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Abstract
Early studies of cortical information codes and memory capacity have assumed large neural networks, which, subject to

evenly probable binary (on/off) activity, were found to be endowed with large storage and retrieval capacities under the

Hebbian paradigm. Here, we show that such networks are plagued with exceedingly high cross-network connectivity,

yielding long code words, which are linguistically non-realistic and difficult to memorize and comprehend. Noting that the

neural circuit activity code is jointly governed by somatic and synaptic activity states, termed neural circuit polarities, we

show that, subject to subcritical polarity probability, random-graph-theoretic considerations imply small neural circuit

segregation. Such circuits are shown to represent linguistically plausible cortical code words which, in turn, facilitate

storage and retrieval of both circuit connectivity and firing-rate dynamics.

Keywords Cortical linguistics � Neural circuit polarity � Random graphs � Subcritical cortical connectivity �
Segregated neural circuits � Subcritical Hebbian capacity � Firing-rate dynamics

Introduction

Any representation of information involves a language.

Natural languages, such as English, consist of elementary

alphabets, comprising letters, which connect into words.

Words, being the smallest embodiment of meaning, are

normally short, consisting of two to about ten letters.

Numbering in the millions and normally grouped into

sentences, paragraphs, sections, chapters, articles and

whole books, words carry the entire burden of linguistic

information. Without such structures, information would be

difficult to comprehend or memorize. Computer languages

have conceptually similar structures. Their lowest-level

alphabet consists of (0, 1) bits. Computer words normally

consist of 2–32 bits. Yet, computer programs, consisting of

‘‘commands’’ can be arbitrarily long. Both natural and

artificial manifestations of information extend beyond the

formal linguistic domain, employing vision, hearing, smell,

touch and motion in the generation and memorization of

information. Highly inspiring progress has been made in

the formal conceptualization of cognitive functions,

including behavioral decision making (Wei et al. 2017),

communicational behaviour linkage to neural dynamics

(Bonzon 2017), feeling of understanding (Mizraji and Lin

2017), multisensory learning (Rao 2018) and bilingual

language control (Tong et al. 2019).

Early studies of cortical information codes and memory

capacity (McEliece et al. 1987; Amit et al. 1987; Baram

and Sal’ee 1992) have pertained to a particular, largely

simplified and unified binary (on/off) neural network model

(McCulloch and Pitts 1943; Amari 1972; Hopfield 1982),

employing the Hebbian learning paradigm (Hebb 1949).

Such connected neural network, representing a single

cortical word, would imply, however, a long code word,

which not only consumes many neurons, but also seems

linguistically difficult to comprehend. Neural circuit seg-

regation into smaller circuits seems necessary, then, for the

generation and memorization of reasonably short code

words in cortical language. It is widely accepted that the

neural consistency of the brain is highly heterogeneous

(e.g, Stefanescu and Jirsa 2008; Hu et al. 2013; Han et al.

2018), representing a large variety of specifically defined

neuronal types and neural circuit structures. As our main

purpose in this work is to present a new, linguistically

plausible approach to memory by small neural circuits,

contrasting those earlier information-theoretic results, it
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seems appropriate, for comparison purposes, to limit the

discussion, in essence, to the same model.

As we show in this paper, the segregation of large neural

assemblies into small circuits is implied by graph theoretic

considerations. We show that linguistic characteristics,

such as the lengths of cortical code words, are strongly

dependent on the probability of inter-neuron connectivity.

On a conceptual level, the binary nature of neural networks

in those early information-theoretic studies is replaced in

the present study by the more recently discovered molec-

ularly and physiologically based notions of electrical

somatic (Melnick 1994) and synaptic (Atwood and Woj-

towicz 1999) potentials being above or below a certain

value (about - 60 mV). As this binary distinction, which

may take different mathematical representations, defines

the excitability, or silence, of the corresponding neuronal

components and, consequently, inter-neural connectivity,

they have been called cortical circuit polarities (Baram

2018). The diversion from the original information-theo-

retic models is represented by a graph-theoretic notion of

criticality pertaining to node connection probability. The

resulting segregated neural circuits constitute a form of

cortical linguistics. While the dynamics of membrane and

synapse polarities have been mathematically analyzed

(Baram 2018), here we argue that the convergent nature of

synaptic plasticity implies another form of cortical lin-

guistics, namely, the dynamic modes of neural firing-rate,

associated with cortical functionality.

Neuronal polarity codes

Neuronal membrane (Melnick 1994) and synapse (Atwood

and Wojtowicz 1999) polarities can be described as on/off

gates which, in the ‘‘off’’ (‘‘disconnect’’) position, repre-

sent negative polarity, and, in the ‘‘on’’ (‘‘connect’’) posi-

tion, represent positive polarity. The binary polarity states

of a neural circuit will represent a code word. The polarity

gates of a single neuron are described graphically in Fig. 1a

by angular discontinuities in line segments representing

membranes and synapses as specified. Neuronal self-feed-

back, employing an intermediate synapse between axonal

output and neuronal input, has been suggested (Groves

et al. 1975), although this is not a generic concept, and

there are other self-feedback models (such as the axonal

discharge model, Carlsson and Lindquist 1963; Smith and

Jahr 2002). As in the rest of this paper, our intent here is to

address certain concepts, rather than attempt to provide a

complete account of the highly heterogeneous neural con-

sistency of brain. Since the neuron-external inputs directly

affect the membrane polarity, they are accounted for in the

3-word polarity code depicted in Fig. 1b and c as:

(b) positive membrane and self-synapse polarities,

(c) positive membrane polarity and negative self-synapse

polarity and (d) neuronal silence, implied by negative

membrane and self-synapse polarities. Figure 2 shows a

Fig. 1 Neuronal polarity gates (a) and their code (b–d). As the

neuron-external inputs directly affect the membrane polarity, they are

accounted for in the neuronal 3-words polarity code, which, for

graphical clarity, specifies the connected elements only, without the

‘‘off’’ gates

Fig. 2 Two-neuron polarity-gated circuit. All polarity gates are open

for graphical clarity
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2-neuron circuit, revealing all somatic and synaptic polar-

ities in the negative (‘‘off’’) state for illustration.

In order to derive the n-neuron circuit polarity code, it is

first noted that there can be up to n active neurons (neurons

with positive membrane polarities) and n2 synapses (in-

cluding self-synapses). A synapse can be either active or

silent. It follows that there can be up to

Rð1ÞðnÞ ¼ 2n
2 ð1Þ

different circuits involving only active membranes and

active or silent synapses. In addition, there can be circuits

with i ¼ 1; . . .; n silent membranes, yielding

Rð2ÞðnÞ ¼
Xn

i¼1

n

i

 !
2ðn�iÞ2 ð2Þ

different polarity patterns. It follows that there is a maxi-

mum total of

RðnÞ ¼ Rð1ÞðnÞ þ Rð2ÞðnÞ

¼ 2n
2 þ

Xn

i¼1

n

i

 !
2ðn�iÞ2 ¼

Xn

i¼0

n

i

 !
2ðn�iÞ2 ð3Þ

different circuits, constituting the size of the circuit polarity

code of n polarity-gated neurons (Eq. 3 corrects an error in

Baram 2018, Eq. 3.3).

Equation 3 yields Rð1Þ ¼ 3, Rð2Þ ¼ 21, Rð3Þ ¼ 567,

Rð4Þ ¼ 67; 689, R 5ð Þ ¼ 33; 887; 403, R 6ð Þ ¼ Oð1010Þ,
R 7ð Þ ¼ Oð1014Þ, Rð8Þ ¼ Oð1019Þ, Rð9Þ ¼ Oð1024Þ,
Rð10Þ ¼ Oð1030Þ. The polarity code for a circuit of 2

neurons is illustrated in Fig. 3, where ‘‘off’’ (negative)

polarity gates are omitted for graphical clarity.

Subcritical neural circuit segregation

Cortical activity segregation and integration have been

argued on grounds of thalamocortical simulations (Stratton

and Wiles 2015). A mathematical foundation for the rela-

tionship between polarity, segregation and firing dynamics

has been established (Baram 2018). Synaptic polarization

may clearly result in circuit segregation.

Graph-theoretic considerations (Erdos and Rény

1959, 1960) imply that, if the connectivity probability pðnÞ
between pairs of neurons in an assembly of n neurons with

n ! 1 satisfies the subcriticality condition pðnÞ ¼ c=n for

fixed c\1, then, with high probability, the largest con-

nected circuit will be of maximal size logðnÞ. On the other

hand, if pðnÞ satisfies the supercriticality condition pðnÞ ¼
c=n for fixed c[ 1, then, with high probability, the largest

connected circuit will be of maximal size linear in n.

Finally, if pðnÞ satisfies the criticality condition

pðnÞ ¼ 1=n, then, with high probability, the largest con-

nected circuit will be of maximal size n2=3 (Bollobás 1984).

For reasons that will become apparent in the subsequent

sections, we relax the above formal definitions somewhat

by leaving the criticality condition pðnÞ ¼ 1=n as is,

changing its notation to pðnÞ � qðnÞ ¼ 1=n and defining

subcriticality as the condition pðnÞ\qðnÞ and supercriti-

cality as the condition pðnÞ[ qðnÞ.
Figure 4a displays a 2-neuron circuit with a certain

polarity pattern. As shown in Fig. 4b, the mixed polarities

of Fig. 4a yield two mutually segregated 1-neuron circuits,

with the polarity gates in the ‘‘off’’ states concealed for

graphical simplicity.

An average of 7� 103 synapses per neuron (Drachman

2005) in the average human brain of n ¼ 1011 neurons (von

Bartheld et al. 2016) would yield an average connectivity

probability of

pðnÞ ¼ 7000=1022\10�18 ¼ 10�7 � 10�11 ¼ 10�7=n

ð4Þ

which, satisfying the sub-criticality condition

pðnÞ ¼ c=n; 0\c\1, implies an upper bound of logðnÞ on
the neural circuit size, which, in turn, implies a lower

bound

CðnÞ ¼ n

logðnÞ ð5Þ

on the number of externally disconnected, internally con-

nected neural circuits.

Equation 5 constitutes, then, a lower bound on the

average information capacity (in number of code words) of

n subcritically connected neurons. The number n may take

different values corresponding to the sizes of different

cortical structures, hence, different maximal segregated

circuit sizes logðnÞ. For instance, for n ¼ 1000 we have

logðnÞ ¼ Oð7Þ (more precisely 6.91), for n ¼ 25� 109

(which is about the size of the human cerebral cortex) we

have logðnÞ ¼ Oð24Þ and for n ¼ 1011 (which is about the

size of the human brain) we have logðnÞ ¼ Oð25Þ. As we
have noted, the manipulation and memory of such long

words (e.g., 24, 25 letters) is not normally attempted in

natural languages, and seems linguistically unrealistic in

cortical terms as well.

The linguistic impasse of probabilistically
supercritical neural polarity

The linguistic difficulties associated with the memorization

and manipulation of brain-size code words in cortical

language does not appear to have been explicitly noted in

early studies of cortical information coding. In fact,
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experimental observations of simultaneous activity in large

cortical areas have seemed to justify a large network

approach to cortical information processing. Seminal

studies on networks of binary neurons (McCulloch and

Pitts 1943; Amari 1972; Hopfield 1982) were followed by

studies of their memory capacity. Mathematical manifes-

tations of the Hebbian learning paradigm have produced a

variety of bounds on the memory capacity of such net-

works (e.g., McEliece et al. 1987; Amit et al. 1987; Baram

and Sal’ee 1992). As these bounds increase with the

number of neurons in the network, so do the lengths of the

code words. While the first (McEliece et al. 1987) and the

third (Baram and Sal’ee 1992) studies assumed that the

network size n satisfies n ! 1, the second study (Amit

et al. 1987) assumed a finite network size n, which was,

however, allowed to grow indefinitely. Below, we consider

all three models, so as to show that the linguistic impasse is

inherent under probabilistically supercritical polarity. In

order to put these earlier binary models in the same context

as the polarity models considered in the present work, let

us assume that all synapses are in positive polarity (1-

valued) state, while the membrane polarities of the neurons

are in positive (1-valued) polarity state with probability p

and in negative (0-valued) polarity state otherwise. It might

also be noted that, beyond this section, which is tailored to

correspond with the noted earlier models employing

membrane polarity alone (with post-axonal synaptic

polarity adhering accordingly), only changes in synaptic

polarity will be considered, with the somatic polarity kept

positive for simplicity.

In the first model (McEliece et al. 1987), Hebbian

storage is represented by the sum of outer products

W ¼
XM

i

xðiÞxðiÞT ð6Þ

where xðiÞ; i ¼ 1; . . .;M are n-dimensional vectors of

equiprobable � 1 (hence, supercritical) network polarities.

Retrieval is performed according to

xk ¼
0; if uk � 0

1; if uk [ 0

(

ð7Þ

where

Fig. 3 Polarity code of

2-neuron circuits. Each row

represents one inter-neuron

connectivity pattern with the

four different possible states of

self-feedback. a bidirectional

interneuron connectivity, b both

neurons active with directional

connectivity from right to left

neuron, c both neurons active

with directional connectivity

from left to right neuron, d two

segregated active neurons, e one
active neuron and one silent

neuron and f two silent neurons

Fig. 4 Given a a 2-neuron circuit with all polarity gates in the ‘‘off’’

states revealed. The mixed polarity pattern yields b two segregated

1-neuron circuits in different polarity states, with the ‘‘off’’ states

expressed by disconnect
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uk ¼
Xn

j¼1

xk;jxj ð8Þ

with xk;j the corresponding element of the matrix W in

Eq. 6. An upper bound on the number of stored patterns

M\
n

2 logðnÞ ð9Þ

yields equilibrium

WxðiÞ ¼ xðiÞ ð10Þ

at each of the stored vectors xðiÞ; i ¼ 1; . . .;M (McEliece

et al. 1987).

Storage to full capacity would yield the inter-neuron

connectivity probability

PðnÞ ¼ 1� ð1� pðnÞÞM ð11Þ

which, under the capacity bound implied by Eq. 9. Yields

PðnÞ ¼ 1� ð1� pðnÞÞn=2 logðnÞ ð12Þ

PðnÞ now takes the place of pðnÞ as the neural network’s

probabilistic criticality measure, following the storage ofM

polarity patterns. Specifically,PðnÞ is critical if

PðnÞ ¼ qðnÞ ¼ 1=n, subcritical if PðnÞ\qðnÞ and super-

critical if PðnÞ[ qðnÞ. The value of PðnÞ as specified by

Eq. 12 is plotted, along with the critical value qðnÞ ¼ 1=n,

against n in Fig. 5. The intersection point PðnÞ ¼ qðnÞ is at
n ¼ 2. It can be seen that as n approaches the value 100,

PðnÞ approaches the value 1, and becomes closer to 1 as n

grows larger. This means that the circuit becomes, with

high probability, connected, with maximal size linear in n

(in fact, specifically n), which is consistent with the graph-

theoretic property of supercriticality, and which, as we

have noted, may be of little linguistic use, if any.

In the second model (Amit et al. 1987), Hebbian storage

is represented by the attenuated sum of outer products

W ¼ 1

n

XM

i

xðiÞxðiÞT ð13Þ

where xðiÞ; i ¼ 1; . . .;M are n-dimensional vectors of

equiprobable � 1 network polarities. Employing the

physical spin-glass model (Hopfield 1982), equilibrium

stability was found to be destroyed beyond the following

upper bound on the number of stored patterns

M\0:14n ð14Þ

(Amit et al. 1987). While, in contrast to the other models

noted (McEliece et al. 1987; Baram and Sal’ee 1992), the

number of neurons, n, assumed in the present model (Amit

et al. 1987) is finite, the supercriticality effect is similar, as

we show next. The inter-neuron connectivity probability,

Eq. 11, takes, in the present case, the form

PðnÞ ¼ 1� ð1� pðnÞÞ0:14n ð15Þ

The value of PðnÞ according to Eq. 15 is plotted in

Fig. 6, along with the critical value qðnÞ ¼ 1=n. The crit-

ical (intersection) point PðnÞ ¼ qðnÞ is at n ¼ 3. It can be

seen that as n approaches the value 100, PðnÞ quickly

approaches the value 1, which, implying large circuit

connectivity, is increasingly unacceptable for linguistic

purposes.

In the third model (Baram and Sal’ee 1992), pðnÞ can,

with appropriate modification, approach the subcritical

domain, which will become useful in the following sec-

tion. Given an n-neuron assembly, the synaptic weight

connecting the k’th and the j’ th neurons is obtained from a

set of vectors over xðiÞ 2 0; 1f gn, i ¼ 1; . . .;M. In the

present context, these will be called the stored polarity

patterns. Storage is performed by the modified Hebbian

rule (Tsodyks and Feigel’man 1988; Vincente and Amit

1989)

xk;j ¼
XM

i

ðxðiÞ
k � pÞðxðiÞ

j � pÞ ð16Þ

where p is the probability of a stored polarity having the

value 1.

The recalled polarity states xk; k ¼ 1; . . .; n are obtained

by the McCulloch–Pitts rule

Fig. 5 For supercritical polarity probability pðnÞ ¼ 0:5 and the

storage capacity bound specified by Eq. 9, the inter-neuron connec-

tivity probability PðnÞ, specified by Eq. 12, is plotted along with the

critical connectivity probability qðnÞ ¼ 1=n. Beyond the critical

(intersection) point at n ¼ 2, PðnÞ quickly converges to 1, which,

implying large circuit connectivity, is increasingly unacceptable for

linguistic purposes. (Color figure online)
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xk ¼
0; if uk � t

1; if uk [ t

(
ð17Þ

where

uk ¼
Xn

j¼1

xk;jxj ð18Þ

and t ¼ anp, with a ¼ ð4� sÞ=4ð2� sÞ, is a threshold.

Let us denote the probability that any of the stored

polarity vectors is not an equilibrium point Pe, and, further,

let p ¼ pðnÞ ¼ cn�s, with 0 \c� 0:5 and 0\s\1. Then

Pe ! 0 as n ! 1 if (Baram and Sal’ee 1992, Theorem 1)

M� c
n

pðnÞ log n
ð19Þ

for any c\1=4ð2� sÞ. Equation 19 represents, then, an

upper bound on the equilibrium polarity capacity of a

neural circuit. While the latter study has also addressed the

error correction capacity of the network, here we restrict

the analysis to equilibrium capacity for simplicity.

Clearly, for any 0 \c� 0:5 and 0\s\1, pðnÞ ¼ cn�s

is supercritical. The smaller the value of c (say, c ¼ 0:01)

and the larger the value of s (say, s ¼ 0:99), the smaller

(yet, supercritical) the value of pðnÞ, and the larger the

bound in Eq. 19. Storage to full capacity would yield inter-

neuron connectivity probability which, under Eqs. 11 and

19, yields

PðnÞ ¼ 1� ð1� pðnÞÞcn=pðnÞ logðnÞ ð20Þ

The value of PðnÞ as specified by Eq. 20, where pðnÞ ¼
cn�s with c ¼ 0:01 and s ¼ 0:99, is plotted, along with the

critical value qðnÞ ¼ 1=n, against the value of n in Fig. 7.

The intersection point PðnÞ ¼ qðnÞ is at n ¼ 1. It can be

seen that, as n approaches the value 100, PðnÞ approaches
the value 1. This means that the circuit becomes connected

with increasingly high probability, which, as we have

noted, may be of little linguistic use, if any. It might be

noted that, since the shapes of the curves depicted in

Figs. 5, 6 and 7 are similar, the language of their corre-

sponding descriptions is also similar. The distinction

between these figures is specifically expressed by the cor-

responding equations, 12, 15 and 20, which, while yielding

similar results, are clearly different.

The subcritical Hebbian linguistic limit
of neural polarity

Of the three models considered above, only the third

(Baram and Sal’ee 1992) allows for a variable polarity

probability. Let us assume a subcritical membrane polarity

probability, pðnÞ ¼ c=n with 0\c� 0:5. The linguistic

Fig. 6 For supercritical polarity probability pðnÞ ¼ 0:5 and the

storage capacity bound specified by Eq. 14, the inter-neuron connec-

tivity probability PðnÞ, specified by Eq. 15, is plotted along with the

critical connectivity probability qðnÞ ¼ 1=n. Beyond the critical

(intersection) point at n ¼ 3, PðnÞ quickly converges to 1, which,

implying large circuit connectivity, is increasingly unacceptable for

linguistic purposes. (Color figure online)

Fig. 7 For supercritical polarity probability pðnÞ ¼ 0:01n�0:99 and the

storage capacity bound specifies by Eq. 19, the inter-neuron connec-

tivity probability is PðnÞ and the critical connectivity probability is

qðnÞ. Beyond the critical (intersection) point at n ¼ 1, PðnÞ quickly

converges to 1, which, implying large circuit connectivity, is increas-

ingly unacceptable for linguistic purposes. (Color figrue online)
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capacity will be controlled by the parameter c, which is

characteristically dependent on the size and the function-

ality of the corresponding cortical domain. Subcritical

polarity implies that the largest connected circuit (having a

sequence of connections between any two neurons) is of

size logðnÞ (Erdos and Rény 1959, 1960).

As, for large n, a subcritical value of pðnÞ implies a

highly sparse connectivity, the storage of

M ¼ logðnÞ ð21Þ

circuit polarity vectors according to Eq. 6 implies that

these vectors are, with high probability, mutually orthog-

onal, and are, therefore, equilibrium points of the circuit

satisfying

WxðiÞ ¼ xðiÞ ð22Þ

where W is the matrix whose elements, xk;j, are defined by

Eq. 6, xðiÞ; i ¼ 1; . . .;M are the n-dimensional polarity

vectors stored, and M ¼ OðlogðnÞÞ.
The equilibrium storage capacity of the segregated cir-

cuit is, then OðlogðnÞÞ, and, employing Eq. 21, the storage

and retrieval capacity for the entire assembly of n neurons

is

BðnÞ ¼ OðCðnÞ logðnÞÞ ¼ OðnÞ ð23Þ

where CðnÞ is defined by Eq. 5. From a linguistic view-

point, the significance of circuit segregation is that each of

the words is, with high probability, of maximal length

logðnÞ, which is, for large n, considerably smaller than n.

The inter-neuron connectivity probability is, by Eqs. 11

and 21

PðnÞ ¼ 1� ð1� pðnÞÞlogðnÞ ð24Þ

For c ¼ 0:5, the polarity probability pðnÞ ¼ c=n is sub-

critical. The critical point, defined by PðnÞ ¼ qðnÞ ¼ 1=n is

found to be n ¼ 7, as depicted in Fig. 8. The corresponding

maximal connected circuit size is s ¼ ½logð7Þ� ¼ 2 (with ½x�
representing the integer closest to x), which is the critical

linguistic limit of the neural polarity code word size. For

n[ 7, PðnÞ becomes supercritical, and the maximal con-

nected circuit size becomes linear in n (Bollobás 1984),

which makes it linguistically implausible for large n.

For c = 0.1, the polarity probability pðnÞ ¼ c=n is sub-

critical. The inter-neuron connectivity probability is PðnÞ,
as specified by Eq. 24. The critical point satisfying PðnÞ ¼
qðnÞ ¼ 1=n is found to be n ¼ 22; 030, as depicted in

Fig. 9. The corresponding maximal connected circuit size

is s ¼ ½logð22; 030Þ� ¼ 10, which is the critical linguistic

limit of the neural polarity code word size. For

n[ 22; 030,PðnÞ becomes supercritical, and the maximal

connected circuit size becomes linear in n (Bollobás 1984),

which makes it linguistically implausible.

It follows that while, for large neural assemblies under

supercritical polarity probability, the connected neural

circuits are, rather uniformly, large, producing linguisti-

cally implausible long codewords, the range of subcritical

polarity probabilities produces a variety of linguistically

Fig. 8 For subcritical p ¼ c=n with c = 0.5, the inter-neuron connec-

tivity probability is PðnÞ and the critical connectivity probability is

qðnÞ. The critical point satisfying PðnÞ ¼ qðnÞ ¼ 1=n is at n ¼ 7.

(Color figrue online)

Fig. 9 For subcritical p ¼ c=n with c = 0.1, the critical point

satisfying PðnÞ ¼ qðnÞ ¼ 1=n is at n ¼ 22; 030
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plausible, relatively short (2–10 letters/neurons) code

words/circuits. The smaller the value of pðnÞ, the greater

the linguistic range.

Hebbian random graphs and neural circuit
connectivity linguistics

We next demonstrate that, under capacity constraint, neural

circuit segregation is a natural outcome of the Hebbian

storage of subcritical randomly generated polarity patterns.

Let n ¼ 10; p ¼ 0:5=n and M = 10. It can be seen that, in

terms of random graph theory (Erdos and Rény

1959, 1960), p is subcritical. The storage of M n-dimen-

sional randomly generated polarity vectors according to

Eq. 6 has produced the synaptic weights matrixW depicted

in Fig. 10a. The connectivity represented by this matrix

can be seen to translate into the 5 segregated (externally

disconnected) circuits depicted in Fig. 10b, whose neurons

are numbered according to the rows (or columns) of the

matrix W. Four segregated circuits consist of one neuron

each (neurons 1, 4, 5 and 7), while one segregated circuit

consists of two neurons (neurons 2 and 9). As implied by

both Fig. 10a and b, all synaptic weights are valued at 1.

Now let n ¼ 10; p ¼ 1:5=n and M = 10, making p su-

percritical by graph theoretic terminology. The storage of

M n-dimensional randomly generated polarity vectors

according to Eq. 6 has produced the synaptic weights

matrix W depicted in Fig. 11a. With some of the weights

exceeding the value 1, the connectivity represented by this

matrix can be seen to translate into the 3 segregated (ex-

ternally disconnected) circuits depicted in Fig. 11b, whose

neurons are numbered according to the rows (or columns)

of the matrix W. One of these circuits consists of a single

neuron (neuron 4), one consists of three neurons (neurons

2, 9 and 10) and one consists of four neurons (neurons 3, 5,

7 and 8).

The transition from subcritical (pðnÞ ¼ 0:5=n) to

supercritical (pðnÞ ¼ 1:5=n) has resulted, then, in a dra-

matic linguistic change. In the subcritical case (Fig. 10),

the maximal segregated circuit size of 2 satisfies the Erdos–

Renyi condition on maximal connected circuit size (as

2\log 10ð Þ ¼ 2:3), while in the supercritical case (Fig. 11)

the maximal segregated circuit size of 4 does not satisfy the

condition (as 4[ log 10ð Þ).
Next, let n ¼ 10 and p ¼ 0:5=n , as in the case depicted

in Fig. 10, but let M increase to 20. The storage of 20 n-

dimensional randomly generated polarity vectors according

to Eq. 6 has produce the synaptic weights matrix W

depicted in Fig. 12a, which can be seen to have elements

greater than 1, as in the case depicted in Fig. 11. The

connectivity represented by this matrix translates into the

four segregated circuits depicted in Fig. 12b, whose neu-

rons are numbered according to the rows (or columns) of

the matrix W depicted in Fig. 12a. It can be seen that three

of the circuits consist of a single neuron each (neurons 1, 6

and 8), and one circuit consists of three neurons (neurons 2,

4 and 9). While, from a graph theoretic viewpoint, p is

subcritical, as in the case depicted by Fig. 10 (p ¼ 0:5=n),

the maximal segregated circuit size of 3 violates the Erdos–

Renyi size condition (as 3[ logð10Þ ¼ 2:3). The reason is

that, in contrast to the case M ¼ n ð¼ 10Þ corresponding to

Fig. 10, the present case of M ¼ 20[ n ¼ 10 does not

yield full mutual orthogonality of the M stored polarity

patterns, resulting in excessively larger connectivity and

capacity smaller than M, in spite of the subcritical value of

p.

Fig. 10 Subcritical Hebbian

segregation corresponding to

n ¼ 10; p ¼ 0:5=n and M = 10:

a synaptic weights matrix,

b segregated neural circuits.

The neuronal numbering

corresponds to the rows (or

columns) of the matrix W,

while the synaptic weights are

all 1, as implied by the matrix
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Firing-rate mode reproduction by polarity
recall

Neuronal firing rate models (Lapicque 1907; Hodgkin and

Huxley 1952; Gerstner 1995) have been put in discrete-

time forms for computational purposes (Baram

2017a, b, 2018). The nature of neural circuit firing-rate

dynamics, having direct impact on cortical function, is

closely associated with synaptic plasticity (Bienenstock

et al. 1982). The latter, in contrast to circuit polarity, is not

binary. The convergence of time-varying synaptic plastic-

ity weights to limit modes (Cooper et al. 2004) results in a

high variety of dynamic firing-rate modes, characterized, in

maturity, by a code of global attractors (Baram

2013, 2017a). However, as we argue and demonstrate next,

given neuronal internal properties, a neural circuit’s firing-

rate dynamics are completely determined by a vector-val-

ued probe, retrieving a memorized polarity pattern by the

mechanism represented by Eqs. 6–8. This implies that,

once a neural circuit is probed, revealing a stored polarity

vector, it can only evolve into one final mode of synaptic

plasticity weights. Consequently the circuit’s firing rate

dynamics can only evolve into one final set of dynamic

firing-rate modes, which may be synchronous and identical

for all the circuit’s neurons, or unequally and asyn-

chronously produced by different neurons.

The discrete-time firing rate model for the ith neuron in

a circuit is given by (Baram 2017a, b, 2018)

tiðkÞ ¼ ai tiðk � 1Þ þ bifi x
T
i ðkÞtiðk � 1Þ þ ui

� �
ð25Þ

where tiðkÞ, is the neuron’s firing rate, tiðkÞ is the vector of
firing rates of the neuron’s pre-neurons,ai ¼ expð�1=smi

Þ
and bi ¼ 1� ai, with smi

the membrane time constant of

the neuron, xiðkÞ is the vector of synaptic weights corre-

sponding to the neuron’s pre-neurons (including self-

feedback), ui ¼ Ii � ri, with Ii the neuron’s circuit-external

Fig. 11 Supercritical Hebbian

segregation corresponding to

n ¼ 10; p ¼ 1:5=n and

M = 10: a synaptic weights

matrix, b segregated neural

circuits

Fig. 12 Hebbian segregation

under increased Hebbian

storage, corresponding to n ¼
10; p ¼ 0:5=n and M = 20 a
synaptic weights matrix, b
segregated neural circuits.

While p is subcritical, the

maximal connected circuit size

exceed the Erdos–Renyi limit of

logðnÞ due to excessive Hebbian

storage
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activation input and ri the neuron’s membrane resting

potential, and fi the conductance-based rectification kernel

defined as (Carandini and Ferster 2000)

fiðxÞ ¼
x if x	 0

0 if x\0

(
ð26Þ

The BCM plasticity rule (Bienenstock et al. 1982) of the

pre-neuron’s synaptic weights takes the discrete-time form

(Baram 2017a, b, 2018)

xiðkÞ ¼ eixiðk � 1Þ þ ci tiðk � 1Þ � hiðk � 1Þ½ � t2i ðk � 1Þ
ð27Þ

where t2i ðk � 1Þ is the vector whose components are the

squares of the components of tiðk � 1Þ and

hiðkÞ ¼ di
XN

‘¼0

expð�‘=shiÞt2i ðk � ‘Þ ð28Þ

with ei ¼ expð�1=sxi
Þ; ci ¼ 1� ei; di ¼ 1=shi , where sxi

and shi are time constants, and N is sufficiently large to

guarantee convergence of the sum.

Next, we examine and demonstrate the effects of

synapse polarization on circuit structure and firing

dynamics. The essence of these findings will be demon-

strated for small circuits of 2 neurons, as the simulation of

large circuit firing is highly elaborate, tedious, and space

consuming. Consider a 2-neuron circuit having the fol-

lowing identical parameters

u1 ¼ u2 ¼ 1; sm;1 ¼ sm;2 ¼ 1; sw;1 ¼ sw;2 ¼ 5; sh;1 ¼ sh;2
¼ 1:

Starting with full connectivity, changes in circuit con-

nectivity due to synapse silencing are illustrated in Fig. 13.

Different initial values of the firing rates, t1ð0Þ and t2ð0Þ,
were applied, so as to check robustness of the results and

the claims made. We establish the Hebbian memory of the

polarity patterns in the three cases depicted in Fig. 13 by

employing the mechanism represented by Eqs. 6–8. We

assume for illustrative purposes that in each of the cases we

have a synaptic weights matrix which, calculated by Eq. 6

in two time steps, corresponds to the circuit polarity states

displayed in Fig. 13.

In case (a) we have

w ¼ 2
1 1

1 1

 !
¼

2 2

2 2

 !
ð29Þ

This is the initial condition in the calculation of the

time-varying plasticity weights according to Eq. 27, and

reaching the limit

x1;1 ¼ x1;2 ¼ x2;1 ¼ x2;2 ¼ �0:1291:

In case (b) we have

w ¼ 2
1 0

1 1

 !
¼

2 0

2 2

 !
ð30Þ

which, in the appropriate positions, represents the initial

condition for the continuous-time plasticity weights. The

limit values of the plasticity weights calculated according

to Eq. 27 were found to be

x1;1 ¼ �0:1216; x1;2 ¼ �0:1375; x2;1 ¼ 0; x2;2

¼ �0:1925:

In case (c) we have

w ¼ 2
1 0

0 1

 !
¼

2 0

0 2

 !
ð31Þ

which constitutes the initial condition for the continuous

plasticity weights calculated according to Eq. 27. The final

values of the plasticity weights were found to be

x1;1 ¼ �0:1925; x1;2 ¼ 0; x2;1 ¼ 0; x2;2 ¼ �0:1925:

The values of the synaptic weights x2;1; x1;2 and the

firing rates t1; t2 sequences in the three cases, simulated by

running Eqs. 25–28, are displayed in Fig. 14. It can be seen

that, subject to different initial transients due to different

initial conditions, the two neurons in circuits that have

symmetric connectivity [cases (a) and (c)] converge to the

same firing-rate dynamics, while the two neurons in a

circuit which has a non-symmetric connectivity [case (b)]

converge to different firing-rate dynamics. Indeed, the final

values of t1 and t2 in the three cases are:

(a) t1ðk ¼ 100Þ ¼ t2ðk ¼ 100Þ ¼ 0:7947 (symmetric, as

original polarity)

(b) t1ðk ¼ 100Þ ¼ 0:7888; t2ðk ¼ 100Þ ¼ 0:8385

(asymmetric, as original polarity)

Fig. 13 Two-neuron circuit modification and segregation by synapse

silencing. a Fully connected circuit. b Asymmetric circuit connec-

tivity and c circuit segregation into 2 single isolated neurons by inter-

neuron synapse silencing
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(c) t1ðk ¼ 100Þ ¼ t2ðk ¼ 100Þ ¼ 0:8385 (symmetric, as

original polarity).

Subject to internal neural parameters, the cortical lan-

guages of polarity, on the one hand, and firing-rate

dynamics, on the other, are, then, interchangeable in rep-

resenting such neural circuit properties as symmetry, syn-

chrony and asynchrony. The expression of such properties

in a variety of firing rate modes has been noted (Baram

2018).

Discussion

Linguistic considerations, such as the number and the sizes

of code words, appear to be as significant for the language

of cortical information representation as they are for nat-

ural and artificial languages. Extending fundamental results

from the theory of random graphs, we have shown that

subcritical probability of positive polarity holds the key to

small circuit segregation, which, in turn, holds the key to

linguistically plausible short code words. It might be noted

that, as a consequence of small circuit segregation, the

notion of information storage capacity is transformed from

the storage of few long code words to the storage of many

short code words, which is more plausible from a linguistic

viewpoint. In contrast, we have shown that supercritical

probability of positive polarity, yielding inherently long

code words, misrepresents efficient cortical linguistics. The

subcritical linguistic range of cortical codewords, resem-

bling the one found in natural languages, is between 2 and

10 ‘‘letters’’, represented by neuronal membrane polarity

states. We have argued and demonstrated the effects of

subcritical polarity probability on segregated neural circuit

sizes employing theoretical as well as computational rea-

soning. We have further shown that cortical linguistics,

represented by membrane and synapse polarities, and

defining neural circuit connectivity, pave the way for

another expression of cortical information, namely, neural

circuit firing-rates. The transition from polarity linguistics

to firing-rate linguistics constitutes a mechanism for

transforming memory, stored in the form of circuit polar-

ities, to memory retrieval by firing-rate manifestation. The

correspondence between firing-rate modes and cortical

functions has been noted before (e.g., Baram

2013, 2017a, b, 2018), but their storage and retrieval by

transforming circuit polarity codes into convergent plas-

ticity modes appears to be suggested here for the first time.

The interaction and collaboration of the seemingly differ-

ent mechanisms of neuronal polarization and synaptic

plasticity in the definition of firing-rate modes also appears

to be suggested here for the first time, and is suggested for

further investigation in future studies.
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