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Abstract
Energy supply plays a key role in metabolism and signal transmission of biological individuals, neurons in a complex

electromagnetic environment must be accompanied by the absorption and release of energy. In this paper, the discharge

mode and the Hamiltonian energy are investigated within the Izhikevich neuronal model driven by external signals in the

presence of electromagnetic induction. It is found that multiple electrical activity modes can be observed by changing

external stimulus, and the Hamiltonian energy is more dependent on the discharge mode. In particular, there is a distinct

shift and transition in the Hamiltonian energy when the discharge mode is switched quickly. Furthermore, the amplitude of

periodic stimulus signal has a greater effect on the neuronal energy compared to the angular frequency, and the average

Hamiltonian energy decreases when the discharge rhythm becomes higher. Based on the principle of energy minimization,

the system should choose the minimum Hamiltonian energy when maintaining various trigger states to reduce the

metabolic energy of signal processing in biological systems. Therefore, our results give the possible clues for predicting

and selecting appropriate parameters, and help to understand the sudden and paroxysmal mechanisms of epilepsy

symptoms.
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Introduction

The dynamic behavior of neurons is particularly important

for understanding information encoding and related dis-

eases in the nervous system, therefore, some reliable bio-

logical neuron models have been proposed and improved to

explore the occurrence mechanisms of action potential.

The most familiar neuron model is the Hodgkin–Huxley

model proposed by Hodgkin and Huxley (1952), and some

simplified models that can exhibit the characteristics of

electrical activities in neurons have also been proposed

subsequently (FitzHugh 1961; Wilson 1999; Morris and

Lecar 1981; Hindmarsh and Rose 1982). Based on different

neuron models, many interesting works have been carried

out on estimating various dynamic behaviors in single

neuron or neural network affected by various internal or

external factors (e.g. noise, temperature, synapse, input

signal). For instance, the response of neurons or neural

networks to weak signal can be maximized under appro-

priate noise (Zhao et al. 2016; Yao and Ma 2018). The

electrical activities can change significantly under the

influence of temperature (Lu et al. 2019c; Xu et al. 2019b).

Wave propagation can be realized by adjusting synaptic

weight and synaptic characteristic time in a feed-forward

neural network (Ma et al. 2015; Ge et al. 2018). The

electrical activity patterns of single neuron and neural

network are affected by ion channel blocks (Xu et al.
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2018a). The strength and frequency of network synchro-

nization will vary with the combination of network self-

synchronization frequency and input signal frequency (Lv

et al. 2014).

In recent years, electromagnetic induction induced by

the fluctuation of membrane potential or the distribution of

ion concentration have been introduced into the research of

neurons and neural networks. For example, the mode

transformation of electrical activities in single neuron

under electromagnetic induction has been investigated (Lv

and Ma 2016; Xu et al. 2017; Mondal et al. 2019; Liu et al.

2019). The synchronization between coupled neurons

under electromagnetic induction has been studied (Ma

et al. 2017; Xu et al. 2018b). The effects of electromagnetic

induction on spiral waves formation and signal propagation

in neural networks have been discussed (Rostami and Jafari

2018; Ge et al. 2019a, b). The effects of electromagnetic

field coupling on the spiking activities of neural network

have been investigated (Xu et al. 2019a). In order to

approximate the real environment of the nervous system,

which means more realistic input, various external signals

were applied to neurons or neuron networks. For instance,

the propagation of biological weak signals was discussed in

neural networks (Lu et al. 2019a; Ge et al. 2020a). The

sinusoidal periodic signals were used to study the response

of electrical activities in single neuron or neural networks

(Guo and Li 2009; Farokhniaee and Large 2017). The high-

low frequency signal mixed with a high frequency periodic

signal and a low frequency periodic signal was imposed on

the neurons to investigate vibrational resonance phe-

nomenon (Zaikin et al. 2002; Ullner et al. 2003), but the

electromagnetic induction was not taken into account. In

fact, neurons can be regarded as excitable media, and the

fluctuation in neuronal membrane potential alters the dis-

tribution of electromagnetic field inside and outside neu-

rons (Lv et al. 2016). In addition, the polarization and

magnetization are triggered when the neuron is exposed to

external field or electromagnetic radiation (Parastesh et al.

2018). Therefore, the electromagnetic induction and radi-

ation should be considered for neurons, and the electrical

activities of neurons will be adjusted under feedback effect.

Besides, the application of high-low frequency signal is

actually universal in neural system. For example, bursting

neurons may show two widely distinct time scales, because

the high frequency and low frequency signals correspond to

different input channels in a neuron, respectively. More-

over, the beneficial role of high frequency stimulation has

been found in previous researches, such as the increased

absorption of drugs by brain cells, the improvement of

muscle healing, or the treatment of Parkinson’s disease and

other disorders in neuronal activity (Gong and Xu 2001).

Recently, some researchers have discussed the electrical

activities of neurons when both electromagnetic induction

and high-low frequency signal exist (Lu et al. 2020; Ge

et al. 2020b). The results from previous studies have shown

that both electromagnetic induction and high-low fre-

quency signal have significant effects on the dynamic

behavior of neurons.

Energy supply plays a key role in metabolism and signal

transmission of biological individuals (Laughlin and Sej-

nowski 2003). The research on the energy supply and

consumption of nervous system has been done in experi-

ments, and it needs to be further explored in quantitative

theoretical analysis. The generation of action potential and

the transition of discharge modes are related to energy

coding (Wang and Zhang 2007; Wang et al. 2009), and the

electrical activities of single neuron and neural network can

be expressed by energy (Wang and Zhu 2016; Wang et al.

2015b). There are still some difficulties in accurately

detecting energy supply and consumption, but the energy

expenditure in electrical activity can be estimated by some

computational methods based on neuron models. For

instance, the biological energy consumed by Na/K-ATPase

pumps was calculated based on the Chay neuron model,

and it was found that the energy expenditure in busting

state is minimal (Zhu et al. 2019). The Hamiltonian energy

was calculated based on Hindmarsh-Rose neuron model

according to Helmholtz theorem, and it was shown that the

energy depends on the discharge activity (Song et al. 2015;

Wang et al. 2016). When neurons are stimulated by

external signals, the corresponding neural energy will

change with the conversion of action potential, and the

unique relationship between membrane potential and

energy was discussed (Wang et al. 2015a, 2018). Due to the

scalar feature of energy, the dynamic response of neural

model can describe the pattern of neural coding through

energy superposition whether it is based on single neuron,

neural populations or networks (Zhu et al. 2018; Wang and

Wang 2014; Wang et al. 2008). Moreover, neural energy

may be an effective way to study the behavior of brain

activity, which can further investigate cognitive activity

(Wang et al. 2017b). Extensive investigations found that

the Hamiltonian energy is regulated by external signals

(Wang et al. 2017a; Lu et al. 2019b; Wu et al. 2019). The

Hamiltonian energy calculated from the dimensionless

nonlinear dynamical system can provide useful clues to

better understand the relationship between discharge mode

and energy coding.

In this paper, considering the electromagnetic induction,

the improved Izhikevich neuron model driven by external

current or external electromagnetic radiation is described

respectively in the ‘‘Models and methods’’ section, and the

Hamiltonian energy function associated with the improved

model is deduced according to Helmholtz theorem. Then,

the transformation of electrical activity and Hamiltonian

energy is discussed and analyzed in the ‘‘Numerical results
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and discussions’’ section. Finally, the results of our work

are summarized, and the possible further applications are

discussed in the ‘‘Conclusions’’ section.

Models and methods

The Izhikevich neuronal model (Izhikevich 2003, 2004)

combines the biological rationality and the computational

efficiency, which can reproduce a large number of elec-

trical activities of cortical neurons. To our knowledge, the

fluctuation in neuronal membrane potential can induce

electromagnetic induction, and the magnetic flux across the

membrane may be changed. In addition, the variation of

magnetic flux also changes the membrane potential.

Therefore, the influence of electromagnetic induction is

considered by using a magnetic flux variable, and the

feedback of magnetic flux to membrane potential is real-

ized through memristor. According to Maxwell’s electro-

magnetic induction theorem (Carpenter 1999), the

improved Izhikevich model driven by the external periodic

current or the external high-low frequency electromagnetic

radiation is given in the following two parts, respectively.

(1) The improved Izhikevich model driven by external

stimulus current

Considering electromagnetic induction, the dynamic

equation of single Izhikevich neuron model driven by

external stimulus current is described as follows:

dv

dt
¼ 0:04v2 þ 5vþ 140� u� kq /ð Þvþ I þ Iext;

du

dt
¼ a bv� uð Þ;

d/
dt
¼ k1v� k2/;

8
>>>>><

>>>>>:

ð1Þ

with the auxiliary after-spike resetting

if v� 30 mV, then
v c;
u uþ d;

�

ð2Þ

where the variables v, u and u describe the membrane

potential of the neuron, membrane recovery variable

associated with the activation of K? currents and the

inactivation of Na? currents, and the magnetic flux across

the neuronal membrane, respectively. Parameter a is the

recovery constant, b describes the susceptibility of the

recovery variable to the subthreshold fluctuation of mem-

brane potential, c is the reset value of membrane potential

when the voltage reaches 30 mV, and d describes the after-

spike behavior associated with the recovery variable. The

term kq(u)v is the feedback current associated with elec-

tromagnetic induction, k1v describes the effect induced by

membrane potential on magnetic flux, and k2u represents

the magnetic leakage. I is the constant current, and Iext-
= Asin(xt) is the external forcing current, which directly

affects the membrane potential under fixed parameters or

external forcing.

Memristor is the fourth fundamental circuit element that

connects the flux with charge. According to the charac-

teristics of memristor (Chua 1971; Strukov et al. 2008), the

magnetic flux-controlled memory conductance is estimated

by

q /ð Þ ¼ dq /ð Þ
d/

¼ aþ 3b/2; ð3Þ

where a represents constant conductance, b indicates the

feedback rate of magnetic flux, both of which depend on

the memristor, and q(u) is the magnetic flux-related charge

across the memristor.

The absorption and release of energy during the transi-

tion of electrical activity is worth investigating. According

to Helmholtz’s theorem (Kobe 1986), the neuron’s

dynamical equations can be viewed as a velocity vector

field and further decomposed into the sum of two sub-

vector fields f (*) = fc (*) ? fd (*), where fc (*) is the

vortex field containing the full rotation and fd (*) is the

gradient field containing the divergence. Therefore, the

Hamilton energy of the improved Izhikevich neuron model

can be calculated.

The two sub-vector fields in Eq. (1) are rewritten as

following:

dv

dt
du

dt
d/
dt

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

¼ fc v; u;/ð Þ þ fd v; u;/ð Þ; ð4Þ

with

fc v;u;/ð Þ¼J v;u;/ð Þ�rH¼
140�uþIþIext�/

abv

k1v

0

B
@

1

C
A;

fd v;u;/ð Þ¼R v;u;/ð Þ�rH¼
0:04v2þ5v�kq /ð Þvþ/

�au
�k2/

0

B
@

1

C
A;

where H is the Hamilton energy function, and J(v,u,u) and

R(v,u,u) are the skew-symmetric matrix and the symmetric

matrix, respectively.

The Hamilton energy function H associated with

Eqs. (1) and (4) is calculated by
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rHT fcðv; u;/Þ ¼ 0;
rHT fdðv; u;/Þ ¼ dH=dt;

�

ð5Þ

where the super index T represents the transpose of matrix.

By substituting Eq. (4) into Eq. (5), we have

140� uþ I þ Iext � /ð Þ oH
ov
þ abvð Þ oH

ou
þ k1vð Þ oH

o/
¼ 0:

ð6Þ

The general solution of Eq. (6) is

H ¼ 140� uþ I þ Iext � /ð Þ2þabv2 þ k1v
2: ð7Þ

Furthermore, the differential coefficient of Hamilton

energy versus time is obtained from

dH

dt
¼ 2 140� uþ I þ Iext � /ð Þ �abvþ au� k1vþ k2/ð Þ

þ 2abvþ 2k1vð Þ
�
0:04v2 þ 5vþ 140� u� kq /ð Þv

þ I þ IextÞ
¼ rHT fd:

ð8Þ

Therefore, the Hamilton energy function as shown in

Eq. (7) is a reliable solution of Eq. (6).

(2) The improved Izhikevich model driven by external

electromagnetic radiation

Considering electromagnetic induction, the dynamic

equation of single Izhikevich neuron model driven by

electromagnetic radiation is described as following:

dv

dt
¼ 0:04v2 þ 5vþ 140� u� kq /ð Þvþ I;

du

dt
¼ a bv� uð Þ;

d/
dt
¼ k1v� k2/þ /ext;

8
>>>>><

>>>>>:

ð9Þ

with the auxiliary after-spike resetting

if v� 30 mV, then
v c;
u uþ d;

�

ð10Þ

where uext = Acos(xt) ? Bcos(Nxt) represents the influ-

ence of external field or electromagnetic radiation, which

alters magnetic flux distribution and affects the membrane

potential under a specific function. A and B are the

amplitudes of high-low frequency signal, x and Nx are the

angular frequencies. In this case, the two sub-vector fields

of Eq. (9) are written as follows:

fc v;u;/ð Þ¼ J v;u;/ð ÞrH¼
140�uþ I�/

abv

k1vþ/ext

0

B
@

1

C
A;

fd v;u;/ð Þ¼R v;u;/ð ÞrH¼
0:04v2þ5v�kq /ð Þvþ/

�au
�k2/

0

B
@

1

C
A:

ð11Þ

Similarly, by substituting Eq. (11) into Eq. (5), we have

140� uþ I � /ð Þ oH
ov
þ abvð Þ oH

ou
þ k1vþ /extð Þ oH

o/
¼ 0:

ð12Þ

The general solution of Eq. (12) is

H ¼ 140� uþ I � /ð Þ2þabv2 þ k1v
2 þ 2/extv: ð13Þ

Therefore, the differential coefficient of Hamilton

energy versus time can be obtained from

dH

dt
¼ 2 140� uþ I � /ð Þ �abvþ au� k1vþ k2/� /extð Þ

þ 2 abvþ k1vþ /extð Þ
�
0:04v2 þ 5vþ 140� u

� kq /ð Þvþ IÞ
¼ rHT fd:

ð14Þ

As a result, Eq. (13) is also a reliable solution of

Eq. (12).

In our numerical simulation, the Euler algorithm is used,

and the time step is set as 0.001. According to most of the

previous works, some parameter values are always set to the

same, such as a = 0.02, b = 0.2, c = - 65, d = 8, I = 10,

Besides, k = 0.01, k1 = 0.01, k2 = 0.2, a = 0.4, b = 0.02 are

selected as the appropriate parameter value related to elec-

tromagnetic induction, and the initial values are set as (v0, u0,

u0) = (0.3, 0.2, 0.1). The selection of system mode has

nothing to do with the selection of initial value.

Numerical results and discussions

The process of injecting external stimuli is the process of

injecting energy, the generation of action potential and the

transition of discharge mode must be accompanied by the

supply and consumption of energy. Therefore, we investi-

gate and analyze the transformation of electrical activity

and Hamiltonian energy within the improved Izhikevich

neuron under different external stimuli in this section.

(1) Effects of the external stimulus current

As shown in Fig. 1, the sample time series of membrane

potential and energy function are calculated during
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different amplitudes of driving current. The transient per-

iod is selected as 800 time units, and the external stimulus

Iext = Asin(xt) is added at t = 300 time units. It can be seen

that when the angular frequency is fixed, the neuron

exhibits multiple discharge patterns by changing the

amplitude, and the fluctuation of energy function depends

on the electric activities.

It is found that the electric activity changes from regular

spiking state into complex chaotic state at t = 300 time

units when the amplitude A = 1.0, and the variation of

Hamiltonian energy also changes from regular into irreg-

ular. When the value of A is set as 8.0, the discharge mode

switches from spiking to period-2 bursting, and there is a

distinct shift in energy. Furthermore, the range of Hamil-

tonian energy in bursting state is larger than that of the

spiking and chaotic states. The potential mechanism may

be that the generation of bursting action potential requires

more energy supply but consumes even more, that means

the average energy decreases. When A is set as 15.0 or

20.0, the mixed state and the period-3 bursting state are

observed, respectively, and the range of Hamiltonian

energy becomes larger under a larger current amplitude.

Comparing these results, the average energy decreases with

the increase of stimulation current amplitude. When the

electrical activity switches to a high rhythm, the average

energy decreases because each action potential carries a

certain amount of energy and follows the law of energy

conservation.

In order to reveal the overall effect of current amplitude

A on electrical activities, the bifurcation diagram is plotted

by calculating the interspike intervals (ISI) of membrane

potentials under different parameter values, and the results

obtained by program are shown in Fig. 2a. It is found that

the discharge patterns show some regular changes when the

amplitude exceeds certain value. In our numerical simu-

lation results, the electrical activity presents chaotic state

when the value of A is smaller than 1.624, and it presents

alternating transformation between bursting state and

mixed state when the value of A is larger than 1.624.

Furthermore, the average Hamiltonian energy function is

calculated in a transient period T = 2000 time units as

shown in Fig. 2b. A large number of numerical calculation

results prove that the statistical properties of average

Hamiltonian energy have little to do with the choice of

calculation time T. Here, the average Hamiltonian energy

function is calculated by the following formula

Fig. 1 Sample time series of membrane potential in Eq. (1) and energy function in Eq. (7) by applying external stimulus current at x = 0.1. For

(a1)–(d1) A = 1.0; (a2)–(d2) A = 8.0; (a3)–(d3) A = 15.0; (a4)–(d4) A = 20.0, stimulus Iext = Asin(xt)
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Hh i ¼
Z t0þT

t0

H v; u;/ð Þdt=T; ð15Þ

where t0 and T are the initial time and period for calcu-

lating the average Hamiltonian energy, respectively, the

energy function is described by Eq. (7) or Eq. (13) in this

paper.

It is interesting that the average energy function curve

shows a step-like decline with the increase of stimulus

current amplitude. Comparing Fig. 2a with Fig. 2b, which

illustrates that the energy depends on the discharge mode.

The horizontal lines of the average energy function curve

are related to the increase and decrease of interspike

intervals symmetrically, the average firing rate does not

change and the average energy does not change. The

descending lines of the curve are related to the changes

with a higher discharge rhythm, the average energy carried

by each action potential decreases due to the restriction of

energy conservation.

Figure 3 shows the evolution of membrane potential and

Hamiltonian energy over time at different angular fre-

quencies of driving current. When external stimulation is

added, the electrical activity changes from regular spiking

state into period-3 and period-2 discharge state at x = 0.05

and x = 0.08, respectively. The electrical activity mode is

mixed state when the value of x is 0.12, and it is period-1

firing when the value of x is 0.15. In addition, there is a

quick transition in energy when external stimulation is

added at t = 300 time units. But unlike the results in Fig. 1,

the fluctuation range of energy does not always increase

with the increase of angular frequency as shown in Fig. 3,

so the average energy does not always decrease. Similarly,

in order to investigate the global effect of angular fre-

quency on the electrical activities and energy function, the

bifurcation diagram and average energy function associ-

ated with different angular frequencies are plotted as

shown in Fig. 4.

Figure 4a shows that the electrical activities of neuron

can present rich discharge patterns with the change of

angular frequency when periodic forcing current is applied

to the neuron. When the value of angular frequency x is

less than 0.018, the discharge mode is chaotic, and when

the value of x is greater than 0.018, the periodicity of the

electrical activities becomes obvious. This is somewhat

similar to the trend of increasing the amplitude of stimu-

lation current. However, according to the results in Fig. 4b,

the changes in average energy are different from the results

of increasing current amplitude. The average energy

function curve shows a wave-like decline with the increase

of current angular frequency. Comparing Fig. 4a with

Fig. 4b, the Hamiltonian energy still depends on the elec-

trical activity mode. The average energy in chaotic state

fluctuates only slightly with the change of angular fre-

quency, the rising lines of average energy curve correspond

to the process from high rhythm discharge to low rhythm

discharge, and the descending lines of average energy

curve correspond to the process from low rhythm discharge

to high rhythm discharge. The characteristics of this curve

are also consistent with the results in Fig. 3.

(2) Effects of the external electromagnetic radiation

The electrical activity and energy of neurons in reality are

more or less affected by external electromagnetic field.

Indeed, the external radiation is estimated within the

magnetic flux variable, and applying disturbance on the

magnetic flux variable indicates potential energy injection

and release, which is fully confirmed by Eq. (13). Figure 5

shows the evolution of membrane potential and Hamilto-

nian energy over time at different low frequency ampli-

tudes. The external electromagnetic radiation is described

as uext = Acos(xt) ? Bcos(Nxt). In order to better observe

the phenomenon, the transient period is selected as 600

time units, and the high-low frequency stimulation signal is

added at t = 200 time units in this part. The parameter

values of electromagnetic radiation are fixed as (B, x,

N) = (3.0, 0.3, 10) in Fig. 5. It is showed that the increase

of low frequency amplitude A can lead to various discharge

activities, and the firing rate increases obviously. In addi-

tion, the fluctuation range of Hamiltonian energy becomes

larger by increasing the value of A.

Figure 6a shows the bifurcation diagram associated with

the low frequency amplitude of electromagnetic radiation.

Fig. 2 a Bifurcation diagram

associated with the amplitude of

external stimulus current.

b Evolution of the average

energy function with the

amplitude of external stimulus

current. Stimulus Iext = Asin(xt)
with x = 0.1
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Comparing Fig. 6a with Fig. 2a, it is found that the tran-

sition of firing patterns under high-low frequency electro-

magnetic radiation is more complicated than that under

periodic current stimulation. This phenomenon indicates

that the complex external electromagnetic radiation envi-

ronment may have a greater impact on the electrical

activity of neurons. Similarly, the average Hamiltonian

energy of neurons under electromagnetic radiation is

investigated, which is calculated by Eq. (15) in a transient

period T = 2000 time units. the average energy function

curve in Fig. 6b also shows a step-like decline similar to

Fig. 2b. But the average energy curve here is steeper,

which means that energy changes faster, and neurons are

more sensitive to external electromagnetic radiation com-

pared to external current stimulation. Comparing Fig. 6a

with Fig. 6b, the relatively horizontal lines of average

energy curve correspond to the state in which the discharge

rhythm remains unchanged, and the relatively steep lines

are related to the high discharge rhythm. The results in

Fig. 6 demonstrate that energy depends on the discharge

mode under electromagnetic radiation, and the energy

Fig. 3 Sample time series of membrane potential in Eq. (9) and energy function in Eq. (13) by applying external stimulus current at A = 6.0. For

(a1)–(d1) x = 0.05; (a2)–(d2) x = 0.08; (a3)–(d3) x = 0.12; (a4)–(d4) x = 0.15, stimulus Iext = Asin(xt)

Fig. 4 a Bifurcation diagram

associated with the angular

frequency of external stimulus

current. b Evolution of the

average energy function with

the angular frequency of

external stimulus current.

Stimulus Iext = Asin(xt) with

A = 6.0
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decreases with a higher discharge rhythm, which is con-

sistent with the results under current stimulation.

Figure 7 shows the evolution of membrane potential and

energy function over time under different high frequency

amplitudes. External high-low frequency electromagnetic

radiation parameters are fixed as (A, x, N) = (3.0, 0.3, 10).

the neuron exhibits period-3 firing when the high frequency

amplitude B is set as 5.0, and switches to period-5 firing

when B is set as 16.0. It is period-7 firing when the value of

B is selected as 19.0, and it is period-2 firing when the

value of B is selected as 25.0. The fluctuation range of

energy increases with the transition of discharge mode. The

results in Fig. 7 illustrate that the high frequency amplitude

B of electromagnetic radiation also has some effects on the

electrical activity mode and energy.

Figure 8 reveals the global effect of high frequency

amplitude B on electric activity mode and energy. From

Fig. 8a, there is a clearly denser area, which divides the

Fig. 5 Sample time series of membrane potential in Eq. (9) and

energy function in Eq. (13) by applying external electromagnetic

radiation at B = 3.0, x = 0.3, N = 10. For (a1)–(d1) A = 2.0; (a2)–

(d2) A = 4.0; (a3)–(d3) A = 6.0; (a4)–(d4) A = 10.0, stimulus

uext = Acos(xt) ? Bcos(Nxt)

Fig. 6 a Bifurcation diagram

associated with the low

frequency amplitude of

electromagnetic radiation.

b Evolution of the average

energy function with the low

frequency amplitude of

electromagnetic radiation.

External stimulus

uext = Acos(xt) ? Bcos(Nxt)
with B = 3.0, x = 0.3, N = 10
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bifurcation diagram into three areas roughly. When the

value of B is less than 13.4, it is period-3 firing. When the

value of B is greater than 22.2, it is period-2 firing. When

the value of B is between 13.4 and 22.2, the periodic dis-

charge and chaotic discharge change alternately. From

Fig. 8b, it shows that the average energy curve associated

with the high frequency amplitude B can also be roughly

divided into three parts: the smooth part that drops slowly,

the non-smooth part that drops rapidly, and the smooth part

that has a hillside. Comparing Fig. 8a with Fig. 8b, the

average energy drops suddenly when the discharge mode

changes from periodic state into chaotic state, and the

average energy no longer drops or even rises when the

discharge mode changes from chaotic state into periodic

state. This phenomenon further proves that the average

energy decreases in a high rhythm discharge state, which is

consistent with those discussed above. By comparing

Fig. 8 with Fig. 6, we draw a conclusion that the influence

Fig. 7 Sample time series of membrane potential in Eq. (9) and

energy function in Eq. (13) by applying external electromagnetic

radiation at A = 3.0, x = 0.3, N = 10. For (a1)–(d1) B = 5.0; (a2)–

(d2) B = 16.0; (a3)–(d3) B = 19.0; (a4)–(d4) B = 25.0, stimulus

uext = Acos(xt) ? Bcos(Nxt)

Fig. 8 a Bifurcation diagram

associated with the high

frequency amplitude of

electromagnetic radiation.

b Evolution of the average

energy function with the high

frequency amplitude of

electromagnetic radiation.

External stimulus

uext = Acos(xt) ? Bcos(Nxt)
with A = 3.0, x = 0.3, N = 10
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of high frequency amplitude B on the electrical activity and

energy of neurons is smaller than that of low frequency

amplitude A.

Figure 9 shows the sample time series of membrane

potential and energy function under different angular fre-

quencies. The parameters of external high-low frequency

electromagnetic radiation are fixed as (A, B, N) = (3.0, 3.0,

10). As shown in Fig. 9, the neuron exhibits period-5 firing

when the value of angular frequency x is selected as 0.15.

It is period-3 firing when the value of x is selected as 0.25.

It is period-1 firing when the value of x is selected as 0.35,

and it is period-2 firing when the value of x is selected as

0.41. In addition, the fluctuation range of energy decreases

as x increases, which means that the average energy

increases as x increases. The results in Fig. 9 illustrate that

the electrical activity of neuron is closely related to the

angular frequency of high-low frequency electromagnetic

radiation, and the energy is also closely related to the

electrical activity.

Figure 10 shows the bifurcation diagram and the evo-

lution of average Hamiltonian energy associated with the

angular frequency. From Fig. 10a, with the increase of

angular frequency x, the ISI (interspike interval) changes

spirally and maintains horizontal when the value of x
exceeds certain value. The results in Fig. 10a indicate that

it is easy to realize the transition of multiple discharge

modes by changing angular frequency in the range of less

than 0.75. From Fig. 10b, the average energy rises greatly

when the high-low frequency electromagnetic radiation is

added, and there is a wave-like rising curve followed by a

horizontal line. The results in Fig. 10b illustrate that

compared with the absence of electromagnetic radiation,

the high-low frequency electromagnetic radiation can

greatly increase the Hamiltonian energy of neurons, but the

change of angular frequency has little effect on energy.

From the results above, it is showed that neurons are more

sensitive to the high-low frequency amplitudes than

angular frequencies. The potential mechanism may be that

the stimulus signal with a larger amplitude (or strength) can

inject sufficient energy to induce multiple modes transition

in electrical activities, while angular frequency only

Fig. 9 Sample time series of membrane potential in Eq. (9) and

energy function in Eq. (13) by applying external electromagnetic

radiation at A = 3.0, B = 3.0, N = 10. For (a1)–(d1) x = 0.15; (a2)-

(d2) x = 0.25; (a3)-(d3) x = 0.35; (a4)-(d4) x = 0.41, stimulus

uext = Acos(xt) ? Bcos(Nxt)
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slightly modulates the discharge rhythm at a fixed

amplitude.

Conclusions

In summary, when the periodic current or high-low fre-

quency electromagnetic radiation is imposed on the

Izhikevich neuron under electromagnetic induction, the

transformation of electrical activity and Hamilton energy is

investigated by changing external stimulus in this paper.

It is found that periodic current or electromagnetic

radiation can induce multiple modes transition (e.g. spiking

state, busting state, and chaotic states) in electrical activity,

and the Hamiltonian energy is more dependent on the

discharge mode. In particular, there is a distinct shift and

transition in Hamiltonian energy when the discharge mode

is switched quickly. The average Hamilton energy

decreases when the electrical activity changes from low

rhythm into high rhythm, and the potential mechanism may

be that the energy carried by each action potential

decreases due to the restriction of energy conservation. In

addition, it is found that the influence of high frequency

amplitude B on neurons is smaller than that of low fre-

quency amplitude A under electromagnetic radiation. The

amplitude of stimulus signal has a greater effect on neu-

ronal energy compared to the angular frequency, and the

underlying mechanism may be that the stimulus signal with

a larger amplitude (or strength) can inject sufficient energy

to induce multiple modes transition in electrical activities,

while angular frequency only slightly modulates the dis-

charge rhythm at a fixed amplitude.

Our results may help better understand the relationship

between electrical activity and energy, and understand the

paroxysmal mechanism of epilepsy symptoms. Epilepsy is

a type of chronic brain dysfunction caused by sudden

abnormal discharge of neurons. The average Hamilton

energy can be significantly decreased when the neuron is in

bursting and chaotic states, which may indicate that

paroxysmal epilepsy will release large energy quickly

before restoring normal discharge behavior. Various noises

(e.g. Gaussian white noise, channel noise, etc..) and net-

work structure in nervous system can also affect the elec-

trical activity and energy. Therefore, the effects of noise

and signal on electrical activity and energy based on

multilayer neural network of Izhikevich neuronal model

under electromagnetic induction could be investigated in

further works.
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