of Granger causality includes basic GCI measure

and the generalized version of PDC. Connectivity measures

Fig. 6 Representation of gPDC

causality for neural sources and

how they change over time. The

sequence corresponds to mild

anger recognition in one

participant of the test group
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yielded significant differences (p values\ 0.05) in the

source-level brain connectivity in some frequency bands.

Brain connectivity in recognition of mild condition in each

of negative facial expressions (anger and sadness),

demonstrated significant differences (p values\ 0.05)

between two groups and these differences are more pro-

nounced at low frequencies. Similar behavior has been

reported for people with autism in negative emotion pro-

cessing. During the processing of the facial expression,

individuals with autism focus more on others’ mouths to

get the information instead of both mouth and eyes. This

strategy results in the loss of vital information about the

facial emotion (Ashwin et al. 2006). No differences in high

frequencies may be due to a compensatory factor in these

frequencies, which results in normal brain connectivity like

Control Group. Brain connectivity of Test Group while

watching the faces with mail-negative emotions was

mostly short-range and observed in posterior and central

regions, while for the Control Group, long-range and

between hemisphere connections were appeared too. It

should be noted that many studies reported the long-range

underconnectivity and local overconnectivity in ASD [for

review, see (O’Reilly et al. 2017)]. Post-mortem

immunocytochemistry, structural, and functional MRI

studies strongly supported this hypothesis. The results

obtained in this paper are also in line with the confirmation

of this hypothesis for ASD fathers. Considering the notion

of BAP, it can be inferred that Test Group had different

performance in identifying mild-negative expressions in

comparison to Control Group.

The neural sources connectivity networks associated with

mild negative emotional conditions were depicted in Fig. 5 ,

6, 7 and 8. Dynamic causal interactions between neural

sources and how it changes over time were represented for

one participant in each group. Brain areas involved and

activated during the task and the connections between them

were demonstrated in figures. Several areas of heightened

causality, especially parietal and central cortices, are

detected and in each figure, these areas are partly active. The

connectivity is short-range for the Test Group and observed

in central and parietal regions, including posterior cingulate,

angular gyrus and somatosensory association cortex

(Figs. 6, 8). For the Control Group, the long-range connec-

tions appear throughout the anterior and posterior region of

the brain, including inferior and superior frontal gyrus,

associative visual cortex, and fusiform gyrus (Figs. 5, 8).

Also, unlike the Test Group, interhemispheric interactions

are observed in the Control Group. Right and left inferior

frontal gyrus, posterior cingulate, and somatosensory asso-

ciation cortex are involved in these interactions. Involved

Fig. 7 Representation of gPDC

causality for neural sources and

how they change over time. The

sequence corresponds to mild

sadness recognition in one

participant of the control group
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brain regions in the neural sources network of the Control

Group, which show considerable connectivity and activity to

emotional faces, include visual cortex, cingulate, and fusi-

form gyrus. These regions are parts of a neuronal path spe-

cialized for face processing and emotional perception

(Kanwisher and Yovel 2006; Monteiro et al. 2017; Vissers

et al. 2012). The activity of these regions is altered during a

visual stimulus exposure especially negative emotional

stimuli and providesmore detailed processing of expressions

(Etkin et al. 2011; Ousdal et al. 2014; Wegrzyn et al. 2015).

The current study is one of the first studies that considered

the information flow and causality between neural sources

using the EEG signal of fathers of individuals with autism in

a clinical population. The connectivity between sources was

consistent with previous results reported in the literature,

which have shown neural connectivity deficits in autism

patients (Coben et al. 2014; Coben and Myers 2008; Pillai

et al. 2017) and also consistent with the results of systematic

review articles, which point to the poor performance of the

autism individuals versus control in recognizing the emotion

of anger and sadness (Black et al. 2017; Uljarevic and

Hamilton 2013). The present paper also confirms the results

reported in Yucel et al. (2015) that represented impaired

emotional face processing regions in the parents of children

with autism.

The main properties of the proposed method are summa-

rized as follows. The study of brain connectivity at the level of

independent brain sources has increased the validity of the

results due to the reduced volume conduction. On the other

hand, the use of group analysis of independent components has

made it possible to infer results at the group level. The granger-

basedmetrics are derived from the causalMVARmodel,which

takes into account all previous interactions between neural

sources. Therefore, it can show the causal influence of one

neural source on another. Considering the causality between

neural sources provides more realistic information about brain

mechanisms. Such metrics can identify the information flow

direction and differentiate between direct/indirect interactions.

By investigating the changes in the connectivity of component

dipoles over time, one can see the influence of neural source on

each other and how the strength of their connectivity changes,

and also compare the results with another group to find out the

possible differences.

Conclusion

The hypothesis of the present study was that fathers of

individuals with autism, compared with Control Group,

would illustrate abnormal neural connectivity patterns in

Fig. 8 Representation of gPDC

causality for neural sources and

how they change over time. The

sequence corresponds to mild

sadness recognition in one

participant of the test group
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face and emotion processing tasks. Based on our compre-

hensive study, the Test Group may show impaired brain

connectivity during emotion labeling tasks compared to

Control Group because of the significant difference in

emotion recognition with Control Group. The proposed

EEG analysis indicated different brain connectivity of two

groups in the low-frequency band of EEG in recognition of

mild facial emotions (p values\ 0.01). Significant neural

sources of the Test Group are in parietal and central cor-

tices and the interactions are short-range.

On the other hand, the significant neural sources in

Control Group are localized in the anterior regions of the

brain in addition to the central and parietal areas. There-

fore, long-range and interhemispheric connectivity appears.

By evaluating the sources identified in facial emotion

recognition, it can be found out that the core face and

emotion processing networks like the visual cortex, fusi-

form gyrus, anterior and posterior cingulate are better

identified in the Control Group and represented somewhat

strong connections. Findings suggest that abnormalities of

neural connectivity of the Test Group can affect the pro-

cessing of emotional faces as a behavioral feature of the

BAP. So the neural source connectivity of fathers can be

considered as a marker of ASD and may represent a cog-

nitive endophenotype. The connectivity analysis of neural

source signals of fathers may help early diagnosis of aut-

ism. These fathers will be more aware of their child’s

behavior before the age of six which is known as the

‘‘golden time’’ for required therapies, and also fathers-to-be

will make a more informed decision. With further devel-

opment in this research field, one can hope to derive her-

itable endophenotypes which will reliably demonstrate and

diagnose autism which can be promising for healthcare

investors and families. There is much work to be done to

extend the proposed approach and implement it to the more

enormous sample sizes of fathers and their children to

judge the brain connectivity.
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