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Abstract
In this contribution, the complex behaviour of the Hindmarsh–Rose neuron model under magnetic flow effect (mHR) is

investigated in terms of bifurcation diagrams, Lyapunov exponent plots and time series when varying only the electro-

magnetic induction strength. Some exciting phenomena are found including, for instance, various firings patterns by

applying appropriate magnetic strength and Hopf-fold bursting through fast–slow bifurcation. In addition to this, the

interesting phenomenon of Hopf bifurcation is examined in the model. Thus, we prove that Hopf bifurcation occurs in this

memristor-based HR neuron model when an appropriately chosen magnetic flux varies and reaches its critical value.

Furthermore, one of the main results of this work was the optimal control approach to realize the synchronization of two

mHR. The main advantage of the proposed optimal master–slave synchronization from a control point of view is that, in

the practical application, the electrical activities (quiescent, bursting, spiking, period and chaos states) of a neuron can be

regulated by a pacemaker (master) associated with biological neuron (slave) to treat some diseases such as epilepsy. A

suitable electronic circuit is designed and used for the investigations. PSpice based simulation results confirm that the

electrical activities and synchronization between coupled neurons can be modulated by electromagnetic flux.
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Introduction

In neuroscience, there remain two main problems whose

solutions are related and investigated in nonlinear dynam-

ics and chaos. As described by Valera et al. (2001), the first

problem is that of the integrated behaviour of the nervous

system. Its main goal is to understand the mechanism that

enables the units and different parts of the nervous system

to work together. Such a phenomenon linked to the syn-

chronization of nonlinear dynamical oscillators. The sec-

ond problem, named neural coding problem, drew the

attention of many researchers such as Sejnowski (1995)

and Abeles (2004), consists in understanding how neurons

encode and exchange information in the nervous system.

Solutions to such problems were analysed through both the

knowledge of different types of behaviours available to

chaos synchronization and nonlinear dynamical systems

(Sejnowski 1995; Fetz 1997). Indeed, dynamic behaviours

of neurons are significant to acquaintance with the signal

exchange in the brain or even with related diseases; as a

result, previous works have been investigated (Hodgkin

and Huxley 1952; Fitzhugh 1961; Ermentrout and Terman

2010; Morris and Lecar 1981; Ma et al. 2019; Njitacke

et al. 2019a; Chay 1985; Li et al. 2004; Yang and Lu 2007).

In other words, in Hodgkin and Huxley (1952), Hodgkin
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and Huxley use the experimental results obtained for the

giant axon of squid to represent the ion fluxes and the

permeability changes of an excitable membrane in terms of

molecular mechanisms. Similarly, in Morris and Lecar

(1981), Morris–Lecar propose a biological neuron model

which makes it possible to reproduce the multiple oscilla-

tory behaviors linked to the conductance of Ca?? and K?

ions in the muscle fiber of the giant barnacle. Likewise, in

Chay (1985), Chay proposes an electrophysiological model

which is used to describe the dynamics of b-cells in the

pancreas. Based on this, several others models were

established in particular Hindmarsh–Rose neuron model

for studying mode selection of neurons (Selverston et al.

2000; Hindmarsh and Rose 1982, 1984; Pinto et al. 2000).

Here, we focus on the Hindmarsh–Rose (HR) neuronal

oscillator proposed by Hindmarsh and Rose (1984), after

the formulation of their two-equation model (Hindmarsh

and Rose 1982). Their main goal was to model the syn-

chronization of firing two snail neurons directly, without

the use of the Hodgkin–Huxley (HH) equations (Hind-

marsh and Rose 1982; Coombes and Bressloff 2005).

Hence, to create a neuron model that exhibits triggered

firing, some modifications were done on the two-equation

model (by adding an adaptation variable, representing the

slowly varying current, that changed the applied current to

an effective applied one) to obtain the three-equation

model (Hindmarsh and Rose 1984; Coombes and Bressloff

2005). This model has been trendy in studying the bio-

logical properties of spiking and bursting neurons. A few

years later, several works confirm that the fluctuation of

membrane potential also depends on the changes of intra-

cellular and extracellular ion concentration since a complex

distribution of electromagnetic field is generated (Lv and

Ma 2016; Lv et al. 2016; Ren et al. 2017). Then Lv et al.

(2016) suggested that magnetic flux can be used to describe

the fluctuation of the electromagnetic field, and memristor

is used to realize feedback coupling between magnetic flux

and membrane potential of the neuron. From there, several

memristor-based HR neuron models have been reported

recently. For example (Xu et al. 2018) investigated the

Chimera states and synchronization phenomenon in mul-

tilayer memristive HR neural networks subjected to a

electromagnetic induction; (Bao et al. 2018a) presented the

mathematical model and hardware experiment of a mem-

ristive HR neuron model with hidden coexisting asym-

metric attractors; more recently (Bao et al. 2019) addressed

the problem of hidden bursting behaviors and bifurcation

phenomenon in memristive HR neuron model. That is why

the authors (Lv et al. 2016) proposed a modified version of

the 3D HR model, by adding a fourth term representing the

magnetic flow effect. As a result, the system’s complexity

increases because the improved neuron model holds more

bifurcation parameters and the mode of electric activities

can be selected in a more significant parameter region.

Many researchers have used this modified HR neuron

model under electromagnetic flow effect for theoretical and

numerical investigations (Lv and Ma 2016; Ren et al. 2017;

Lu et al. 2017; Ge et al. 2018; Rostami and Jafari 2018).

Our aim here is to bring some contribution by studying the

dynamical behaviours of such model, which may help

understand the effect of the parameters that describe the

interaction between membrane potential and magnetic flux

when keeping constant the external forcing current. Thus,

the first goal of our work is to use a combination of

bifurcation theory and numerical integration to investigate

bifurcation points, where Hopf-fold bifurcations occur in

the system. Afterwards, we consider Hopf bifurcations of

such a system by applying the normal form theory intro-

duced by Hassard et al. (1982). It can be noted that, the HR

model has been and continues to be the subject of several

studies among which we can cite those which address the

problem of bifurcations (Marco et al. 2008; Li-Xia and Qi-

Shao 2005), time-delay (Wang and Shi 2020; Rigatos et al.

2019), electromagnetic radiation (Parastesh et al. 2018;

Djeundam et al. 2013; Mondal et al. 2019) and various

firing activities (Arena et al. 2006; Innocenti and Genesio

2009; Zhu and Liu 2018; Wouapi et al. 2020). However,

although this model dates from 1984, and many dynamical

studies are found in the literature, no theoretical analysis

(including fast–slow bifurcation and Hopf bifurcation) has

been given for its improved model under magnetic flow

effect to the best of our knowledge.

In order to understand and even master the operating

principle of specific neurological processes, it is essential

to study the regulation and transmission of nerve impulses

in the brain. More importantly, complex networks are

essential tools for clarifying the different features of

complex systems (Kivelä et al. 2014; Boccaletti et al.

2006, 2014; Estrada 2012). Synchronization is a universal

phenomenon in complex networks because it is via this

dynamic behaviour that the transmission of information

between neurons occurs (Jia et al. 2011; Shi and Wang

2012). In recent years, the study of coupled oscillator

networks and their synchronized activities has interested

many researchers, particularly in biology. Indeed, in neu-

roscience, it is proved that an abnormality in the syn-

chronization capacity of neural networks can be at the

origin of cerebral pathologies such as epilepsy,

schizophrenia, Alzheimer’s disease, Parkinson’s disease

and autism to name these few (Uhlhaas and Singer 2006).

As a consequence, many studies have been carried out on

the phenomenon of synchronization of neurons by gener-

ally considering static couplings (Ma et al. 2017; Perc

2009; Parastesh et al. 2019). Using this as a motivation, we

propose the HR neuron model under a magnetic field effect

to study the optimal synchronization between a healthy
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neuron and an epileptic neuron using the master–slave

configuration. Thanks to the optimal control approach, one

of the significant advantages of the synchronization tech-

nique that we use (namely the algorithm of the optimal

synchronization) are that it allows optimizing the syn-

chronization time before which the electrical activity of the

coupled neurons have an identical behaviour (Kountchou

et al. 2014, 2016).

The rest of our study is organized as follows. We firstly

present (‘‘Description and basic dynamical analysis of the

neuron model’’ section) the analysis of the basic dynamics,

including the system’s equilibria and the electrical activi-

ties (quiescent state, spiking, bursting, periodical and

chaotic attractors). The fast–slow bifurcation structures of

the system are investigated theoretically and numerically.

An appropriate electronic circuit is proposed for the

investigation of the dynamical behaviour of the system.

Secondly (‘‘Hopf bifurcation analysis’’ section), the direc-

tion of the Hopf bifurcation and the stability of the bifur-

cating periodic flows are studied in detail with the help of

the normal form theory. Thus, we present numerical and

PSpice simulation results obtained from the previous ana-

lytic studies. Thereafter, we investigate in the next section

the optimal robust synchronization of the neuron model

under magnetic flow effect. Numerical and PSpice simu-

lations are given to show the effectiveness and applicability

of the proposed synchronization method. The conclusions

are summarized in the final part of this work.

Description and basic dynamical analysis
of the neuron model

Model description

When the concentration of ions (such as calcium, potas-

sium, sodium) in the cell changed, this causes the fluctu-

ation of the membrane potential. Thus, when an external

electromagnetic excitation beyond the threshold is applied,

an action potential may be induced to predict changes in

ion distribution density, which may also cause a time-

varying magnetic field. As a result, magnetic flux (Lv and

Ma 2016; Lv et al. 2016; Njitacke et al. 2019b) is suggested

to describe the effect of electromagnetic induction. Con-

sequently, a new fourth equation was introduced by Lv

et al. (2016) to improve the 3D Hindmarsh and Rose model

of (Hindmarsh and Rose 1984) which is expressed by the

four first-order ordinary differential equations as:

dx

dt
¼ y� ax3 þ bx2 � fzþ Iext � k1q uð Þx;

dy

dt
¼ c� dx2 � y;

dz

dt
¼ r sðxþ hÞ � z½ �;

du
dt

¼ x� k2u;

8
>>>>>>>><

>>>>>>>>:

ð1Þ

where the variables x, y, z and u represent respectively the

membrane potential, internal current for the recovery

variable (or spiking variable), bursting variable and mag-

netic flux across the membrane of the neuron. Iext denotes

the external forcing current. Similar to the original

parameters introduced by Hindmarsh–Rose in 1984, the

parameters could be selected with the same values as a = 1,

b = 3, c = 1, d = 5, r = 0.006, s = 4 and h = 1.6. The

parameters f, a and b are constant, while k1 and k2 are

parameters that describe the interaction between membrane

potential and magnetic flux. The term k1q(u)x = k1(a ?

3bu2)x describes the suppression modulation on membrane

potential, and it could be regarded as additive induction

current on the membrane. In this improved neuron model,

the parameter k1 plays a significant role in neuron activity

because it defines the modulation gain on membrane

potential resulting from the induced current.

Equilibrium points

By setting the left-hand side of the neuron model (1) to

zero, the equilibrium points can be obtained by solving the

following nonlinear system:

y� ax3 þ bx2 � fzþ Iext � k1ðaþ 3bu2Þx ¼ 0;
c� dx2 � y ¼ 0;
r sðxþ hÞ � z½ � ¼ 0;
x� k2u ¼ 0:

8
>><

>>:

ð2Þ

With reference to Bao et al. (2018b), the equilibrium

point of the mHR neuron model (2) is solved as:

E ¼ xe; c� dx2
e ; sðxe þ hÞ; xe=k2

� �
;

in which xe is determined by the only real root of the

following cubic equation:

x3
e þ Ax2

e þ Bxe þ C ¼ 0; ð3Þ

where A ¼ k2
2
ðd�bÞ

ak2
2
þ3k1b

;B ¼ k2
2
ðfsþk1aÞ

ak2
2
þ3k1b

and C ¼ � k2
2
ðcþIext�fshÞ
ak2

2
þ3k1b

.

Let us define: xe ¼ w� A
3
, after some mathematical

manipulations Eq. (3) becomes:

w3 þ pwþ q ¼ 0; ð4Þ
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where p ¼ B� A2

3
and q ¼ C � 1

3
ABþ 2

27
A3. Thus, the

roots of (4) can be derived as Megam et al. (2016) and Xu

et al. (2017):

• If D = (q/2)2 ? (p/3)3\ 0, there are three real roots in

(4), which implies that, the mHR has three equilibrium

points and can be obtained from (5).

wi ¼ 2 � p

3

� �1
2

cos
1

3
arccos � q

2
� 27

p3

� �1
2

 !

þ 2ip
3

" #

; where i ¼ 1; 2; 3:

ð5Þ

• If D ¼ q=2ð Þ2þ p=3ð Þ3 [ 0, there exist one real root and

two complex roots. Since the equilibrium point cannot

be a complex number, one equilibrium point obtained

from (6).

w ¼ � q

2
þ q2

4
þ p3

27

� �1
2

 !1
3

þ � q

2
� q2

4
þ p3

27

� �1
2

 !1
3

;

ð6Þ

• If D = (q/2)2 ? (p/3)3 = 0, then our mHR neuron model

has two equilibrium points obtained from (7).

w1 ¼ 3q

p
and w2 ¼ � 3q

2p
; ð7Þ

Note that, D is the Cardan discriminant and i is the unit

of the imaginary number.

Various firing activities and bifurcation
mechanisms in the mHR

Various firing activities

In order to investigate the various important phenomena

that the HR model can present under magnetic field effect,

we solve system (1) numerically using a fourth-order

Runge–Kutta algorithm. It is important to mention that, all

results presented in this work, the integration step is always

set to Dt = 0.01. Briefly recall that two indicators are

generally used to identify chaotic behaviour in a system,

we have the bifurcation diagram and the Lyapunov expo-

nent. Indeed, the dynamics of the system is evaluated

thanks to the Lyapunov exponent, which is calculated

numerically using the algorithm of Wolf et al. (1985). In

particular, the sign of the largest Lyapunov exponent

determines the rate of almost all the small perturbations of

the state variables of the system and, consequently, the

nature of the attractor (Tchitnga et al. 2019; Mezatio et al.

2019). When kmax \ 0, all disturbances disappear, and

trajectories start sufficiently close to each other, thus con-

verging towards the same point of stable equilibrium in the

state space. For kmax = 0, initially closed the orbits remain

close but discrete, corresponding to the oscillatory

dynamics on a limit cycle or a torus. Finally, when kmax[
0 the small perturbations grow exponentially, and the

system evolves chaotically, we say in the latter case that

the system presents the phenomenon of chaos. When

varying the gain k1 that describes the interaction between

membrane potential and the magnetic flux of the system

(1), bifurcation diagrams of Fig. 1a showing local maxima

of the membrane potential x and the corresponding graph

of Lyapunov spectrum Fig. 1b of the attractor in terms of

the control parameter k1 that is varied in tiny steps in the

range 0 B k1 B 1 with the initial condition (- 1.1, - 0.06,

0.04, - 0.08) for f ¼ 1; a ¼ 0:1; b ¼ 0:02, k2 = 0.5 and

Iext = 3; other parameters are fixed in previous subsec-

tion. For this diagram, it can be observed that, by applying

appropriate electromagnetic induction strength, multiple

modes in electrical activities of a neuron can be selected.

The weak degree of chaos exhibited by the model is clearly

(a)

(b)

Fig. 1 Bifurcation diagram a showing local maxima of the coordinate

x of the attractor and corresponding graph of largest Lyapunov

exponents (kmax), b versus parameter k1 that is varied in tiny steps in

the range 0 B k1 B 1 with the initial condition �1:1;ð
�0:06; 0:04;�0:08Þ for Iext ¼ 3; a ¼ 0:1; f ¼ 1;b ¼ 0:02; k2 ¼
0:5. A positive exponent (kmax [ 0) indicates chaos while regular

states are characterized with negative values of Lyapunov exponent

(kmax\ 0)
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justified by the small values of kmax that are always kmax\
0.01. It can be observed that there is an excellent concor-

dance between the bifurcation diagram and the graph of

Lyapunov exponents. With some parameter settings in

Fig. 2, Time series (Fig. 2a) and various numerical phase

portraits (Fig. 2b–d) were produced. These figures demon-

strate the chaos mechanism in the system, confirming dif-

ferent bifurcation sequences depicted previously (see

Fig. 1).

In addition, it is found in Fig. 3 that under different

electromagnetic induction strength (k1 and k2) and fixed

external current (Iext), quiescent Fig. 3a, spiking Fig. 3b,

regular bursting Fig. 3c and periodical states Fig. 3d can be

generated from the neuronal circuit with respectively (k1,

k2) = (4, 0.5), (k1, k2) = (1.04, 0.31), (k1, k2) = (1, 0.5) and

(k1, k2) = (0.4, 0.2).

Bifurcation mechanism of bursting firing patterns

In this subsection, we investigate the bifurcation mecha-

nisms in the mHR neuron model by considering the fol-

lowing specific parameters values:

a ¼ 0:1; b ¼ 0:02; Iext ¼ 3; k1 ¼ 0:35 and k2 = 0.5. Briefly

recall that the constant f of the system (1) is a significant

parameter in the dynamical study of the electrical activity

of the neurons because it can make it possible to pass from

a bursting behaviour to a spiking behaviour and also to

control the spiking frequency. Thus, by varying f in the

region [0.8, 1.4] and considering the initial conditions (-

1.1, - 0.06, 0.04, - 0.08), we obtain the bifurcation dia-

gram and the corresponding Lyapunov exponent of Fig. 4.

This figure shows that, when f varies, the neuron presents

various complex and captivating behaviour such as period,

period-doubling cascades, chaos, crisis scenario, reverse

period-doubling cascades and periodic window. As an

example, let us consider two specific values of f, set as f = 1

and f = 1.35. As predicted by the bifurcation diagram, for

these two values, the electrical activity of the neuron has a

chaotic bursting firing (see Fig. 5) and periodic bursting

firing (see Fig. 6) respectively. Indeed, Figs. 5a and 6a

present the time sequences of the four-state variables of the

system (1) while Figs. 5b and 6b show the phase portrait in

the (z - x) plane for these different states of the neuron

electrical activity. In order to confirm the periodic bursting

firing (Fig. 5a, b) and the chaotic bursting firing (Fig. 6a, b)

of the neuron under the magnetic field effect, the frequency

spectra are presented respectively through Figs. 5c and 6c.

Recall that in neurodynamics, the phenomenon called

bursting occurs when the neuron electrical activity alter-

nates between the quiescent state and a repetitive spiking

state (Izhikevich 2000). Typically, systems with this type

of phenomenon can be subdivided into two subsystems

including fast variables and slow variables, implying that

these models can display two-time scales and therefore

may be subject to the fast–slow bifurcation analysis.

Concerning the model that we study in this work, we can

easily notice from Figs. 5a and 6a that, the states variables

x, y and u evolve fastly while the state variable z evolves

slowly, which means that, system (1) can be subdivided

into a fast subsystem (FS) having x, y, u as state variables

and a slow subsystem (SS) whose only z is a state variable.

Fast–slow bifurcation analysis Based on the fast–slow

analysis (Rinzel 1985), the slow variable z is considered as

a parameter for the fast variables x, y, u and the fast-scale

subsystem (FS) is defined by:

dx

dt
¼ y� ax3 þ bx2 � fzþ Iext � k1 aþ 3bu2

� �
x

dy

dt
¼ c� dx2 � y

du
dt

¼ x� k2u

8
>>>>><

>>>>>:

ð8Þ

For this 3D FS, the equilibrium points are defined by EFS ¼
�x; c� d�x2; �x=k2ð Þ in which �x is obtained by solving the

following equation:

�x3 þ g1 �x
2 þ g2 �xþ g3fz� g4 ¼ 0 ð9Þ

in which, g1 ¼ k2
2
d�bð Þ

ak2
2
þ3bk1

; g2 ¼ ak1k
2
2

ak2
2
þ3bk1

; g3 ¼ k2
2

ak2
2
þ3bk1

and

g4 ¼ k2
2
cþIextð Þ

ak2
2
þ3bk1

: Using the Cardan method as above to solve

Eq. (9), we obtain the following solutions:

�x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� q1

2
þ

ffiffiffiffiffiffi
D1

p
3

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� q1

2
�

ffiffiffiffiffiffi
D1

p
3

r

� g1

3
;

�x2 ¼ � 1

2
1 � i

ffiffiffi
3

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� q1

2
þ

ffiffiffiffiffiffi
D1

p
3

r

� 1

2
1 þ i

ffiffiffi
3

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� q1

2
�

ffiffiffiffiffiffi
D1

p
3

r

� g1

3
;

�x3 ¼ � 1

2
1 þ i

ffiffiffi
3

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� q1

2
þ

ffiffiffiffiffiffi
D1

p
3

r

� 1

2
1 � i

ffiffiffi
3

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� q1

2
�

ffiffiffiffiffiffi
D1

p
3

r

� g1

3
;

ð10Þ

where p1 ¼ g2 �
g2

1

3
; q1 ¼ g3fz� g4 � 1

3
g1g2 þ 2

27
g3

1 and D1

= (q1/2)2 ? (p1/3)3.

Similar to what was done previously, if D1 [ 0 then,

Eq. (9) admits a single real root presented by the first

equation of Eq. (10), whereas when D1 = 0, Eq. (9) admits

two real roots presented by the first two equations of

Eq. (10). In the latter case (D1\0) Eq. (9) admits three real

roots presented by the three equations of Eq. (10).

In order to study in detail, the consequences that can

occur on the stability of the model when the sign of the

Cardan discriminant alternates from a positive value to a

negative value (and vice versa) passing through zero, we

determine the following Jacobian matrix at the steady point

EFS.
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(a)

(b)

(c)

(d)

Fig. 2 Numerical (left) and

PSpice simulation (right) of:

Time series a, b and two

dimensional views c, d of the

attractor projected, illustrating

the complexity of the system for

Iext¼ 3;a¼ 0:1; f ¼
1; b¼ 0:02; k2 ¼ 0:5; k1 ¼ 1

with the initial condition

�1:1;�0:06; 0:04;�0:08ð Þ
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(a)

(b)

(c)

(d)

Fig. 3 Numerical (left) and

PSpice simulation (right) of:

The time series of membrane

potential in neuron under

different electromagnetic

induction strength at Iext = 3, a =

0.1, f = 1, b = 0.02, for a k1 = 4

and k2 = 0.5; b k1 = 1.04 and k2

= 0.31; c k1 = 1 and k2 = 0.5; d
k1 = 0.4 and k2 = 0.2 with the

initial condition

0:01; 0:02; 0:08;�1:2ð Þ
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JFS ¼
�3a�x2 þ 2b�x�

k1 3b�x2 þ ak2
2

� �

k2
2

1 � 6k1b�x2

k2

�2d�x �1 0

1 0 �k2

0

B
B
@

1

C
C
A

ð11Þ

The characteristic equation corresponding to this Jaco-

bian matrix is thus:

k3 þ m1k
2 þ m2kþ m3 ¼ 0; ð12Þ

with

m1 ¼ 1

k2
2

3ak2
2 þ 3bk1

� �
�x2 � 2bk2

2 �xþ k2
2 ak1 þ k2 þ 1ð Þ

� �
;

m2 ¼ 1

k2
2

3ak3
2 þ 3ak2

2 þ 9bk1k2 þ 3bk1

� �
�x2

�

þk2
2 2d � 2bk2 � 2bð Þ�xþ k2

2 ak1k2 þ ak1 þ k2ð Þ
�
;

m3 ¼ 1

k2

3ak2
2 þ 9bk1

� �
�x2 þ k2

2 2d � 2bð Þ�xþ ak1k
2
2

� �
:

For a 3D ordinary differential equation, the stability con-

ditions obtained by applying the Routh–Hurwitz criteria

are: m1[ 0, m1m2 - m3 [ 0 and m3[ 0. Since the coef-

ficients mi (i = 1, 2, 3) are real numbers, and they depend

on the slow variable z via �x (�x is function of z), we deduce

that the stability of the FS also depends on this slow

variable. According to the values of these coefficients, it is

possible to have several types of bifurcations including a

Hopf bifurcation (HBFS) and a fold bifurcation (FBFS).

Considering the two specific values of the parameter f used

respectively in Figs. 5 and 6 (i.e., f = 1 and f = 1.35), it is

(a)

(b)

Fig. 4 Bifurcation diagram

a showing local maxima of the

coordinate x(t) of the attractor

and the corresponding 1D

largest Lyapunov exponent

(kmax) in terms of the control

parameter f that is varied in tiny

steps in the range 0.8 B f B 1.4

with the initial condition (- 1.1,

- 0.06, 0.04, - 0.08)
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observed in Fig. 7 the evolution of the number of equi-

librium points in the �x� zð Þ plane when the slow variable z

is modified. From this figure, it can be seen that when the

slow variable z increases, the number of equilibrium points

also increases from 1 to 2, then from 2 to 3, and thereafter

decreases from 3 to 2 and finally from 2 to 1. This sudden

transition of the number of equilibrium points justifies the

different bifurcations that can be found in the fast–scale

subsystem. Indeed, when D1 = 0, a small perturbation of the

slow variable can cause a degenerate equilibrium point to

disappear or to split into two different types of equilibrium

points, therefore, fold bifurcation occurs (FBFS). The point

FBFS where the fold bifurcation occurs is characterized by

the following conditions (Bi et al. 2015; Bao et al. 2019):

m3 ¼ 0; m1 [ 0;m1m2 � m3 [ 0ð Þ:

Considering these conditions and using Eq. (9), we obtain:

FBFS :
�x3 þ g1 �x

2 þ g2 �xþ g3fz� g4 ¼ 0

3ak2
2 þ 9bk1

� �
�x2 þ k2

2 2d � 2bð Þ�xþ ak1k
2
2 ¼ 0

	

ð13Þ

Using the specific parameters’ values defined previously,

we obtain:

FBFS : fz ¼ 4:000153858 ð14Þ

The point HBFS where the Hopf bifurcation occurs is

characterized by the following conditions (Bi et al. 2015;

Bao et al. 2019): m1m2 - m3 = 0, (m1 [ 0, m3 [ 0).

Considering these conditions and using Eq. (9), we obtain:

HBFS :
�x3 þ g1 �x

2 þ g2 �xþ g3fz� g4 ¼ 0

m1m2 � m3 ¼ 0

	

ð15Þ

Using the specific parameters’ values defined previously,

we obtain:

HBFS : fz ¼ 3:912763255 ð16Þ

Figure 8a, b shows the evolution of the Routh–Hurwitz

coefficients m1, m3 and m1m2 – m3 when the slow variable

(a)

(b) (c)

Fig. 5 Chaotic bursting firing

with f = 1: a Time series of four

state variables (x, y, z, u),

b phase portrait in the (z -
x) planes and c frequency

spectra of the spiking variable

(y)
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z increases for f = 1 (Fig. 8a) and f = 1.35 (Fig. 8b). In these

figures, it is easy to observe the values of the slow variable

where the conditions for the occurrence of the fold bifur-

cation FBFS or the Hopf bifurcation HBFS are satisfied.

When in the (z – f) plane, f and z respectively vary in the

regions [0.8, 1.5] and [2.7, 4.2] as shown in Fig. 8c, there is

a Hopf bifurcation at HBFS1 for f = 1.35 and at HFFS2 for

f = 1. We also see the occurrence of a fold bifurcation at

(a)

(b) (c)

Fig. 6 Periodic bursting firing

with f = 1.35: a Time series of

four state variables (x, y, z, u),

b phase portrait in the (z -
x) planes and c frequency

spectra of the spiking variable

(y)

Fig. 7 Equilibrium points of the

fast-scale subsystem illustrating

the different transitions that may

justify the possible bifurcations

which can occurs in the model.

For f = 1 (respectively f = 1.35),

the stable equilibrium points are

represented by the cyan color

(respectively dark blue color)

while the unstable equilibrium

points are represented in sky

blue color (respectively

burgundy color). (Color

figure online)
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point FBFS1 for f = 1.35 and point FBFS2 for f = 1. These

results are in agreement with the analyzes developed pre-

viously and show that when the slow variable increases,we

first have a Hopf bifurcation and then a fold bifurcation

which implies Hopf-fold bursting.

Discussion on the bifurcation mechanism of bursting firing
patterns We mentioned at the beginning of this subsec-

tion that, bursting occurs when the electrical activity of the

neuron alternates between the quiescent state and a repet-

itive spiking state. Without losing the generality, we

choose as an example the value of the parameter f for

which the electrical activity of the neuron described by a

periodic bursting (i.e. f = 1.35, see Fig. 6). To investigate

the bifurcation mechanisms to pass from a quiescent state

to a repetitive spiking state in the HR neuron model under

the magnetic field effect (see Eq. 1). In Fig. 7, we have two

curves, the curve coloured in dark blue and burgundy (re-

spectively cyan and sky blue) represents the variations of

the equilibrium point number for f = 1.35 (respectively for f

= 1) when the slow variable z evolves. In this figure, the

unstable equilibrium points are represented by the areas

coloured in burgundy (respectively in sky blue) while the

stable equilibrium points are represented by the areas

coloured in dark blue (respectively in cyan). It is also

observed that the areas where the stability of the equilib-

rium points is modified are localized by the points A1

(2.249, - 1.19), A2 (2.8985, 0.1959) and A3 (2.963, -

0.001569) [respectively B1 (3.037, - 1.184) B2 (3.9125,

0.191326) and B3 (4, 0) for f = 1). By observing Fig. 8c, we

find that the Hopf bifurcation HBFS and the fold bifurcation

FBFS appear respectively at points HBFS1 (z = 2.8985, f =

1.35) and FBFS1 (z = 2.963, f = 1.35). Indeed, the occur-

rence of the Hopf bifurcation at point A2 in Fig. 7 implies

that, when a critical value is reached (i.e. at the transition

from unstable equilibrium point to stable equilibrium

point), the oscillations of the neuron electrical activity die,

as a result, the neuron is at rest (quiescent state). The

(a)

(c)

(b)Fig. 8 Curves of the variation of

the Routh–Hurwitz coefficients

(m1, m3 and m1m2-m3) as a

function of the slow variable

z for: a f = 1; b f = 1.35. c Fold

and Hopf bifurcation sets of the

fast-scale subsystem with the

z and f evolutions. For (a) and

(b), when the conditions m1[0,

m1m2 - m3[0 and m3 = 0 (m1

[0, m3[0 and m1m2 - m3 = 0

respectively) are satisfied, a fold

bifurcation (Hopf bifurcation

respectively) occurs
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neuron starting from this quiescent state (z = 2.8985), then

undergoes a fold bifurcation when z = 2.963, which means

that when z 2 2:8985; 2:963� ½, the fast-scale subsystem has

three equilibrium points among which we have two

stable equilibrium points coloured in dark blue and one

unstable equilibrium point coloured in burgundy. When z[
2.963, the number of equilibrium points changes, we go

from three equilibrium points to briefly two equilibrium

points and then to one single stable equilibrium point

coloured in dark blue (see Fig. 7). Thanks to the presence

of this fold bifurcation, the electrical activity of the neuron

will change to give rise to a repetitive spiking and then

initiate the next periodic cycle (i.e. alternation between

quiescent state and repetitive spiking state). It is, therefore,

this mechanism which justifies the periodic bursting that is

observed thanks to the time series of the membrane

potential x in Fig. 6a. Recall that, these results are also

valid for the case where the electrical activity of the neuron

is described by a chaotic bursting firing (i.e. f = 1, see

Fig. 5) with the only difference that, the alternations

between the quiescent state and repetitive spiking state will

not be done in a periodic way.

Analog circuit implementation

In biophysics, it is essential to propose analog electronic

circuits necessary for the construction of some artificial

simulators used in the laboratory to carry out certain

experiments which cannot be performed on human beings

for ethical reasons (Wu et al. 2019). Thus, in Badoni et al.

(1995), a method allowing the circuitry realization of an

analog attractor neural network with stochastic learning is

proposed. Likewise, in Hu et al. (2016), the analog circuit

of the Morris–Lecar neuron model is provided to analyze

some transitions in the firing activity of neurons. More

recently, in Kemwoue et al. (2020), electronic simulations

are performed using an analog circuit implementation of

the HET cancer model in order to investigate the dynamics

of tumor growth. Using this as motivation, in this part of

our work, the aim is to be able to set up an analog circuit

which will allow us to make a comparison between the

theoretical/numerical results obtained previously and the

practical results. The circuit diagram that allows us to

perform the various simulations in the PSpice software is

presented in Fig. 9. The realization of this circuit is carried

out with the help of the operational amplifiers TL084 and

the associated circuits making it possible to carry out the

basic operations like the addition, the subtraction and the

integration, the electronic multipliers (MULT) are the

analog component versions AD633JN. They are used to

implement the non-linear term of the system. By applying

Kirchhoff’s laws to the electronic circuit of Fig. 9, their

circuit equations are deduced in the following form:

dVCx

dt
¼ 1

104R1C1

VCy
� 1

104R2C1

V3
Cx

þ 1

104R3C1

V2
Cx

� 1

104R4C1

VCz

þ 1

104R5C1

VIext �
R7

104R6RC1

VaVCx
� R7Rb

104R6RRaC1

VCx
V2
Cu
;

dVCy

dt
¼ 1

104R8C2

VC � 1

104R9C2

V2
Cx

� 1

104R10C2

VCy
;

dVCz

dt
¼ 1

104R11C3

VCx
þ 1

104R12C3

Vrsh �
1

104R13C3

VCz
;

dVCu

dt
¼ 1

104R14C4

VCx
� 1

104R15C4

VCu ;

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð17Þ

From Eq. (17), we can easily establish the expressions of

the parameters of Eq. (1) depending on the value of the

electronic components of Fig. 9:

a ¼ 1

104R2C1

; b ¼ 1

104R3C1

; c ¼ 1

104R8C2

VC;

d ¼ 1

104R9C2

; f ¼ 1

104R4C1

; Iext ¼
1

104R5C1

VIext;

ak1 ¼ R7

104R6RC1

Va; 3bk1 ¼ R7Rb

104R6RRaC1

; d ¼ 1

104R9C2

;

rs ¼ 1

104R11C3

; rsh ¼ 1

104R12C3

Vrsh; k2 ¼ 1

104R15C4

;

x ¼ VCx
; y ¼ VCy

; z ¼ VCz
and u ¼ VCu :

ð18Þ

Bearing in mind that the time scaling process offers analog

instruments the ability to work with their bandwidths, the

unit of time here is 10-4. Indeed, this process offers the

opportunity to simulate the behaviour of the system at a

given frequency by performing an appropriate time scaling

consisting of expressing the MATLAB time variable tM.

This concerning the PSpice calculation time variable ts: ts =

RCtM = 10-ntM, where n is positive integer depends on the

values of resistors and capacitors used in the analog sim-

ulation (Kengne et al. 2012).

The bias is provided by a ± 14 Vdc symmetric voltage

source. Setting Cx = Cy = Cz = Cu = C = 10 nF, and

adopting the parameter of system (1) (a, b, c, d, h, r, s, a, b,

f, k1, k2, Iext) = (1, 3, 1, 5, 1.6, 0.006, 4, 0.1, 0.02, 1, 1, 0.5,

3), the circuit components in Fig. 9 are selected as follows:

R1 ¼ R2 ¼ R4 ¼ R5 ¼ R6 ¼ R7 ¼ R8 ¼ R10 ¼ R12

¼ R14 ¼ Ra ¼ R ¼ 10 kX;

R3 ¼ 10

3
kX; R9 ¼ 2 kX;

Rb ¼ 600X; R11 ¼ 10

24
MX; R13 ¼ 10

6
MX; R15 ¼ 20 kX;

V Iext ¼ 3V ; VC ¼ 1 V; Vrsh ¼ 0:384 mV; Va ¼ � 0:1 V:

It is worth mentioning that, the effects of varying the

modulation gain on membrane potential resulting from

induced current (k1) in our mHR neuron model can be
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analyzed by monitoring the resistors R6 and R7 while

keeping the rest of electronic components values constant.

Figures 2 and 3 show the similarities between the

numerical simulations (left) and PSpice simulations (right)

for different firings patterns of the mHR neuron model (1).

From these figures, it appears that for the chosen set of

parameters, the system (1) presents strictly multiple modes

of electrical activities including quiescent state, spiking,

bursting, periodical and chaotic attractors. According to

these figures, it is evident that the various behaviours

obtained through PSpice simulations are very close to the

numerically computed results.

In order to appreciate the physical energy of the elec-

tronic circuit of Fig. 9 for the different behaviors of the

neuron electrical activity, we present Table 1. To obtain the

different values of the energy presented in this table, we

calculate the energy of the membrane potential VCx deter-

mined by this circuit as well as that of the other variables

VCy, VCz and VCu by the relation EVCv ¼
Cv

2N

PN
i¼1 V

2
Cvi

where

v = x, y, z, u and N is the considered points number.

Likewise, we deduce the total physical energy of the circuit

by the relation ET ¼ 1
2N

PN
i¼1 CxV

2
Cxi

�
þ CyV

2
Cyi

þ CzV
2
Czi

þ

CuV
2
Cui

�
. From this table, we note that, when the neuron is

at quiescent state, the physical energy of the circuit for the

membrane potential variable is the lowest compared to that

of the other variables. However, when we consider the total

physical energy of the circuit for each of the neuron elec-

trical activities, we see that it is rather the physical energy

Fig. 9 Analog circuit of the

modified Hindmarsh–Rose

neuron model with additive

magnet flux current

Iu = - k1q(u)x. (x Analog

denotes the output variable for

membrane potential)
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of the circuit when the neuron exhibits the chaotic behavior

that is the weakest.

Hopf bifurcation analysis

Throughout this section, we will consider that f = 1. In

order to analyze the local bifurcations susceptible to occur

in the system (1) when varying the external forcing current

Iext and the electromagnetic parameters k1, k2, a, b, we

linearize this system around these equilibria E(xe, ye, ze, ue)

and the following 4 9 4 Jacobian matrix is obtained:

J ¼

J11 1 �1 J14

J21 �1 0 0

rs 0 �r 0

1 0 0 �k2

0

B
B
@

1

C
C
A; ð19Þ

where J11 = - 3axe
2 ? 2bxe - k1(a ? 3bue

2), J21 = - 2dxe,

J14 = - 6k1bxeue. The characteristic equation (det (J - kId)
= 0, where Id stands as the 4 9 4 identity matrix) corre-

sponding to the above Jacobian matrix can easily be

computed as follows:

k4 þ a1k
3 þ a2k

2 þ a3kþ a4 ¼ 0; ð20Þ

where

a1 ¼ �J11 þ k2 þ r þ 1;

a2 ¼ �J11 k2 þ r þ 1ð Þ � J14 � J21 þ r k2 þ sþ 1ð Þ þ k2;

a3 ¼ �J11 k2r þ k2 þ rð Þ � J14 r þ 1ð Þ
� J21 k2 þ rð Þ þ r k2sþ k2 þ sð Þ;

a4 ¼ �k2rJ11 � rJ14 � k2rJ21 þ rsk2:

ð21Þ

The type of bifurcation occurring at equilibrium points is

given in the first point of view by looking at the solution of

the characteristic equation of matrix J. In Fig. 10, we show

these eigenvalues in the complex plane (Real (k), Imag

(k)). Indeed, Eq. (20) is solved using the Newton–Raphson

method for the following ranges of parameters, 2 B k1 B

4.5, keeping the others constant: a = 0.1, b = 0.02, k2 = 0.5

and Iext = 3. Provided that J is a matrix with real coeffi-

cients, complex eigenvalues occur in complex conjugate

pairs responsible for the symmetry observed along the real

axis. The locus intersects the imaginary axis and thus

suggests the possibility of Hopf bifurcation.

Local stability and existence of Hopf bifurcation

After having proved the possible existence of the Hopf

bifurcation in the system (1) for a particular range of the

parameter, it is essential to be interested in the instability

related to this type of bifurcation. Indeed, thanks to Fig. 10,

we can deduce some observations concerning the stability

of fixed points and bifurcations likely to appear in the

model submitted to our study. Looking at the evolution of

the eigenvalues of the Jacobian matrix of the system, we

note that there is a type of instability which describes well

the phenomenon of the Hopf bifurcation: intersection place

with the imaginary axis where two conjugated complexes

eigenvalues cross the imaginary axis simultaneously. We

also note that real solutions are always negative.

In order to prove the occurrence of Hopf bifurcation in our

mHR oscillator, we will verify if the transversality condition

stated in Hassard et al. (1982), Guckenheimer and Holmes

(1983) and Wouapi et al. (2019) is satisfied. For these pur-

poses, and by considering the electromagnetic induction

strength k1 as a control parameter, we consider the derivative

of the characteristic equation (Eq. 20) with respect to k1:

4k3 k1ð Þ ok k1ð Þ
ok1

þ f1 k1ð Þk3 k1ð Þ þ 3a1 k1ð Þk2 k1ð Þ ok k1ð Þ
ok1

þ f2 k1ð Þk2 k1ð Þ þ 2a2 k1ð Þk k1ð Þ ok k1ð Þ
ok1

þ f3 k1ð Þk k1ð Þ

þ a3 k1ð Þ ok k1ð Þ
ok1

þ f4 k1ð Þ ¼ 0;

ð22Þ

where fj k1ð Þ ¼ oaj k1ð Þ
ok1

; j ¼ 1; 2; 3 and 4:
We suppose that Eq. (20) has a pure imaginary root

k k1cð Þ ¼ ix k1cð Þ; x 2 Rþð Þ. By substituting it into

Eq. (22) and separating imaginary and real parts give:

Table 1 Physical energy of the electronic circuit used to represent the different electrical activities of the neuron under magnetic flow effect

Physical energy of the circuit (lJ) Electrical activity of neuron

Quiescent state

(see Fig. 3a)

Spiking state

(see Fig. 3b)

Periodical State

(see Fig. 3d)

Regular bursting

state (see Fig. 3c)

Chaos or irregular

bursting state (see

Fig. 2a)

Energy of the membrane potential variable EVCx
ð Þ 7.6004 9 10-4 2.6944 9 10-3 3.6180 9 10-3 6.09 9 10-3 2.9694 9 10-3

Energy of the spiking variable EVCy

� �
2.8799 9 10-4 2.3906 9 10-2 4.1014 9 10-2 1.8611 9 10-1 2.5391 9 10-2

Energy of the bursting variable EVCz

� �
8.6103 9 10-2 5.0984 9 10-2 4.1127 9 10-2 2.3698 9 10-2 5.395 9 10-2

Energy of the magnetic flux variable EVCz

� �
7.5995 9 10-2 2.7089 9 10-2 2.0697 9 10-2 2.2967 9 10-2 1.0185 9 10-2

Total energy (ET) 1.6315 9 10-1 1.0467 9 10-1 1.0646 9 10-1 2.3887 9 10-1 9.2495 9 10-2
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Re
ok k1ð Þ
ok1









k1¼k1c

 !

¼ �
f4 � x2

0f2
� �

a3 � 3a1x2
0

� �
þ x0f3 � x3

0f1
� �

2a2x0 � 4x3
0

� �

a3 � 3a1x2
0

� �2þ 2a2x0 � 4x3
0

� �2
;

ð23Þ

and

Im
ok k1ð Þ
ok1









k1¼k1c

 !

¼ �
x0f3 � x3

0f1
� �

a3 � 3a1x2
0

� �
� f4 � x2

0f2
� �

2a2x0 � 4x3
0

� �

a3 � 3a1x2
0

� �2þ 2a2x0 � 4x3
0

� �2
:

ð24Þ

Examining these relations, we see that

Re
ok k1ð Þ
ok1







k1¼k1c

� �

6¼ 0. Under the restriction that <(kj(k1c)\

0) for j = 3, 4, the second condition for a Hopf bifurcation

is met and the Poincaré–Andronov–Hopf theorem holds.

Then, Hopf bifurcation can occur at (E, k1c) of system (1).

Obviously, Eq. (20) has a pair of purely imaginary

conjugate roots k1,2 = ±ix0 and a strictly negative reals

roots k3;4 ¼ � a1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1 � 4 a2 � a3

a1

� �r

. Our aim now is to

deduce a relationship between system’s parameters corre-

sponding to this bifurcation around the equilibrium E(xe,

ye, ze, ue). Thus, we substitute k = ix0 into the Eq. (20) and

we obtain the following conditions:

x0 ¼
ffiffiffiffiffi
a3

a1

r

; ð25Þ

and

a2
3 � a1a2a3 þ a2

1a4 ¼ 0: ð26Þ

To obtain the control parameter’s values k1c, we replace in

Eq. (26) a1, a2, a3 and a4 by their expressions described in

(21). Hence, after some algebraic manipulations, we derive

the following equation from which solutions give k1c:

�Ak3
1 þ �Bk2

1 þ �Ck1 þ �D ¼ 0; ð27Þ

where �A; �B; �C and �D are described in the ‘‘Appendix 1’’

Eqs. (45–48).

Consequently, the following conclusion can be made,

when k1 passes through the critical value k1c, system (1)

undergoes a Hopf bifurcation at the equilibrium E(xe, ye, ze,

ue).

Direction and stability of bifurcating periodic
solutions

In this part of this work, we apply the normal form theory

(Hassard et al. 1982; Guckenheimer and Holmes 1983;

Wiggins 1990; Kuznetsov 1998) to study the direction,

stability and period of bifurcating periodic solutions for

system (1). The eigenvectors v1, v3 and v4 associated

respectively with

k1 ¼ ix0; k3 ¼ � a1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1 � 4 a2 �

a3

a1

� �s

and

k4 ¼ � a1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1 � 4 a2 �

a3

a1

� �s

are:

~v1 ¼

1
J21

1 þ x2
0

� ix0J21

1 þ x2
0

sr2

r2 þ x2
0

� ix0rs

r2 þ x2
0

k2

k2
2 þ x2

0

� ix0

k2
2 þ x2

0

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

; ~v3 ¼

1
J21

1 þ k3
rs

r þ k3
1

k2 þ k3

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

and ~v4

¼

1
J21

1 þ k4
rs

r þ k4
1

k2 þ k4

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

Hence, the matrix P ¼ ðRe~v1;�Im~v1; ~v3; ~v4Þ ¼ ðPijÞ1� i;j� 4

is determined as follows:

P ¼

1 0 1 1

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

0

B
B
@

1

C
C
A; ð28Þ

where

Fig. 10 Representation of the eigenvalues solutions of Eq. (20) in the

complex plane (real (k), imag (k)) for 2� k1 � 4:5, while keeping

Iext¼ 3;a¼ 0:1; f ¼ 1; b¼ 0:02; k2 ¼ 0:5 . Provided that J is a real

matrix, complex eigenvalues occur in complex conjugate pairs

responsible of the symmetry observed along the real axis. The locus

intersects the imaginary axis and thus suggests the possibility of Hopf

bifurcation
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p21 ¼ J21

1 þ x2
0

; p22 ¼ x0J21

1 þ x2
0

; p23 ¼ J21

1 þ k3

;

p24 ¼ J21

1 þ k4

; p31 ¼ sr2

r2 þ x2
0

; p32 ¼ x0sr

r2 þ x2
0

;

p33 ¼ rs

r þ k3

; p34 ¼ rs

r þ k4

; p41 ¼ k2

k2
2 þ x2

0

;

p42 ¼ x0

k2
2 þ x2

0

; p43 ¼ 1

k2 þ k3

and p44 ¼ 1

k2 þ k4

:

Let us substitute Y = P-1(X - E), and ~F Y; k1ð Þ ¼
P�1F PY þ E; k1ð Þ in system (1), where F(X, k1), represents

the vector field of such system, E(xe, ye, ze, ue) its equi-

libria, X(x, y, z, u) and Y(x1, y1, z1, u1) are states variables

(a) (b)

(c) (d)

(e) (f)

Fig. 11 Time series and phase portrait of system (4) with the

initial condition �0:6359349350;ð �1:022066208; 3:856260260;
�1:271869870Þ while keeping Iext¼ 3;a¼ 0:1; f ¼ 1; b¼ 0:02; k2¼

0:5. a, b for k1c = 3.2750; c, d for k1l = 3.2\k1c; e, f for k1u = 3.4[
k1c
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(a)

(b)

(c)

Fig. 12 Time series and phase portrait of system (4) with the initial

condition �0:6359349350;�1:022066208; 3:856260260;ð
�1:271869870Þ while keeping constant the other parameter using

PSpice simulations. a, b For k1c = 3.2750; c, d for k1l = 3.21\k1c; e,

f for k1u = 3.39[ k1c
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[the inverse matrix P-1 are described in the ‘‘Appendix 1’’

Eq. (49)].

We obtain after some mathematical manipulations the

expressions of _Y ¼ ~F Y; k1ð Þ:
_x1 ¼ �x0y1 þ F1 x1; y1; z1;u1ð Þ;
_y1 ¼ x0x1 þ F2 x1; y1; z1;u1ð Þ;

_z1 ¼ � a1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1 � 4 a2 �

a3

a1

� �s !

z1 þ F3 x1; y1; z1;u1ð Þ;

_u1 ¼ � a1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1 � 4 a2 �

a3

a1

� �s !

u1 þ F4 x1; y1; z1;u1ð Þ;

8
>>>>>>>>><

>>>>>>>>>:

ð29Þ

where F1(x1, y1, z1, u1), F2(x1, y1, z1, u1), F3(x1, y1, z1, u1),

and F4(x1, y1, z1, u1) are described in the ‘‘Appendix 1’’

Eqs. (50–53).

Notice that, the fixed point of Eq. (29) is the origin. In

the following, we follow firstly the procedures described by

Hassard et al. (1978, 1982) and Hassard (1978), to fig-

ure out the necessary quantities at k1 = k1c:

F1
20 ¼ p�1

11 2b� 6bk1p41 p41xe þ 2ueð Þ � 6axeð Þ � 2dp�1
12

M
;

F1
02 ¼ � 6 b k1 p

�1
11 p2

42 xe
M

;

F2
20 ¼ p�1

21 2b� 6bk1p41 p41xe þ 2ueð Þ � 6axeð Þ � 2dp�1
22

M
;

F2
02 ¼ � 6 b k1 p

�1
21 p

2
42 xe

M
;

F1
11 ¼ � 6 b k1 p

�1
11 p42 p41xe þ ueð Þ

M
;

F2
11 ¼ � 6 b k1 p

�1
21 p42 p41xe þ ueð Þ

M
;

F1
30 ¼ �

6p�1
11 3bk1p

2
41 þ a

� �

M
; F1

03 ¼ 0;

F2
30 ¼ �

6p�1
21 3bk1p

2
41 þ a

� �

M
; F2

03 ¼ 0;

F1
12 ¼ � 6 b k1 p

�1
11 p2

42

M
; F1

21 ¼ � 12 b k1 p
�1
11 p42 p41

M
;

F2
12 ¼ � 6 b k1 p

�1
21 p2

42

M
;

F2
21 ¼ � 12 b k1 p

�1
21 p42 p41

M
;

F3
20 ¼ p�1

31 2b� 6bk1p41 p41xe þ 2ueð Þ � 6axeð Þ � 2dp�1
32

M
;

F3
02 ¼ � 6 b k1 p

�1
31 p2

42 xe
M

; F3
11 ¼ � 6 b k1 p

�1
31 p42 p41 xe þ ueð Þ

M
;

F4
20 ¼ p�1

41 2b� 6bk1p41 p41xe þ 2ueð Þ � 6axeð Þ � 2dp�1
42

M
;

F4
02 ¼ � 6 b k1 p

�1
41 p2

42 xe
M

;

F4
11 ¼ � 6 b k1 p

�1
41 p42 p41xe þ ueð Þ

M
;

F1;1
10 ¼ p�1

11 2 b� 6 b k1 p41p43xe þ ue p41 þ p43ð Þð Þ � 6 a xeð Þ � 2dp�1
12

M
;

F1;1
01 ¼ � 6 b k1 p

�1
11 p42 p43xe þ ueð Þ

M
;

F2;1
10 ¼ p�1

21 2 b� 6 b k1 p41p43xe þ ue p41 þ p43ð Þð Þ � 6 a xeð Þ � 2dp�1
22

M
;

F2;1
01 ¼ � 6 b k1 p

�1
21 p42 p43xe þ ueð Þ

M
;

F1;2
10 ¼ p�1

11 2 b� 6 b k1 p41p44xe þ ue p41 þ p44ð Þð Þ � 6axeð Þ � 2dp�1
12

M
;

F1;2
01 ¼ � 6 b k1 p

�1
11 p42 p44xe þ ueð Þ

M
;

F2;2
10 ¼ p�1

21 2 b� 6 b k1 p41p44xe þ ue p41 þ p44ð Þð Þ � 6axeð Þ � 2dp�1
22

M
;

F2;2
01 ¼ � 6 b k1 p

�1
21 p42 p44xe þ ueð Þ

M
:

Then,

g11 ¼ 1

4
F1

20 þ F1
02 þ i F2

20 þ F2
02

� �� �
;

g02 ¼ 1

4
F1

20 � F1
02 � 2F2

11 þ i F2
20 � F2

02 þ 2F1
11

� �� �
;

g20 ¼ 1

4
F1

20 � F1
02 þ 2F2

11 þ i F2
20 � F2

02 � 2F1
11

� �� �
;

G21 ¼ 1

8
F1

30 þ F1
12 þ F2

21 þ F2
03 þ i F2

30 þ F2
12 � F1

21 � F1
03

� �� �
;

h1
11 ¼ 1

4
ðF3

20 þ F3
02Þ; h2

11 ¼ 1

4
F4

20 þ F4
02

� �
;

h1
20 ¼ 1

4
F3

20 � F3
02 � 2iF3

11

� �
; h2

20 ¼ 1

4
F4

20 � F4
02 � 2iF4

11

� �
;

By solving the following equations:

Dw11 ¼ �h11 and D� 2ix0Ið Þw20 ¼ �h20;

where

D ¼ D11 0

0 D22

� �

; h11 ¼ h1
11

h2
11

� �

; h20 ¼ h1
20

h2
20

� �

;

in which,

D11 ¼ � a1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1 � 4 a2 �

a3

a1

� �s

and
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D22 ¼ � a1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1 � 4 a2 �

a3

a1

� �s

:

One obtains

w11 ¼ w1
11

w2
11

� �

¼
� h1

11

D11

� h2
11

D22

0

B
B
@

1

C
C
A; w20 ¼ w1

20

w2
20

� �

¼
� h1

20 D11 þ 2ix0ð Þ
D2

11 þ 4x2
0

� h2
20 D22 þ 2ix0ð Þ
D2

22 þ 4x2
0

0

B
B
@

1

C
C
A:

Furthermore,

G1
110 ¼ 1

2
F1;1

10 þ F2;1
01 þ i F2;1

10 � F1;1
01

� �h i
;

G2
110 ¼ 1

2
F1;2

10 þ F2;2
01 þ i F2;2

10 � F1;2
01

� �h i
;

G1
101 ¼ 1

2
F1;1

10 � F2;1
01 þ i F2;1

10 þ F1;1
01

� �h i
;

G2
110 ¼ 1

2
F1;2

10 � F2;2
01 þ i F2;2

10 þ F1;2
01

� �h i
;

g21 ¼ G21 þ
X2

f¼1

2Gm
110w

m
11 þ Gm

101w
m
20

� �
;

Finally, we obtain the main quantities described below:

C1 0ð Þ ¼ i

2x0

g20g11 � 2 g11j j2� 1

3
g02j j2þ 1

2
g21

� �

;

l2 ¼ �ReC1ð0Þ=a
0 ð0Þ ; s2 ¼ � ImC1ð0Þ þ l2x

0
0 0ð Þ

x0

;

b2 ¼ 2ReC1ð0Þ ;
ð30Þ

and the Marsden–MacCracken index is:

IM ¼ x0 F1
30 þ F1

12 þ F2
21 þ F2

03

� �

þ F1
20F

2
20 � F1

20F
1
11 þ F2

20F
2
11

�
þ F2

02F
2
11

� F1
02F

1
11�F1

02F
2
02

�
:

Results: According to the fact that system (1) undergoes

a Hopf bifurcation at equilibrium point E when parameter

k1 passes the critical value k1c, the following properties

hold (Megam et al. 2016; Qigui and Meili 2016):

– If IM \ 0 and l2 \ 0(IM [ 0 and l2 [ 0), the Hopf

bifurcation is non-degenerate and supercritical with

stable limit cycle (subcritical with unstable limit cycle).

– If b2\0(b2[0), the bifurcating periodic solutions are

orbitally stable (unstable).

– If s2 [ 0(s2 \ 0), the period of bifurcating periodic

solutions increases (decreases).

Furthermore, the system has a unique amplitude solution of

approximated period:

T k1ð Þ ¼ 2p
x0

1 þ s2e
2 þ 0ðe4Þ

� �
; ð31Þ

and the characteristic exponent associated with this solu-

tion is

b k1ð Þ ¼ b2e
2 þ 0ðe4Þ; ð32Þ

where e2 ¼ k1c�k1

l2
þ 0ðk1c � k1Þ2

(with l2 = 0).

The expression of the bifurcating periodic solution

(except for an arbitrary phase angle) is approximated by:

X ¼ x; y; z;uð ÞT ¼ Xeðk1cÞ þ PY

¼ xe k1cð Þ; ye k1cð Þ; ze k1cð Þ;ue k1cð Þð ÞT

þ P �x1; �y1; �z1; �u1ð ÞT;

where the matrix P is defined in (28), �x1 ¼ Ren; �y1 ¼ Imn
and

�z1; �u1ð ÞT¼ w11 nj j2þRe w20n
2

� �
þ 0 nj j2
� �

;

in which

n ¼ ee
2ipt
T þ ie2

6x0

g02e
�4ipt

T � 3g20e
4ipt
T þ 6g11

� �
þ 0ðe2Þ

¼ ee
2ipt
T þ 0ðe2Þ:

From these results, we conclude that

x

y

z

u

0

B
B
B
B
B
@

1

C
C
C
C
C
A

¼

xeðk1cÞ

yeðk1cÞ

zeðk1cÞ

ueðk1cÞ

0

B
B
B
B
B
@

1

C
C
C
C
C
A

þ

e cos
2p
T

t

� �

þ e2 cþ dð Þ

e p21 cos
2p
T

t

� �

þ p22 sin
2p
T

t

� �� �

þ e2 cp23 þ dp24ð Þ

e p31 cos
2p
T

t

� �

þ p32 sin
2p
T

t

� �� �

þ e2 cp33 þ dp34ð Þ

e p41 cos
2p
T

t

� �

þ p42 sin
2p
T

t

� �� �

þ e2 cp43 þ dp44ð Þ

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

þ 0ðe2Þ;

ð33Þ

where

c ¼ � h1
11

D11

� 1

D2
11 þ 4x2

0

h1
20D11 cos

4pt
T

� �

� 2h1
20x0 sin

4pt
T

� �� �

;

d ¼ � h2
11

D22

� 1

D2
22 þ 4x2

0

h2
20D22 cos

4pt
T

� �

� 2h2
20x0 sin

4pt
T

� �� �

:
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Numerical and PSpice simulation results

Numerical computations are done in order to illustrate the

above theoretical results on the Hopf bifurcation. For this

instance, we consider the system (1) with the following

values of external forcing current Iext = 3 and the electro-

magnetic parameters k2 = 0.5, a = 0.1, b = 0.02, from where

we obtain one equilibrium point (for this parameter’s val-

ues, D[ 0 for any positive value of k1). Taking into con-

sideration this equilibrium point, the critical value of the

electromagnetic induction strength k1 defined as roots of

Eq. (27) are: k1c1 = 3.274073708, k1c2 = - 5.21211991 and

k1c3 = - 29.85155976. By considering the positive feed-

back gain k1, only the first parameter is chosen. For this

critical value, we obtain the unique equilibrium E(-

0.6353297139, - 1.018219227, 3.858681145, -

1.270659428). We also have two real eigenvalues k3(k1c) =

- 6.723062552, k4(k1c) = - 0.4504199628 and two pure

imaginary ones k1,2(k1c) = ± i0.06254412851.

Furthermore,

Re
ok k1ð Þ
ok1









k1¼k1c

 !

¼ �0:01021350025\0;

then the transversality condition is satisfied. Moreover, the

various useful coefficients for the direction of the bifur-

cation are:

g11 ¼ 0:1184468005 þ 0:0191747304i;

g02 ¼ 0:1183218976 þ 0:03939573908i;

g20 ¼ 0:116070373 � 0:000906539065i;

G21 ¼ �0:2182365718 þ 0:02008439371i;

g21 ¼ 0:0091518117 þ 0:0645574249i;

C1 0ð Þ ¼ �0:01235650753 � 0:1292972074i;

Finally, we obtain the main results: l2 = - 1.209821043\
0; b2 = - 0.02471301506\ 0; s2 = 2.135717548[ 0 and

IM = - 0.09225947083\ 0.

Based on the above analysis (IM\ 0 and l2 \ 0), it is

obvious that the Hopf bifurcation is supercritical and non-

degenerate. Hence, the unique equilibrium E(xe, ye, ze, ue)

of system (1) is stable when k1u[ k1c and the equilibrium

loses its stability and a Hopf bifurcation occurs when k1

drops below k1c. As b2\0, the bifurcating periodic solu-

tions are asymptotically stable orbits with a period given

approximatively by:

T k1ð Þ ¼ 100:4507682 1 � 1:765316912 3:274073708 � k1ð Þð Þ
þ O 3:274073708 � k1ð Þ2;

and the corresponding characteristic exponent is

b k1ð Þ ¼ 0:0204270051 3:274073708 � k1ð Þ
þ O 3:274073708 � k1ð Þ2:

The bifurcating periodic solution is presented for k1 ¼ k1c

in Fig. 11a, b and we observe that it is orbitally stable. For

k1l\ k1c, Fig. 11c illustrates that in the domain [k1l, k1c[,

the origin is an unstable focus surrounded by a stable limit

cycle for which the amplitude increases with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1c � k1l

p
.

However, for k1u[k1c, in the domain [k1c, k1u[, Fig. 11e, f

shows that the origin is a stable focus. The experimental

results on PSpice in Fig. 12 also exhibit a good qualitative

agreement between the experimental realizations and the

numerical simulations.

Optimal synchronization

Problem statement

In practice, the evolution of the electrical activity of the

brain via the neurons is usually represented by a signal

called electroencephalogram (EEG). Previous research has

shown that this signal can have deterministic characteris-

tics that can be likened to the Lorenz butterfly effect (de-

terministic chaos). Panahi and collaborators relevant works

have shown that a healthy brain has a neuronal activity that

is described by a chaotic EEG (Panahi et al. 2017). In the

same way, the authors have demonstrated that, when the

brain presents some pathology such as epilepsy, the EEG

signal obtained is not chaotic but rather periodic. Consid-

ering all these results, our goal in this section is to propose

through the optimal synchronization approach, a technique

to force a sick neuron to have chaotic behaviour in order to

correct an abnormality such as epilepsy. Recall that, since

the brain is made up of billions of neurons, this technique is

just a small example (because we consider only two neu-

rons) which, thanks to future research (notably on the

synchronization of neural networks), could be of consid-

erable contribution. Thus, by a judicious choice of the

parameters of the system (1), we consider two neurons, the

first neuron that we assume as the master is healthy (that is

to say, it has a chaotic behaviour). While the second neuron

that we assume as the slave is sick (that is to say, it has a

periodic behaviour). Our challenge now is to ensure that

these two neurons have chaotic behaviour while optimizing

the synchronization time.

The equation system of the healthy neuron considered as

the master is as follows:
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_x1 ¼ y1 � ax3
1 þ bx2

1 � fz1 þ Iext � k1ðaþ 3bu2
1Þx1;

_y1 ¼ c� dx2
1 � y1;

_z1 ¼ r sðx1 þ hÞ � z1½ �;
_u1 ¼ x1 � k2u1;

8
>><

>>:

ð34Þ

where X1 = (x1, y1, z1, u1)T are state variables.

The equation system of the epileptic neuron considered

as the slave is as follows:

_x2 ¼ y2 � ax3
2 þ bx2

2 � fz2 þ Iext � k1ðaþ 3bu2
2Þx2 þ u;

_y2 ¼ c� dx2
2 � y2;

_z2 ¼ r sðx2 þ hÞ � z2½ �;
_u2 ¼ x2 � k2u2;

8
>><

>>:

ð35Þ

where X2 = (x2, y2, z2, u2)T are state variables and u is the

feedback coupling. The synchronization error e = (e1, e2,

e3, e4)T between the healthy neuron and the epileptic

neuron is as follows:

e ¼ X2 � X1: ð36Þ

Starting from there, it comes out the system below, which

makes it possible to describe the error dynamics:

_e1 ¼ DGþ u;
_e2 ¼ �de2

1 � 2dx1e1 � e2;
_e3 ¼ rse1 � re3;
_e4 ¼ e1 � k2e4;

8
>><

>>:

ð37Þ

where DG is a smooth vector field defined as follows:

DG ¼ e2 � ae3
1 � 3a x1e

2
1 þ e1x

2
1

� �
þ b e2

1 þ 2x1e1

� �

� fe3 � ak1e1 � 3bk1 u2
2x2 � u2

1x1

� �
:

The synchronization problem that arises at this level

amounts to ensuring that the error dynamics of Eq. (37) is

asymptotically stable. In other words, feedback coupling

should be powerful enough to provide overall stability of

the error dynamics between the healthy neuron and the sick

neuron after a finite time T, i.e.

lim
t!T

e tð Þk k ¼ 0 and e tð Þ ¼ 0; 8t� T[ 0: ð38Þ

In order to be able to satisfy the conditions of Eq. (38), let

f1 = e2, f2 = e3 and f3 = e4. Then, system (37) can be

changed into a canonical form (Bowong and Moukam

2004; Femat et al. 1999; Gonzalez et al. 1999) as follows:

_e1 ¼ H e1; f; uð Þ þ u;
_e2 ¼ �de2

1 � 2dx1e1 � f1;
_e3 ¼ rse1 � rf2;
_e4 ¼ e1 � k2f3;
ye ¼ e1;

8
>>>><

>>>>:

ð39Þ

where ye denotes the output of system (37), f 2 R3 is the

unobservable state vector (internal dynamics). The function

H(e1, f, u) is uncertain and is given by:

H e1; f; uð Þ ¼ f1 � ae3
1 þ 3a x1e

2
1 þ e1x

2
1

� �
þ be2

1 þ 2x1e1

� f f2 � ak1e1 � 3bk1 u2
2x2 � u2

1x1

� �
:

However, the feedback coupling is function of e1 because it

is the only variable that we choose as the output variable ye
= e1. Due to the presence of the uncertain term H(e1, f, u),

we perform in the system (39), a change of variable by

following (Bowong and Moukam 2004; Femat et al. 1999;

Gonzalez et al. 1999) and by letting g = H(e1, f, u). So, this

system is rewritten as follows:

_e1 ¼ gþ u;
_g ¼ C e1; g; f; u; _uð Þ;
_f ¼ W e1; fð Þ;

8
<

:
ð40Þ

where

f ¼ f1; f2; f3ð ÞT;W e1; fð Þ

¼ �de2
1 � 2dx1e1 � f1; rse1 � rf2; e1 � k2f3

� �T
;

C e1; g; f; u; _uð Þ ¼ _g ¼ _H:

At this level, we are trying to show that, when e1 = 0, the

zero dynamics subsystem _f ¼ W 0; fð Þ tends asymptotically

to the origin, which implies that the system (37) is mini-

mum phase (i.e. the closed-loop system is internally

stable). For this, we can prove that, _f1 ¼ �de2
1 � 2dx1e1 �

f1; _f2 ¼ rse1 � rf2 and _f3 ¼ e1 � k2f3 converge to the

origin when e1 = 0.

Noting that f = (f1, f2, f3)T is bounded, the zero dynamic

is written as follows:

_f ¼ Ejf;

where

Ej ¼
�1 0 0

0 �r 0

0 0 �k2

0

@

1

A

Using the Routh–Hurwitz stability criterion, this zero

dynamic is asymptotically stable (since r[ 0 and k2[0).

As a consequence on the error dynamics system (37), it is

observed that, when the minimum phase property is satis-

fied, that is to say W(e1, f) ? W(0, f) ? 0 as t ? !, the

minimum phase character is observed, that is to say

limt?Te1(t) = 0.

In order to achieve a synchronization which minimizes

the energy consumption and which optimizes the syn-

chronization time, we use for the following, the optimal

controller defined in the ‘‘Appendix 2’’ (see Eq. 74) by:
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u ê1ð Þ ¼ �ĝ� ê2
1 þ k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ê4

1 þ ê2
1k

2
p

ê2
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ê4

1 þ ê2
1k

2
p ê1; ð41Þ

where k is a strictly positive constant, the root couple ê1

and ĝ which represent respectively the approximate values

of e1 and g are obtained thanks to the following high-gain

observer (Kountchou et al.2016; Bowong and Moukam

2004; Gonzalez et al. 1999; Korobov et al. 1993):

_̂e1 ¼ ĝþ uþ 2L e1 � ê1ð Þ;
_̂g ¼ L2 e1 � ê1ð Þ;

	

ð42Þ

In which, L is a strictly positive parameter generally called

high-gain parameter. Note that, it is not physically possible

to determine the exact value of g therefore of e1. However,

to solve this problem, it is preferred to use the high-gain

observer defined by Eq. (42) to reproduce the main char-

acteristics of e1 and g through the approximate values ê1

and ĝ. Finally, thanks to Eq. (40), we reconstruct the

dynamics of the variable e1 as well as that of the uncertain

variable g from the output ye = e1. Indeed, several recent

works have shown that, when the high-gain parameter is

more significant than a threshold value (L [ L*), the

dynamics of the error estimation system (42) converge

exponentially to zero (see Gauthier et al. 1992), which

implies that, the closed-loop system is stable (Bowong and

Moukam 2004; Femat et al. 1999; Gonzalez et al. 1999).

Besides, as demonstrated in the ‘‘Appendix 2’’, the syn-

chronization time T ¼ h ê1ð Þð Þ associated with the robust

controller of Eq. (41) is determined by:

T ¼ h ê1ð Þ ¼ 1

2
ln

2ê2
1 þ k2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ê4

1 þ ê2
1k

2
p

k2
: ð43Þ

Numerical simulation

In order to show the feasibility and efficiency of the opti-

mal controller chosen to force a sick neuron (slave system)

to follow the electrical activity of a healthy neuron (master

system), numerical simulations are performed. The

parameters of healthy neuron are those shown in Fig. 2a

and those of the sick neuron are shown in Fig. 3d. In other

words, the parameters of the master system are as follows

(a, b, c, d, h, r, s, a, b, f, k1, k2, Iext) = (1, 3, 1, 5, 1.6, 0.006,

4, 0.1, 0.02, 1, 1, 0.5, 3), while those of the slave system are

(a, b, c, d, .h, r, s, a, b, f, k1, k2, Iext) = (1, 3, 1, 5, 1.6, 0.006,

4, 0.1, 0.02, 1, 0.4, 0.2, 3). The initial conditions are chosen

to ensure that the healthy neuron will keep its chaotic

behaviour while the sick neuron will also keep its periodic

behaviour: x1 0ð Þ; y1 0ð Þ; z1 0ð Þ;u1 0ð Þð Þ ¼ 0:01; 0:9; 0:01;ð
�1:1Þ; x2 0ð Þ; y2 0ð Þ;ð z2 0ð Þ;u2 0ð ÞÞ ¼ �0:01;ð 0:0; 0:0; 0:1Þ

(a) (b)Fig. 14 Time evolution of a
synchronization error state e1

and b controllability function

h ê1ð Þ performed for three

different values of the control

gain k when

ê1 0ð Þ ¼ e1 0ð Þ ¼ 1:09

(a) (b)Fig. 13 Time evolution of the

synchronization error. a e1 = x2

- x1 and b e2 = y2 - y1, e3 = z2

- z1 and e4 = u2 - u1
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and ê1 0ð Þ; ĝ 0ð Þð Þ ¼ 1:09; 0:0ð Þ. By choosing L = 500 and

using Eq. (43), the synchronization time is T ¼ h ê1ð Þ ¼
0:5211 sec for k = 2 and ê1 0ð Þ ¼ 1:09. Through Fig. 13, we

observe the time sequences of the synchronization error

between the healthy neuron and the epileptic neuron. This

figure shows that the error dynamics is stabilized at the

origin, as a result, the two neurons evolve chaotically after

a synchronization time. Especially for Fig. 13a, it is clear

that the membrane potentials of the two neurons converge

around 0.561094748 s, which corresponds to the finite

horizon. The captivating effect of the minimum phase

character is shown in Fig. 13b, where it is clear that the

other synchronization errors e2, e3 and e4 also stabilize at

the origin although the feedback coupling applied only to

the state variable e1.

In order to show the robustness of the feedback coupling

between the two neurons, we perform more simulations.

Indeed, as mentioned previously (see Eq. 43), the syn-

chronization time T ¼ h ê1ð Þ depends on the control gain k

and the initial condition ê1 0ð Þ. When ê1 0ð Þ ¼ 1:09, Fig. 14

shows the time evolution of the variable e1(t) as well as that

of the controllability function h ê1ð Þ for three different

values of k (k = 2, k = 3 and k = 4). We deduce from

Fig. 14a that, the convergence of the synchronization error

is established after a finite horizon estimate respectively in

about 0.5611 s, 0.3558 s and 0.2692 s. From these values

and thanks to Fig. 14b, it is evident that, when the control

gain k increases, the synchronization time decreases.

Moreover, by carrying out a similar study for k = 6, Fig. 15

presents the time series of the variable e1(t) as well as that

of the controllability function h ê1ð Þ for three different

values of ê1 0ð Þ (ê1 0ð Þ ¼ 1; ê1 0ð Þ ¼ 3 and ê1 0ð Þ ¼ 5). It is

clearly seen in these figures the opposite effect, that is to

say, when ê1 0ð Þ increases, the synchronization time also

increases.

Recent research has shown that in memristor systems,

the associated memory effect can lead to a great depen-

dence of the output variables on their initial values (Wu

(a) (b)Fig. 15 Time evolution of a
synchronization error state e1

and b controllability function

h ê1ð Þ performed for three values

of ê1 0ð Þ ¼ e1 0ð Þ when k = 6

Fig. 16 Time evolution of error norm when varied the initial value for magnetic flux variable of the a healthy neuron u1(0) and b the sick neuron

u2(0)
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et al. 2018). Consequently, the synchronization between

two coupled oscillators can be influenced by the variation

of the initial value of the variable associated with the

memristor (i.e. the magnetic flux u(t) in our case).

Therefore, to quantitatively assess the sensibility of the

initial conditions of the magnetic flux variables u1(0) and

u2(0) on the performed synchronization approach, we

define the following synchronization error norms

en tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

1 tð Þ þ e2
2 tð Þ þ e2

3 tð Þ þ e2
4 tð Þ

p
. From Fig. 16a, b,

we can observe that after the transient period, the variation

of the initial conditions of the magnetic flux variables u1

(0) and u2 (0) have a very weak influence on the syn-

chronization phenomenon between the two coupled neu-

rons (en(t) \ 1). This is largely justified by the used

synchronization strategy/scheme, in particular through the

robustness of the used control law (see ‘‘Appendix 2’’) and

the observed minimum phase character (i.e. the asymptotic

convergence towards the origin of the zero dynamics

subsystem (f1, f2, f3). In addition, briefly recall that for

some dynamic systems, by only modifying the initial

Fig. 17 Electronic circuit of the drive system (34)
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conditions of the state variables, this causes the switch

from one attractor to another attractor in the phase space

(e.g. from a chaotic attractor to a periodic attractor or vice

versa). This phenomenon is known as the coexistence of

attractors (Njitacke et al. 2019a, b). However, for the range

of parameter that we have used in this work, this phe-

nomenon has not been observed, this may further support

the low sensitivity related to the initial conditions of the

magnetic flux variables in the unidirectional synchroniza-

tion process between the coupled neurons.

Circuit design and PSpice verification

The main objective here is to implement an electronic

circuit that can carry out the synchronization strategy

proposed above to verify the effectiveness and practical

feasibility of this method. For this, we use the parameters’

values defined in the subsection above to determine, using

Eq. (18), the values of the equivalent electronic compo-

nents. Also, in Figs. 17, 18 and 19, the electronic circuits of

the complete master–slave–controller systems are pre-

sented, respectively. The implementation of the nonlinear

controller parameters is performed using the following

relation:

k2 ¼ Vk ¼
R

Rk
; 2L ¼ 1

104RL1Ce1

and L2 ¼ 1

104RL2Cg
:

The equivalent of the square root function that appears in

Eq. (41) is realized electronically thanks to the bloc

‘SQRT’ that we see in Fig. 19. Considering the

Fig. 18 Electronic circuit of the response system (35)
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synchronization time obtained previously through the

Matlab numerical simulation (i.e. TM ¼ 0:5611 s for k = 2

and ê1 0ð Þ ¼ 1:09), we can deduce the equivalent syn-

chronization time for a PSpice simulation thanks to the

following relation:

Ts ¼ RCTM ¼ 0:6 � 10�4 s; ð44Þ

where TS and TM are respectively, the established syn-

chronization time through PSpice simulations and Matlab

numerical simulations. We have chosen R = 10 kX and

C = 10 nF. We can remark that, by monitoring the resistor

Rk and voltage Vk, the effects of varying parameter k on the

finite horizon can be analysed. Assume that the initial

conditions of the master system, slave system and feedback

coupling were respectively chosen to be, VCx1
0ð Þð ;

VCy1
0ð Þ;VCz1

0ð Þ;VCu1
0ð ÞÞ ¼ �0:001;ð 0:0; 0:01; 0:01Þ;

VCx2
0ð Þ;ð VCy2

0ð Þ;VCz2
0ð Þ;VCu2

0ð ÞÞ ¼ 0:0;ð �0:01;

0:03; 0:02Þand VCe1
0ð Þ;ð VCg 0ð Þ

�
¼ 1:09; 0:0ð Þ. The circuit

component values of the feedback coupling were chosen to

be Ce1
¼ Cg ¼ C ¼ 10 nF; RL1 ¼ 10X; RL2 ¼ 0:04 X;

Vk ¼ 4 V and Rk = 2.5 kX. The voltage source is set at ± 18

Vdc.

The PSpice simulations results illustrating the optimal

synchronization of the two coupled neurons are presented

in Figs. 20 and 21. From these results (see Fig. 20), it can

clearly be seen that the synchronization time obtained via

the PSpice simulation is about 60 ls, which corresponds to

the finite horizon. Moreover, in Fig. 21, it is clear that the

other synchronization errors e2, e3 and e4 also stabilize at

the origin. As a result, we can say that the synchronization

method/strategy presented throughout this part of our work

is physically feasible and can be used in medical engi-

neering as a new paradigm for treating epilepsy.

Conclusion

This paper has studied the dynamics and the optimal syn-

chronization of the Hindmarsh–Rose neuron model under

magnetic flow effect (mHR). We first studied some col-

lective behaviours of the model. The bifurcation analysis,

Lyapunov spectrum and time series have revealed rich and

striking phenomena, including various firings patterns by

applying appropriate magnetic strength and Hopf-fold

Fig. 19 Circuit diagram of the feedback coupling (41)
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bursting through fast–slow bifurcation. More interestingly,

we have discovered that non-degenerate Hopf bifurcation

occurs in this system when an appropriate chosen magnetic

flux varies and reaches its critical value. Furthermore, the

direction of the Hopf bifurcation and stability of the

bifurcating periodic solutions are analyzed in detail by

using Hassard algorithm. We have found an excellent

agreement between the results obtained using the electronic

circuit and numerical simulation of the system. Later, the

synchronization between two mHR neurons models was

addressed to propose a new paradigm in the treatment of

epilepsy. An optimal robust control scheme using the

controllability functions method has been investigated.

Then, in other to take into account the behaviour of tran-

sient response and the feedback coupling effort (i.e. the

energy wasted by the feedback coupling action), we have

proposed a robust feedback coupling. The proposed strat-

egy allows setting the time horizon accurately for the

synchronization of two mHR. Both numerical and PSpice

Fig. 21 Time evolution of the

synchronization errors e2 = y2 -

y1, e3 = z2 - z1 and e4 = u2 - u1

using PSpice simulations

Fig. 20 Time evolution of the

synchronization error e1 = x2 -

x1 using PSpice simulations
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simulations are presented to show the effectiveness and

feasibility of the proposed synchronization scheme.
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Appendix 1: Some mathematical expressions
concerning the Hopf bifurcation analysis

Some mathematical expressions obtained during calculus

are presented here.

�A ¼ 3bx2
e

k2
2

þ a

� �2
6rbx2

e

k2

þ k2r
3bx2

e

k2
2

þ a

� �� �

� 3bx2
e

k2
2

þ a

� �

k2 þ r þ 1ð Þ 3bx2
e

k2
2

þ a

� �

þ 6bx2
e

k2

� �

� k2r þ k2 þ rð Þ 3bx2
e

k2
2

þ a

� �

þ 6bx2
e r þ 1ð Þ
k2

� �

;

ð45Þ

�B ¼ 2 3ax2
e � 2bxe þ k2 þ r þ 1Þ

� 3bx2
e

k2
2

þ a

��

k2r
3bx2

e

k2
2

þ a

���

þ 3rbx2
e

k2
2

�

þ 3bx2
e

k2
2

þ a
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k2rs� k2r 2�ðð bxe � 3ax2
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�D ¼ 3ax2
e � 2bxe þ k2 þ r þ 1

� �2
k2rs� k2r 2bxe � 3axeð Þ þ 2k2rdxeð Þ

� 3ax2
e � 2bxe þ k2 þ r þ 1Þ

�
3axeðð � 2bxeÞ k2 þ r þ 1ð Þ þ 2dxe
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P�1 ¼
p�1

11 p�1
12 p�1

13 p�1
14

p�1
21 p�1

22 p�1
23 p�1

24

p�1
31 p�1

32 p�1
33 p�1

34

p�1
41 p�1

42 p�1
43 p�1

44

0

B
B
@

1

C
C
A; ð49Þ

in which,

p�1
11 ¼ p22p33p44 � p22p34p43 � p23p32p44 þ p23p34p42 þ p24p32p43 � p24p33p42

M
;

p�1
12 ¼ �p32p43 þ p32p44 þ p33p42 � p34p42

M
;

p�1
13 ¼ p22p43 � p22p44 � p23p42 þ p24p42

M
;

p�1
14 ¼ �p22p33 þ p22p34 þ p23p32 � p24p32

M
;

p�1
21 ¼ �p21p33p44 � p21p34p42 � p22p31p44 þ p22p34p41 þ p24p31p42 � p24p32p41

M
;

p�1
22 ¼ p31p43 � p31p44 � p33p41 þ p33p44 þ p34p41 � p34p43

M
;

p�1
23 ¼ �p21p43 þ p21p44 þ p23p41 � p23p44 � p24p41 þ p24p43

M
;

p�1
24 ¼ p21p33 � p21p34 � p23p31 þ p23p34 þ p24p31 � p24p33

M
;

p�1
31 ¼ p21p32p44 � p21p34p42 � p22p31p44 þ p22p34p41 þ p24p31p42 � p24p32p41

M
;

p�1
32 ¼ �p31p42 þ p32p41 � p32p44 þ p34p42

M
;

p�1
33 ¼ p21p42 � p22p41 þ p22p44 � p24p42

M
;

p�1
34 ¼ �p21p32 þ p22p31 � p22p34 þ p24p32

M
;

p�1
41 ¼ �p21p32p43 þ p21p33p42 þ p22p31p43 � p22p33p41 � p23p31p42 þ p23p32p41

M
;

p�1
42 ¼ p31p42 � p32p41 þ p32p43 � p33p42

M
;

p�1
43 ¼ �p21p42 þ p22p41 � p22p43 þ p23p42

M
;

p�1
44 ¼ p21p32 � p22p31 þ p22p33 � p23p32

M
;

where

M ¼ �p21p32p43 þ p21p32p44 þ p21p33p42 � p21p34p42

þ p22p31p43 � p22p31p44 � p22p33p41 þ p22p33p44

þ p22p34p41 � p22p34p43 � p23p31p42 þ p23p32p41

� p23p32p44 þ p23p34p42 þ p24 � p31p42 � p24p32p41

þ p24p32p43 � p24p33p42:
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F1 x1; y1; z1;u1ð Þ

¼ 1

M
p�1
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�
p21x1ð þ p22y1 þ p23z1 þ p24u1 þ ye

� a x1 þ z1 þ u1 þ xeð Þ3þb x1 þ z1ð þu1 þ xeÞ2
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�

þ c� p21x1 � p22y1 � p23z1 � p24u1 � yeÞ
þ p�1

43 r s x1 þ z1 þ u1 þ xe þ hÞðð � p31x1 � p32y1 � p33z1

� p34u1 � zeÞ þ p�1
44 �k2 x1p41 þ p42y1ðð

þ p43z1 þ p44u1 þ ueÞ þ x1 þ z1 þ u1 þ xeÞ � k4Mu1Þ;
ð53Þ

Appendix 2: Design procedure
for the optimal control law of Eq. (41)

The optimal control problem of the error dynamic system

(37) is considered as

_e1 ¼ A1e1 þ B1u; e1 2 Rn; u

2 Rr; rg B1;A1B1; . . .;A
n�1
1 B1

� �
¼ n; ð54Þ

e1 t0ð Þ ¼ e1t0 ; e1 Tð Þ ¼ 0; where T is arbitrary; ð55Þ

for which the objective is to minimize the functional

J uð Þ ¼ k2T þ
ZT

to

We1; e1ð Þ þ Uu; uð Þ½ �dt; ð56Þ

where W � 0 and U[ 0; are symmetric matrices (assumed

as a suitable positive constants here), k is a strictly positive

constant gain, t0 C 0 is the time at which the synchro-

nization behavior starts and T C t0 is the time at which the

error dynamics system (37) perform the desired trajectory

(e = 0). This functional (i.e. Eq. 56) is considered to be a

mixed cost function (Korobov et al. 1993). The major

challenge now is to find an optimal positional control in

feedback form for the error dynamics system of Eq. (37)

with a mixed cost functional. In order words, the goal is to

find a function u = u(e1), such as:

1. 8e1t0 2 Rn, the root e1 tð Þ of the Cauchy problem

_e1 ¼ A1e1 þ B1u e1ð Þ; e1 t0ð Þ ¼ e1t0 ; ð57Þ

exists on some interval t0; T e1t0ð Þ½ � and is unique.

2.

e1 tð Þ ! 0 as t ! T e1t0ð Þ ð58Þ

3. The couple (e1(t), u(e1(t))) is the root of the optimal

control problem (54–56).
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For these purposes, the controllability function (i.e. robust

optimal control law) is designed as follows:

u e1ð Þ ¼ �g� U�1N�1 h e1ð Þð Þe1; with h e1ð Þ ¼ T � t;

ð59Þ

where N tð Þ 2 R be a continuous strictly positive function,

and solution of the Cauchy problem (57) for the Riccati

equation below:

_N ¼ U�1 �WN2: ð60Þ

Let us introduce, for T[ 0 and e1 2 R, that

v T; e1ð Þ ¼ k2T þ N�1 Tð Þ
� �

e2
1 ; ð61Þ

t T ; e1ð Þ ¼ v;T T ; e1ð Þ;
¼ k2 � U�1N�2 Tð Þ �W

� �
e2

1:
ð62Þ

We remark that, at each e1 2 Rn 0f g; v T; e1ð Þ achieves its

minimum. Indeed, the function v(T, e1) is continuous and

analytic on 0;1ð Þ � R. As kN(T)k-1ke1k \ (N-1(T))e1
2

and limT??0kN(T)k = 0, thus limh??0v(h, e1) = ?!,

which means that limT??!v(T, e1) = ?!, thus, the

statement is verified.

We are referring to the function that is defined for e1 =

0 by equality of Eq. (56) and defined for e1 = 0 by Eq. (59)

with h(0) = 0 as the controllability function (Korobov et al.

1993). For any e1 = 0, the value of this function corre-

sponds to the minimal positive solution of the equation t(h,

e1) = 0, at which v(h, e1) = 0 achieves its global minimum

(see Korobov et al. 1993). Thus, the finite time horizon T is

given by expression of h(e1(0)) which is deduced by

solving the equation t(h, e1) = 0.

In the sequel, we give some main properties of the

controllability function h(e1) as mentioning in (Korobov

et al. 1993).

Property 1 From h(e1) ? 0, it follows that e1 ? 0.

Indeed,

N h e1ð Þð Þk k�1 e1k k2 � v h e1ð Þ; e1ð Þ
¼ k2hþ N�1 h e1ð Þð Þe2

1

� �
:

ð63Þ

Thus,

v h; e1ð Þ� v 1; e1ð Þ ¼ k2 þ N�1 1ð Þe2
1

� �

� k2 þ N�1 1ð Þ








 e1k k2:

ð64Þ

From Eqs. (63) and (64), we have

e1k k2 N h e1ð Þð Þk k�1� N�1 1ð Þ










� �
� k2: ð65Þ

Let us consider any positive number l such that

1 � N�1 1ð Þ








l[ 0: ð66Þ

Letting ‘[0 such that, if 0\h(e1)\‘, then kN(h(e1))k\

l; that is kN(h(e1))k-1 [ 1/l. Then, when 0 \ h(e1) \ ‘,

using Eqs. (65) and (66), one obtains:

e1k k2 1

l
� N�1 1ð Þ










� �

� k2 and e1k k2 � lk2

1 � N�1 1ð Þk kl :

ð67Þ

Since Eq. (67) is satisfied, property 1 is fulfilled.

Property 2 When h(e1) ? 0, then v(h(e1), e1) ? 0.

Suppose any positive number l and choose l[‘[0 so

small that when h(e1)\ ‘, N-1(l)e1
2\l. Then v(h(e1), e1)

B v(l, e1) = (k2 ? 1)l, which justifies the second property.

Property 3 For any initial condition e1 0ð Þ 2
R; _h e1 tð Þð Þ ¼ �1 for every t 2 [0, h(e1(0))](see Korobov

et al. 1993 for the proof of Property 3).

Proposition 1 Let h(e1) be the controllability function,

under the optimal control law (59), the synchronization

error e1(t) converges asymptotically to the origin at an

established finite time T = h(e1(0)). Besides, the closed

loop performance has a value of the functional (56),

J e1; uð Þ ¼ k2h e1 0ð Þð Þ þ N�1h e1 0ð Þð Þe2
1 0ð Þ:

Proof Considering property 3, _h e1 tð Þð Þ ¼ �1; the fact that

lim
t!h e1 0ð Þð Þ

e1 tð Þ ! 0 follows from

lim
t!h e1 0ð Þð Þ

h e1ð Þ ¼ lim
t!h e1 0ð Þð Þ

h e1 0ð Þð Þ � tð Þ ¼ 0: ð68Þ

Assume l [ 0, consider the value of Eq. (56) at the

feedback coupling u(e1) and the solution e1(t) corre-

sponding to it, we obtain

J u e1ð Þð Þ ¼ lim
l!þ0

Z h e1 0ð Þð Þ�l

to

Uu e1 tð Þð Þ; u e1 tð Þð Þð Þ þ We1 tð Þ; e1 tð Þð Þ½ �dt

þ k2h e1 0ð Þð Þ

¼ lim
l!þ0

Z h e1 0ð Þð Þ�l

to

� _v h e1 tð Þð Þ; e1 tð Þð Þdt

¼ � lim
l!þ0

v h e1 h e1 0ð Þð Þ � lð Þð Þ; e1 h e1 0ð Þð Þ � lð Þð Þ

þ v h e1 0ð Þð Þ; e1 0ð Þð Þ; with t0 ¼ 0

¼ v h e1 0ð Þð Þ; e1 0ð Þð Þ
¼ k2h e1 0ð Þð Þ þ N�1h e1 0ð Þð Þe2

1 0ð Þ
¼ mim

h[ 0
k2hþ N�1 hð Þe2

1 0ð Þ
� �

:

ð69Þ

This achieves the proof. h

Considering the estimated variables ê1; ĝð Þ of Eq. (42),

the optimal control (59) is

u ê1ð Þ ¼ �ĝ� U�1N�1 h ê1ð Þð Þê1; ð70Þ

where N is the solution of the Riccati equation (60). Thus,
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by simply solving this Riccati equation for W = 1 and U =

1, we obtain the following solution:

N tð Þ ¼ e2t � 1

e2t þ 1
ð71Þ

The expressions of v and t are

v h; ê1ð Þ ¼ k2hþ e2h þ 1

e2h � 1
ê2

1;

t h; ê1ð Þ ¼ k2 � 2e2h

e2h � 1ð Þ2
ê2

1:

ð72Þ

By t h; ê1ð Þ ¼ 0 for h gives

h ê1ð Þ ¼ 1

2
ln

2ê2
1 þ k2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ê4

1 þ ê2
1k

2
p

k2
: ð73Þ

The other root is discarded because the relation

2ê2
1 þ k2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ê4

1 þ ê2
1k

2
p� �

=k2\1 is verified. Finally, the

optimal control law is

u ê1ð Þ ¼ �ĝ� e2h þ 1

e2h � 1
ê1 ¼ �ĝ� ê2

1 þ k2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ê4

1 þ ê2
1k

2
p

ê2
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ê4

1 þ ê2
1k

2
p ê1:

ð74Þ
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