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The successful discrimination of depression from EEG could be
attributed to proper feature extraction and not to a particular
classification method
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Abstract
Reliable diagnosis of depressive disorder is essential for both optimal treatment and prevention of fatal outcomes. This

study aimed to elucidate the effectiveness of two non-linear measures, Higuchi’s Fractal Dimension (HFD) and Sample

Entropy (SampEn), in detecting depressive disorders when applied on EEG. HFD and SampEn of EEG signals were used

as features for seven machine learning algorithms including Multilayer Perceptron, Logistic Regression, Support Vector

Machines with the linear and polynomial kernel, Decision Tree, Random Forest, and Naı̈ve Bayes classifier, discriminating

EEG between healthy control subjects and patients diagnosed with depression. This study confirmed earlier observations

that both non-linear measures can discriminate EEG signals of patients from healthy control subjects. The results suggest

that good classification is possible even with a small number of principal components. Average accuracy among classifiers

ranged from 90.24 to 97.56%. Among the two measures, SampEn had better performance. Using HFD and SampEn and a

variety of machine learning techniques we can accurately discriminate patients diagnosed with depression vs controls

which can serve as a highly sensitive, clinically relevant marker for the diagnosis of depressive disorders.
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Introduction

Depression is forecasted to be the second cause of dis-

ability and death before 2030 world wide (Mathews and

Loncar 2006; Murray et al. 2013; World Organization of

Mental Health 2012; World Health Organization 2017).

The effects of depression tend to extend beyond the indi-

vidual patient, negatively impacting patients’ immediate

social environment. In the Netherlands alone, depression

was the second most prevalent cause of a sick leave in

2016, making up some 11% of workforce loses (WHO

Europe, Data and resources 2014). The underlying
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pathogenesis of depression is still not known. Nevertheless,

considerable evidence from neuroimaging studies shows

structural and functional changes, which affect different

brain regions and neurotransmitter systems (Arnone et al.

2012, 2013; Koolschijn et al. 2009; Kwaasteniet et al.

2013; Vederine et al. 2011).

In present clinical practice, depression is diagnosed

using clinical interviews and structured and semi-struc-

tured symptom severity scales (Beck’s Depression Scale,

American Psychiatric Association—DSM 5, ICD-10), all

of which require accurate self-report from the patient. To

the best of our knowledge, clinical professionals are not

using any kind of quantification of EEG in the diagnostic

process. Multiple factors (NESDA 2018) make detection

and diagnosis of depression often difficult. The use of

biomarkers could facilitate diagnosis and potentially pre-

vent future episodes, all of which garnered significant

attention in the past decade.

Most quantitative EEG (QEEG) measures, connectivity

measures, vigilance-based measures, and sleep-related

EEG measures use power spectrum analysis to quantify

changes in brain activity related to depression. This

approach repeatedly showed abnormal frontal asymmetry

in alpha activity (Allen et al. 2004; Stewart et al. 2010)

reduced slow-wave activity in sleep (Nissen et al. 2006),

increased alpha activity (Kemp et al. 2010; Köhler et al.

2011; Basar et al. 2011), and decrease in alpha synchro-

nization in the right fronto-central and centro-parietal

connections (Kim et al. 2013). Other studies focused on

changes in theta (Knott et al. 2000; Ricardo-Garcell et al.

2009), and beta activity (Roh et al. 2016). Van der Vinne

et al (2017) showed that frontal asymmetry although well

established in the literature fail to serve as a prognostic

biomarker for depression.

Among others, a recent study offered a new insight into

the possible mechanisms behind major depressive disorder

(MDD) (de Kwaasteniet et al. 2013). De Kwaasterniet and

colleagues confirmed abnormal functional connectivity in

the fronto-lymbic system by utilizing digital tractography

imaging (DTI) and fMRI. A compromised second part of

uncinate fasciculus in MDD seems to be correlated with

increased functional connectivity but also with the severity

of the disease. Kim et al (2013) showed by applying graph

theory to EEG that ‘functional topological architecture of

the resting-state brain network is disrupted in bipolar dis-

order’. That study also revealed impaired neural synchro-

nization at resting state as well as a disruption of functional

connectivity. Both studies confirmed that the disturbance of

white matter tracts is associated with abnormal functioning

of fronto-lymbic system—a key indicator of depression.

Having proven the efficacy of highly sophisticated

methodologies, for the purpose of detection, this study

proposes to investigate simple and low-cost EEG as a

measure of electrical activity in the human brain which

might reflect that deep brain regions’ change on cortex. It is

well described in the literature that a brain is a highly

complex, nonlinear and mostly irregular system (Eke et al.

2002; Goldberger et al. 2002; Stam 2005). There is

increasing recent evidence that the use of non-linear

methods may provide significant advantages in deciphering

the physiological processes underlying EEG signals

(Acharya et al. 2005; Liang et al. 2015; Stokić et al. 2015)

and EEG remains the most accessible method (compared to

others like fMRI which are far more expensive) for sup-

porting decisions in clinical practice. EEG has the potential

to be utilized as a screening method for a variety of psy-

chiatric disorders.

There is a kind of a consensus between researchers that

relying on one nonlinear measure might be misleading

(Burns and Ramesh 2015), and there are also extremes in

published studies with ten or more nonlinear measures

applied (Liang et al. 2015), showing that every one of them

is providing another kind of information about the signal

under study. In our previous work, while testing the

effectiveness of different combinations of nonlinear mea-

sures it was found that Higuchi’s fractal dimension (HFD)

and sample entropy (SampEn) are particularly well mat-

ched in a methodological sense (in press) showing different

sensitivity for frequency content of the signal. SampEn

shows better performance in the lower frequency band, and

HFD in higher frequencies of EEG. Both nonlinear mea-

sures are used to examine the complexity of signal: HFD is

a complexity measure operating directly in time-domain,

while SampEn is regularity statistics showing how pre-

dictable/irregular signal is. We then turned to establishing a

methodology with measures which are computationally

fast and robust to artifacts in the signal, and which could be

clinically applicable. That methodology could be applied at

different points in the diagnostic process to give the clin-

ician additional support for a diagnostic decision. It was

not attempt here to examine the correlation between pre-

vious medical histories of patients, but to show how proper

quantification of their EEG can be used as an independent

biomarker. Therefore, this study tested the use of HFD and

SampEn to discriminate the complexity of the brain’s

neuronal activity in patients diagnosed with depression.

‘Data mining is the extraction of implicit, previously

unknown, and potentially useful information from data’

(Witten and Frank 2005), and machine learning as a part of

that discipline attracted a lot of attention lately in the field

of epileptic seizures detection (Hussain 2018) and classi-

fication (Raghu et al. 2017), methamphetamine use disor-

der (Khajehpour et al. 2019) as well as in cognition (Mora-

Sánchez et al. 2019; Tafreshi et al. 2019). There is a rel-

atively small number of publications dealing with the

application of machine learning (data mining) algorithms
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to depression recognition using EEG. Ahmadlou et al.

(2012) compared two main algorithms for calculating

fractal dimension from EEG. HFD was shown to provide

better discrimination (91.3%) compared to Katz’s Fractal

Dimension (they used Enhanced Probabilistic Networks).

Bachmann et al. (2013) used HFD together with SASI (a

novel spectral measure) as a discriminator. They found an

increased complexity of EEG in MDD. In their recent study

(Bachmann et al. 2018) they also used Linear regression

with HFD as feature with accuracy of 77%. Hosseinifard

et al. (2013) used spectral and three nonlinear measures

and found that classical spectral measures did not prove to

be useful for classification. The aim of their study was to

improve the accuracy of classifiers in the combination with

different nonlinear measures. In addition, it has been found

that Support Vector Machines (SVM) provided the best

classification results compared to other methods such as

Decision Tree (DT), k-Nearest Neighbor (kNN) and Naı̈ve

Bayes (NB) (Bairy et al. 2015). Recently published

detailed mathematical description of interconnection of

HFD and Fourier analysis (classical spectral analysis

applied usually in EEG) components strongly suggest that

the use of Higuchi’s’ Fractal Dimension and Fast Fourier

Transform (FFT) is redundant because fractal dimensions

are weighting functions of Fourier’s amplitudes (Kalauzi

et al. 2012). Complex signals are information-rich. They

are also fractal in its nature for showing multiscalling and

self-similarity. Another reason behind our preference to

utilization of nonlinear measures in analysis of EEG is that

nonlinear (nonstationary and irregular) signals ‘defy com-

prehensive understanding by a classic reductionist

approach’ (Goldberger et al. 2002). Even the simplest

nonlinear signals (originating from complex systems) will

‘foil the criteria of proportionality and superposition

characteristic for linear systems’ (Goldberger et al. 2002;

physionet.org). After performing complexity analyses we

decided to compare seven different classifiers with a dif-

ferent combination of features and with a different number

of principal components (PCs) from Principal Component

Analysis (PCA) (Jolliffe 2002). The aim of the study was to

test the usefulness of employing nonlinear measures of

complexity changes in EEG and machine learning to sep-

arate patients diagnosed with depression from healthy

controls. Our study utilizes seven different methods of

classification (Logistic Regression, Support Vector

Machines both with the linear and polynomial kernel,

Multilayer Perceptron, Decision Tree, Random Forests,

and Naı̈ve Bayes). The aim was to show that with properly

selected nonlinear features and additional PCA processing

every supervised learning method used can obtain high

accuracy. The idea of this study is that utilization of

appropriate nonlinear measures to characterize an EEG

signal is crucial for highly accurate classification; if

features are appropriately generated, any classifier applied

with those features is performing with high accuracy.

Materials and methods

Since the overall goal of the study was to demonstrate the

usefulness of non-linear features for classification of

patients diagnosed with depression based on EEG signals,

Higuchi’s Fractal Dimension (HFD) and Sample Entropy

(SampEn) of EEG time series (series of data points indexed

in time order from raw signal) were calculated. Subse-

quently, we applied supervised machine learning algo-

rithms to assess classification accuracy. To determine the

linear dependence of EEG features, a correlation analysis

was utilized. A PCA was applied to determine the influence

of linear feature extraction on classification accuracy. Also,

PCA is known from the literature for its possibility to

reduce dimensionality of feature set making machine

learning models more sensitive. Various classification

algorithms were examined, ranging from simple and linear

to highly non-linear: Logistic Regression (LR), Support

Vector Machines (SVM) both with the linear and polyno-

mial kernel, Multilayer Perceptron (MP), Decision Tree

(DT), Random Forests (RF) and Naı̈ve Bayes (NB).

The non-linear features (both HFD and SampEn) were

computed using a custom program written in Java. The

classification was performed using Weka software (Weka

v. 3.8, University of Waikato) (Hall et al. 2009). Principal

component analysis was computed using Matlab (Matlab v.

R2015b, Mathworks). Statistical analysis was performed

using SPSS software (IBM SPSS Statistics 20).

Participants

The data used for this research were recorded at the

Institute for Mental Health in Belgrade, Serbia. The sub-

jects were 23 patients diagnosed with depression (13

women and 10 men), 24 to 68 years old (mean 31.53, SD

10.21). All of them were examined by senior clinical

psychiatrist (the diagnosis was made according to the ICD-

10 classification) and all were medicated. As a control we

used the EEG records of 20 age-matched (mean 30.14, SD

8.94) healthy controls (10 males, 10 females) with no

previous history of any neurological or psychiatric disor-

ders, recorded at the Institute for Experimental Phonetic

and Speech Pathology in Belgrade, Serbia. We did that

since healthy people cannot be recorded in psychiatric

institution, according to Institute’s internal rules. Healthy

controls underwent general medical examination and test-

ing with clinical psychologist to confirm their inclusion in

the study. The participants from both groups were all right-

handed, according to the Edinburgh Handedness Inventory
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(Oldfield 1971). All the participants were informed about

the experimental protocol and signed informed consent

forms. The protocol was approved by the Ethics Commit-

tees of the participating institutions (Ethics Committee of

the Institute for Mental Health, October 27th 2015,

Approval number 30/59, and Ethics Committee of the

Scientific Council of Institute for Experimental Phonetics

and Speech Pathology, September 25th 2015, Approval

number 87-EO/15). All procedures were in accordance

with the ethical standards of the institutional and/or

national research committee and with the 1964 Helsinki

declaration and its later amendments or comparable ethical

standards.

Data acquisition

The patients’ EEGs were recorded after a visit to a rec-

ommended psychiatrist. EEG was recorded in the resting

state with standard 10-20 system using NicoletOne Digital

EEG Amplifier (VIAYSYS Healthcare Inc. NeuroCare

Group), sitting upright in the comfortable chair, with

closed eyes and without any stimulus. Both rooms were in

Faraday’s cage by design of building, noise was kept on

both places below 42 dB (measured using Phonometer),

temperature was kept at 22 degrees Celsius, the light is a

dimly daily light, the person was sitting surrounded by

white curtains with some daily light through it. All the

participants (from both groups) were recording between

10am and 12 h (noon). EEGs were obtained from 19

electrodes in a monopolar montage with reference set to

earlobes (Electro-cap International Inc. Eaton, OH USA)

using sampling rate of 1 kHz and electrode resistance of

less than 5 kX. Bandpass was 0.5–70 Hz. For the control

group, the same setup was used (10/20 system for electrode

placement, the same electroconductive gel, resistance,

calibration, etc.), but on the Nihon Kohden apparatus, EEG

1200 K Neurofax with Electrocap (model number 16755)

International, Inc. Previous studies (for a detailed review

see Pivick et al. 1993) compared results for the same

subject on different equipment and concluded that intra-

subject variability is small. We kept all the settings iden-

tical in all measurements.

Every recording lasted 3 min. Subjects were instructed

to reduce any movement. Records of two patients had to be

discarded from further analysis due to low voltage EEG in

one male participant’s case and epileptic seizure very close

in time from the recording of one female participant.

Finally, records from 21 patients diagnosed with depres-

sion and 20 age-matched healthy controls were used for

this study. Artifacts were carefully inspected by two

independent experts. The artefacts were not removed from

the EEG signal. Only artefact free segments of the EEG

trace were analyzed, in order not to distort the signal by

‘‘fusing’’ selected parts (after artefact removal). From

artifact-free traces three epochs for further analysis were

extracted; every epoch was 5 s (5000 samples) long.

Altogether there were three epochs for every person

recorded, resulting in 2337 epochs for further analysis.

Fractal analysis

Fractal dimension (FD) of a signal is a measure of its

complexity and self-similarity in the time domain. FD is a

number in the interval [1, 2]. Generally, higher self-simi-

larity and complexity result in higher FD (Eke et al. 2002).

The fractal dimension of EEG was calculated using

Higuchi’s algorithm (Higuchi 1988) demonstrated to be the

most appropriate for electrophysiological data (Esteller

et al. 2001; Castiglioni 2010). This method works directly

in the time domain, gives a reasonable estimate of the

fractal dimension even in the case of short signal segments

and is computationally fast (since it does not attempt to

reconstruct the strange attractor, like described in Stam

2005). The Higuchi algorithm was computed with the

maximal scale (Higuchi 1988) kmax = 8 shown to perform

the best for this type of signals (Spasić et al. 2005). Fractal

dimensions were calculated for each electrode for the same

duration of signal (the epoch of recorded EEG) for all the

participants, and the calculated values formed ensembles

(sets of variables) for further analysis. For calculating HFD

an in-house written script in Java programming language

was used.

Sample entropy analysis

Another nonlinear measure, Sample Entropy (SampEn)

was computed according to Richman and Moorman

(2000). SampEn estimates signal complexity by comput-

ing the conditional probability that two sequences of a

given length, m, similar for m points, remain similar

within tolerance r at the next data point (when self-mat-

ches are not included). Mathematically, SampEn is the

negative natural logarithm of the conditional probability

that two sequences similar for m points remain similar at

the next point. Thus, SampEn measures the irregularity of

the data (the higher values, the less regular signal) that is

related to signal complexity (Goldberger et al. 2002).

Based on the changes of SampEn it can be concluded in

which direction the changes of the signal went (is it more

or less complex). In accordance with a previous study

(Molina-Picó et al. 2011), a tolerance level of r = 0.15

times the standard deviation of the time series (series of

samples from raw recording EEG) and m = 2 was used. For

calculating SampEn an in-house written script in Java

programming language was used.
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Statistical analysis

HFD resulted in 19 features (the number of electrodes

when recording EEG), and SampEn also resulted in 19

features. All features were merged to get 38 features for

further (supervised) machine learning analysis. To deter-

mine whether the HFD and SampEn feature values sig-

nificantly vary between EEG electrodes and between the

groups (patients vs. control) the MANOVA (SPSS Statis-

tics version 20.0, SPSS Inc, USA) was used, followed by

posthoc Bonferroni tests (for comparison of each of 19

electrode’s HFD and SampEn value between groups-HC

and DP, resulting in 19 comparisons).

Classifiers

This study compared the performance of several classifiers

implemented in Weka software (Hall et al. 2009) with their

default parameter values to discriminate between patients

diagnosed with depression and controls. All classifiers are

applied to normalized features. Normalization was per-

formed by subtracting sample means and dividing by

sample standard deviation such that the inputs of algo-

rithms have zero means and unit standard deviation. To

reduce the dimensionality of the feature set and decorrelate

the features, we utilized PCA (Jolliffe 2002) to obtain

m principal components (PCs) corresponding to the largest

eigenvalues of the sample covariance matrix. We defined

the percentage of the explained variance by first m PCs as

the ratio between sums of variances of m PCs and original

variables.

Naı̈ve Bayes classifier (John and Langley 1995) is a

maximum a posteriori classifier that outputs the class ci
with the highest probability given the observed feature

values. The posterior probability conditioned by the set of

attributes fx1; . . .; xk} (assumed independent) is calculated

using the Bayes’ theorem (Bishop 1995) as the product of

posterior Gaussian probabilities (Witten and Frank 2005).

Logistic regression (Cox 1958) estimates the class

conditional probability using a linear combination of fea-

tures and logistic regression function. The model coeffi-

cients are estimated using the LogitBoost algorithm

(Friedman et al. 2000).

Multi-layer perceptron (MLP) is a generalization of

logistic regression with an additional processing layer.

MLP estimates a class based on thresholding the value of

its output processing unit (Friedman et al. 2000; Haykin

2008). The output unit applies a non-linear transfer func-

tion to a linear combination of the outputs of hidden neu-

rons. Each hidden neuron applies a transfer function to a

linear combination of the inputs. We utilize MLPs with kþ1
2

hidden neurons, back propagation algorithm with learning

rate 0.3 and momentum 0.2 and 500 training epochs to

determine the coefficients (Haykin 2008).

Support vector machines (SVM) classify by partitioning

a feature space by a decision boundary, linear in trans-

formed space, defined by the kernel function, and uniquely

determined by a subset of data—support vectors (Jolliffe

2002). SVMs produce a maximal margin classifier that

maximizes the distance between the decision boundary and

the support vectors. In this study, we utilized linear and

polynomial (quadratic) kernel functions (Jolliffe 2002),

soft-margin classifier with regularization constant C = 1

and a sequential minimal optimization algorithm (Platt

1998). SVMs by design, maximize classifier margin, and

hence, probably, minimize overfitting.

Decision trees (Quinlan 1993) recursively partition

feature partition space in regions corresponding to classes

by choosing a feature that provides the highest information

gain. The partition stops when the minimal number of 2

samples per node of a decision tree is reached. In the

pruning phase, based on the estimation of the classification

error (using a confidence level here set to 0.25) the com-

plexity of the model may be reduced and its generalization

capacity thus improved (Vapnik 1988).

Random forests classifier utilizes an ensemble of

unpruned trees (Breiman 2001). The classification is per-

formed by combining classes predicted by ensemble

members. Unlike C4.5 algorithm, in each node of a tree, a

random subset of the features is considered for partitioning.

This study utilized ensembles with 100 members and

consider int(log2k) ? 1 random features for each split.

Evaluation of classifier’s performance

Classification accuracy was evaluated through a cross-

validation procedure in which the dataset was split into K

subsets of approximately equal size K-1 subsets were used

to fit a classification model and the remaining subset to

evaluate the classifier. This procedure was repeated K

times such that a classifier was evaluated in each subset. In

this study, we used K = 10 (Picard asnd Cook 1984;

Kohavi 1995). The classification accuracy was assessed

through overall accuracy—the percentage of correctly

classified samples—and using the area under the ROC

curve (AUC). The overall accuracy of useful classifiers in

two-class problems ranges from 50 to 100%. The ROC

curve is created by plotting true positive rate (the propor-

tion of samples with depression that are detected as such)

vs. false positive rate (the ratio of the total number of

controls incorrectly detected as with depression and the

total number of controls). AUC ranges from 0.5 (for a

classifier that randomly guesses a class) to 1 (for an ideal

classifier) (Fawcett 2006; Hand and Till 2012).
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In machine learning, model complexity (of the classifier

not of the signal) is defined as ability of a classifier to

distinguish among classes that are separated with multi-

various surfaces. Here, model complexity was measured

using the Vapnik-Chevronenkis (VC) dimension. Burges

(1998) indicates that the models with a small number of

parameters may have larger VC dimension and complexity.

According to statistical learning theory (Vapnik 1988), the

classification accuracy on test data (measured by tenfold

cross-validation method in this study) decreases with a

factor that is directly proportional to the VC dimension of

the model and inversely proportional with the size of the

training data set. Among the classification method con-

sidered in this paper, multilayer perceptron and decision

tree have VC dimension that increases with the number of

utilized features for classification.

Results

Fractal and SampEn analysis

Results showed that HFD for patients diagnosed with

depression ranged from 1.0812 to 1.1553 and for controls

from 1.0194 to 1.0198. SampEn of patients diagnosed with

depression ranged from 0.3999 to 0.4160 and in the control

group from 0.1417 to 0.1591. The first level of analysis was

testing the existence of differences in HFD values and

SampEn values between Patients (P) and Control

(C) groups. MANOVA has utilized with factors Electrode

(19 electrodes: Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2,

F7, F8, T3, T4, T5, T6, Fz, Cz, Pz) and Group (P and C).

Results of HFD analysis (Fig. 1a) showed a statistically

significant effect of group: F(1, 570) = 159. 965,

p\ 0.001, as well as interaction of group and electrode:

F(18,570) = 1.677, p = 0.039 on values of calculated HFD.

There is no statistically significant difference between

electrodes inside the P and C group. Our results show

higher values of HFD in P group compared to C group. A

significant difference in HFD values exists between P and

C group for every electrode (post hoc Bonferroni correc-

tion, p\ 0.05), except for electrodes P3 and F4.

Results of SampEn analysis (Fig. 1b) showed a statis-

tically significant effect of group:

F(1, 570) = b625,914, p\ 0.001 on SampEn values.

Results showed higher values of SampEn of EEG from P

group when compared to C group. There were no statisti-

cally significant differences among electrodes inside the P

and C group when tested independently (post hoc Bon-

ferroni correction, p\ 0.05). A significant difference

between P and C group in SampEn values exists for every

electrode (post hoc Bonferroni correction, p B 0.001).

Subjects from P group have higher values of SampEn

calculated from EEG recorded on all the electrodes when

compared to C group values.

Correlation of HFD and SampEn values

Figure 2 contains calculated Pearson’s correlation coeffi-

cients (Devore 2012) between the features. Figure 2a

shows correlation coefficients between HFD values calcu-

lated for 19 electrodes. The minimal and the maximal

correlation coefficient values were 0.77 and 0.99, respec-

tively. Figure 2b displays the correlation coefficient values

between SampEn features. The minimal and maximal

values of the correlation were respectively 0.86 and 0.99.

Figure 2c depicts the correlation between pairs of SampEn

and HFD features; the minimal and maximal correlation

coefficients were 0.44 and 0.79. All the estimated values of

correlation coefficients were significantly different from 0

(p\ 0.005).

When two feature sets are less correlated, but each of

them separately provides good classification accuracy, then

the addition of one feature set to another in principle could

results in a higher classification accuracy than when the

feature sets are used separately. In such a case, we could

benefit from (relative) orthogonality of two informative

feature sets.

Classification

Table 1 shows classification results with different classi-

fiers: multilayer perceptron, logistic regression, Support

Vector Machines (SVM) with the linear and polynomial

kernel (p = 2), Decision Tree, Random Forest, and Naı̈ve

Bayes. Accuracy and area under the ROC curve (AUC) are

shown for three different sets of features: HFD, SampEn,

and their combination. Also, the average accuracies for all

classifiers are shown on each feature set and for each

method.

Figure 3 shows the percentage of explained variance of

a set of HFD and SampEn features as a function of the

number of principal components. Figure 4 shows first two

normalized principal components and Fig. 5 shows abso-

lute values of loads used to calculate first ten principal

components from HF and SampEn features. Table 2 shows

classification results of different classifiers that use various

numbers of principal components. The principal compo-

nents were computed on a dataset containing HFD and

SampEn features and were normalized to have zero mean

and unit standard deviation. The variance of the features

explained by the corresponding principal components is

also shown.

Figure 3 and Table 2 indicate that the large portion of

the variance of combined HFD and SampEn features can

be explained by a small number (Pokrajac et al. 2014) of
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Fig. 1 Differences between Patients (P) and Control (C) in HFD (a) and SampEn (b) values (all electrodes averaged). For both HFD and SampEn

mean values ? standard error are presented. *** (p\ 0.001), HFD (Higuchi’s fractal dimension), SampEn (Sample Entropy)

Fig. 2 Pearson’s correlation coefficients computed between pairs of

features. The value of correlation coefficient is color-coded (the scales

at each figure are different). The labels on x and y axis denote the

electrode corresponding to a feature; a Correlation coefficients

between pairs of HFD features; b Correlation coefficients between

pairs of SampEn features; c Correlation coefficients between SampEn

(on x axis) and HFD (on y axis) feature

Table 1 Classification results for different classifiers and three different sets of features

Classifier Features

HFD SampEn SampEn?HFD Average accuracy per

classifier
Accuracy

(%)

AUC Accuracy

(%)

AUC Accuracy

(%)

AUC

Multilayer perceptron 100 0.998 97.56 0.995 95.12 0.995 97.56

Logistic regression 92.68 0.960 92.68 0.995 97.56 0.998 94.31

SVM with linear kernel 85.37 0.857 95.12 0.952 95.12 0.952 91.87

SVM with polynomial (quadratic) kernel

(p = 2)

80.49 0.810 95.12 0.952 95.12 0.954 90.24

Decision tree 92.68 0.904 97.56 0.975 95.12 0.952 95.12

Random forest 92.68 0.970 95.12 0.988 92.68 0.987 93.49

Naı̈ve Bayes 85.37 0.945 92.68 0.990 92.68 0.983 90.24

Average accuracy per feature set 89.90 95.12 94.77

HFD Higuchi’s fractal dimension, SampEn sample entropy, SVM support vector machines, AUC area under the curve; related to receiver

operating characteristic—ROC curves
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principal components. e.g., the first principal component

explains 87.53% of the variance; first three components

explain more than 95% and the first 10 components close to

99% of the variance.

Using only the first principal component, it is possible to

achieve a classification accuracy of up to 95.12%

(Table 2). The best performance was achieved using the

Naı̈ve Bayes method (in this case, when only one feature is

utilized, the assumption of feature independence is auto-

matically satisfied). The classification accuracy generally

increases with the number of principal components used as

classifiers’ inputs (the average accuracy of all classifiers is

88.15% with 1 and 93.73% with 10 principal components

used).

Discussion

The major finding of this study is that the extraction of non-

linear features linked to the complexity of EEG signals can

lead to high and potentially useful separation between

signals taken from control subjects and patients diagnosed

with depression. Specifically, this study demonstrated that

Higuchi’s Fractal Dimension (HFD) and Sample Entropy

(SampEn) could be used as suitable features for various

machine learning classification techniques. In other words,

proper choice of a non-linear feature extraction method

(HFD/SampEn) simplifies an important classification

problem and makes it tractable. To the best of our

knowledge, this study is the first to apply this specific

feature extraction method on this particular classification

task.

When compared to the present literature our research

has substantial originality, including: combined use of

HFD and SampEn on broadband EEG signal (with minimal

pre-processing); a variety of classification methods applied

and demonstrated robustness on choice of classification

method when non-linear features are utilized and applica-

tion of principal component analysis (PCA) and demon-

stration of their power for feature extraction. The rest of

this Discussion concentrates on these aspects of our work.

Fig. 3 Percentage of explained variance vs. number of principal

components of HFD and SampEn features. For each number of

principal components m we calculated the percentage of explained

variance. When the number of principal components reaches 20, the

percentage of explained variance saturates to a value close to 100%

Fig. 4 First two normalized principal components (PC) for samples

considered in this study. The principal components are computed on a

feature set containing HFD and SampEn features (the total of 38

features). Each symbol denotes one sample in the transformed space:

red squares denote patients, while green diamonds correspond to

controls. The vertical line denotes a separation line corresponding to a

constant value of the first principal component (PC1)

Fig. 5 Absolute values of principal components loads for first 10

principal components. Each row contains indicates the coefficients

multiplying corresponding non-linear feature in order to generate a

principal component
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In the present literature, only a few studies applied an

approach similar to ours (Bachmann et al. 2018; Ahmadlou

et al. 2012; Hosseinifard et al 2013; Acharya et al. 2015).

Fractal dimension (Ahmadlou et al. 2012) and both linear

and nonlinear measures of EEG (Hosseinifard et al. 2013)

were applied to the classification of patients diagnosed with

depression and healthy controls. It was found that nonlinear

features gave better results, when compared to spectral

ones, in the classification of patients diagnosed with

depression (Hosseinifard et al. 2013). Note that the use of

reductionistic approaches, such as Fourier’s analysis, was

found inferior (Rabinovich 2006; Klonowski 2007). The

rationale here is a part of Complexity theory which led to

consensus among researchers dealing with nonlinear anal-

ysis; key properties of linear systems are proportionality

and superposition (Goldberger et al. 2002). Nonlinear

systems defy comprehensive understanding by a classic

reductionist approach (like Fourier’s analysis), since they

do not obey proportionality and superposition. Since

human brain is one of the most complex systems we know

of, analyzing the signal originating from it (EEG) by uti-

lization of reductionistic method could be misleading.

In line with previous findings (Bachmann et al. 2013;

Ahmadlou et al. 2012) about measures used for charac-

terization of EEG, in our study HFD detected increased

complexity of EEG recorded from patients diagnosed with

depression in comparison to healthy controls. This is also

in agreement with a study by Hosseinifard et al. (2013)

who demonstrated that non-linear features, such as HFD,

correlation dimension, and Lyapunov coefficient are more

discriminative than linear features. The main difference

with our study is that broad band signal was analyzed,

while other studies divided the signal on standard spectral

bands. Ahmadlou et al. (2012) reported classification

accuracy of 91.3% when using two differently calculated

fractal dimension algorithms (Higuchi and Katz) as fea-

tures and enhanced probabilistic neural networks for clas-

sification. Our results are in qualitative agreement with this

finding. In addition to confirming previous results, this

study not only showed that SampEn can also effectively

discriminates these two categories of EEG signals, but also

it could have performance superior to HFD, see Table 1.

A variety of classification methods have been used in

domains similar to ours: support vector machines (SVM),

linear regression (LR), linear discriminant analysis (LDA),

k-nearest neighbors (kNN), enhanced probabilistic neural

networks (Ahmadlou et al. 2012; Hosseinifard et al. 2013;

Acharya et al. 2015). The choice of a specific classification

method is frequently a matter of bias of researchers

(Pokrajac et al. 2014). Moreover, in absence of standard-

ized data repositories, that exist in other domains (Lichman

2013) and a strict statistical test for comparison of, fre-

quently non-linear and non-parametric, classifiers (Efron

and Tibshirani 1997) direct comparison of accuracies

among different methods and results from different publi-

cations is challenging.

Instead of attempting to compare classification of clas-

sifiers, our goal was to demonstrate that the usage of non-

linear features can result in high classification accuracy

regardless of a classifier choice. Observe that a similar

methodological approach to validate the usefulness of

feature extraction was taken in Pokrajac et al. (2014) in

another domain. For this reason, our study did not try to

optimize classifier parameters, but utilized their default

values (similar as in Unnikrishnan et al. 2016). The

reported average accuracy of all the methods, as an indi-

cator of the quality and usability of the features, was

95.12% on SampEn features (and 89.90% on HFD), see

Table 2 Classification results for different classifiers and different number of principal components of the features from SampEn and HFD sets

Number of principal components 1 2 3 10

Explained variance 87.53% 94.25% 95.54% 98.86%

Classifier Accuracy

(%)

AUC Accuracy

(%)

AUC Accuracy

(%)

AUC Accuracy

(%)

AUC

Multilayer perceptron 92.68 0.983 92.68 0.943 92.68 0.950 95.12 0.994

Logistic regression 90.24 0.981 90.24 0.950 90.24 0.945 95.12 0.929

SVM with linear kernel 85.37 0.857 82.92 0.833 85.37 0.857 90.24 0.905

SVM with polynomial (quadratic) kernel

(p = 2)

73.17 0.738 68.29 0.690 85.37 0.857 95.12 0.952

Decision tree 92.68 0.894 92.68 0.894 90.24 0.933 90.24 0.933

Random forest 87.80 0.981 87.80 0.981 95.12 0.987 95.12 0.996

Naı̈ve Bayes 95.12 0.983 97.56 0.981 95.12 0.988 95.12 0.988

Average accuracy 88.15 87.45 90.59 93.73

SVM support vector machines, AUC area under the curve; related to receiver operating characteristic—ROC curves
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Table 1. To estimate accuracy of each particular method, a

standard tenfold cross-validation technique (Devijver and

Kittler 1982) was utilized. Note that it resulted in qualita-

tively similar results as a bootstrapping technique applied

by Ahmadlou et al. (2012).

Note that this study examined classification methods

with a range of underlying paradigms and complexity; the

methods belong to statistics and supervised machine

learning. Even the simplest methods, such as logistic

regression (widely accepted in the medical community

although not as a classification method in the strict sense)

provided excellent classification accuracy. In fact, high

classification accuracy of methods such as SVM with linear

kernel indicate that, after a non-linear transformation, the

data may become close to linearly separable; we are

however well-aware that this may be specific for a partic-

ular dataset and should be tested on further data. Consistent

with known properties of the Naı̈ve Bayes classifier (Wit-

ten and Frank 2005; Mitchell 1997), it had good accuracy

(e.g., 92.68%, AUC of 0.983 when applied on SampEn and

HFD features combined) albeit the underlying assumption

about feature independence is not satisfied. Presumably,

due to the high correlation of features (see Fig. 2), there

was no benefit of using random forests in comparison to

standard decision tree classifiers.

Our results indicate that the use of SampEn features may

result in classification results comparable to or better than

HFD. Five out of seven examined classifiers provided

better accuracy while six provided a higher area under

ROC curve when applied on SampEn features. The accu-

racy of a linear model (SVM with the linear kernel)

increased by almost 10% when applied to SampEn fea-

tures. Similarly, the accuracy of SVM with the polynomial

kernel increased by almost 15%. The relatively low accu-

racy of polynomial SVMs is in agreement with previously

reported results (Hosseinifard et al. 2013).

To the best of our knowledge, there are no previous

attempts to utilize a combination of HFD and SampEn

features. In our study, the use of an augmented feature set

consisting of HFD features and SampEn features did not

lead to further improvement of accuracy for the majority of

attempted classifiers (Table 1). Note that HFD features are

less correlated to SampEn features, then HFD features or

SampEn features are correlated among themselves.

Namely, the maximal correlation between one HFD and a

SampEn feature is 0.79. In contrast, the maximal correla-

tion between two SampEn features or between two HFD

features is larger than 0.98. The combination of two rela-

tively uncorrelated features, such as HFD features and

SampEn features, provides an opportunity for training of

more expressive classification models that could result in

better classification accuracy. This would fully exploit

orthogonality of features when using more complex

classification models that would generalize better if trained

on larger datasets (Kecman 2001). However, the prereq-

uisite for achieving such increased accuracy is large

enough size of the data set, which may be produced in

follow-up studies. If the available data set is not suffi-

ciently large, some machine learning algorithms suffer

from potential of overfitting— when a learning algorithm,

in attempts to minimize error on a training set, results in a

model that has poor generalization abilities (Vapnik 1988).

Our results suggest this may be a case with random forests

and multilayer perceptron, where the accuracy achieved

with the combined (HFD?SampEn) feature set is smaller

than using HFD or SampEn separately (Table 2). In con-

trast, machine learning models that have small or con-

trolled complexity [e.g., expressed through VC dimension

(Vapnik 1988)], such as support vector machines, Naı̈ve

Bayes or logistic regression, did not express this behavior;

in this model, the use of the augmented data set led to the

same or increased accuracy.

Principal component analysis, a feature extraction

method where a linear transformation on the original fea-

ture vector is applied to reduce its dimensionality (Jolliffe

2002) is applied in this paper in order to demonstrate that

accurate classification is possible using a small number of

principal components. Note this technique is typically

utilized to decorrelate features, such as HFD and SampEn

in our case (see Fig. 2).

Using only the first principal component, it is possible to

achieve a classification accuracy of up to 95.12%, using the

Naı̈ve Bayes method (Table 2). The classification accuracy

generally increases with the number of principal compo-

nents used as classifiers’ inputs (the average accuracy of all

classifiers is 88.15% with 1 and 93.73% with 10 principal

components used). Since the data are close to linearly

separable, SVM with linear kernel resulted in relatively

high accuracy (85.37%) when only one PC is used. The

accuracy further increased to 90.24% with 10 PCs. This

can be in part explained by Cover’s theorem (Witten and

Frank 2005) that data in higher dimensional spaces tend to

be more linearly separable. The random forest method

benefited from a larger number of utilized principal com-

ponents since the method is based on randomly choosing

one from a set of available features to split a decision tree

node (when the number of PCs used is small, the set of

available features is small).

The determination of the minimal number of PCs

depends on the desired classification accuracy and is gen-

erally problem dependent (Pokrajac et al. 2014; Kecman

2001). In this specific case, if a minimal AUC is set to 0.85

(corresponding to diagnostic tests considered good) (the

source that was used to generate http://gim.unmc.edu/

dxtests/Default.htm), three PCs are sufficient, according to

Table 2.
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Our results suggest that classifiers that could be imple-

mented on a simple and inexpensive hardware and

embedded to existing EEG devices. This itself may ulti-

mately lead to potential everyday clinical usage of our

methodology for providing computer-aided diagnostics of

depression. The technology could be of interest, e.g., when

burnout or extreme amount of stress, using the current

diagnostic methods, are mistaken as symptoms of depres-

sion. Other researchers are testing whether similar

methodology can help identify a patient as a good

responder to particular treatment be it medication or tran-

scranial direct electrical stimulation (Shahaf et al. 2017;

Al-Kayasi et al. 2017).

Note that the values PCA loads (used to weight non-

linear features in order to compute principal components),

Fig. 4, indicate that all non-linear features contribute to

calculated principal components. In other words, the use of

PCA implies that the information is not contained in a

signal from a particular electrode, but distributed through

multiple electrodes. Therefore, the use of multiple elec-

trode signals can contribute to better distinction between

controls and patients diagnosed with depression. This is in

agreement of previous fMRI and DTI findings (de

Kwaasteniet et al. 2013). Namely, in patients diagnosed

with depression, a decreased functional connectivity within

fronto-limbic network and anatomical difference in second

part of uncinate fasciculus—deep white matter tract con-

necting prefrontal cortices with limbic system is observed.

Our hypothesis was that such dysfunction might result in

compensation which might be detected on surface (cortex).

The brain compensation in turns translates to an alleviated

excitability on cortex, which can be observed on signals

from multiple EEG electrodes. Note that in available lit-

erature, the number of utilized electrodes is smaller than in

our study. Ahmadlou et al. (2012) used seven electrodes

(prefrontal), while Bachmann et al. (2013) recommended

two electrodes or one electrode (Bachmann et al. 2018).

Finally, it should be emphasized that an extension of the

method on larger data sets is needed prior to making a final

conclusion about class separability and the potential

applicability of the classification techniques for diagnostic

purposes.

Conclusion

This study demonstrated that Higuchi’s Fractal Dimension

and Sample Entropy are capable of distinguishing between

participants diagnosed with depression and healthy con-

trols’ EEG. If a feature extraction method results in good

classification accuracy regardless of applied machine

learning technique, this provides the evidence that the

feature extraction method is useful. These results

encourage further investigation with larger sample sizes

towards potential diagnostic application in clinical medi-

cine and psychiatry.
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