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Abstract
Investigating human brain activity during expressing emotional states provides deep insight into complex cognitive

functions and neurological correlations inside the brain. To be able to resemble the brain function in the best manner, a

complex and natural stimulus should be applied as well, the method used for data analysis should have fewer assumptions,

simplifications, and parameter adjustment. In this study, we examined a functional magnetic resonance imaging dataset

obtained during an emotional audio-movie stimulus associated with human life. We used Jackknife Correlation (JC)

method to derive a representation of time-varying functional connectivity. We applied different binary measures and

thoroughly investigated two weighted measures to study different properties of binary and weighted temporal networks.

Using this approach, we indicated different aspects of human brain function during expressing different emotions. The

findings of global and nodal measures could demonstrate a significant difference between emotions and significant regions

in each emotion, respectively. Also, the temporal centrality properties of nodes were different in emotional states. Ulti-

mately, we showed that the resulting measures of temporal snapshots created by JC method can distinguish between

different emotions.

Keywords Functional magnetic resonance imaging � Time-varying functional connectivity � Jackknife Correlation �
Temporal network theory � Emotions

Introduction

In cognitive neuroscience, there is an increasing trend in

using data with highly complicated natural stimuli, such as

video, audio-movie, narrative stories, and music, for

increasing the credibility of the neuroimaging studies and

creating a new kind of research regarding the emotions and

complex cognitive functions (Alluri et al. 2012; Brennan

et al. 2010; Emerson et al. 2015; Glerean et al. 2012;

Nguyen et al. 2016). In daily conversations, the word

‘‘emotion’’ refers to various conscious emotions such as

happiness, anger, fear, hatred and so on (Purves et al.

2017). Emotion is a complex set of regulative and cogni-

tive functions that are defined with related changes to

physiology and behavior, accompanying emotions that

enable humans and other creatures to respond to biological

stimuli in a more flexible manner (Purves et al. 2017).

Hence, considering the fact that different emotional states

lead to behavioral, neurophysiological and mental changes

and sometimes may affect other people, exploring and

studying in this field, becomes important. Chapter 10 of

‘‘Principles of Cognitive Neuroscience’’ (Purves et al.

2012) has discussed the theories and researches regarding

the emotions in detail. In order to study the regions of the

brain that are engaged in emotions, based on the latter
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meta-analytical studies that have gathered data from hun-

dreds of research articles, it was concluded that the

engagement of special structures such as Amygdala or

Insula depends on the task, the expressed emotions, and

other factors (Purves et al. 2012). Therefore, endeavors for

recognizing the neurological correlations in emotion cate-

gories are continuing today (Purves et al. 2012).

Studying the regions involved in basic emotions (such as

anger, fear, happiness, love, and sadness) is important for

understanding the cognitive functions of the brain. The

brain function during expressing emotions has been

investigated in several functional Magnetic Resonance

Imaging (fMRI) and Electroencephalography (EEG) stud-

ies (Fulwiler et al. 2012; Kotz et al. 2012; Dasdemir et al.

2017; Mitterschiffthaler et al. 2007; Brattico et al. 2011;

Koelsch et al. 2013; Park et al. 2010; Pohl et al. 2013).

Dasdemir et al. (2017) constructed an emotional EEG

database using audio, video, and audio?video stimuli, and

studied interactions between brain regions in positive (such

as happiness), negative (such as sadness) and neutral

emotions. They found that both left and right frontal

regions involve in emotion processing. Also, their results

demonstrated significant differences among emotions in

functional connections between regions of left orbitofrontal

(AF3) and left occipital lobe (O1), left posterior (P7) and

left temporal (T7), P7 and right posterior (P8), right tem-

poral (T8) and right inferior frontal (F8), right mid-frontal

(F4) and F8, left mid-frontal (F3) and right orbitofrontal

(AF4), O1 and AF4, O1 and right mid-frontal (F4), O1 and

right frontocentral (FC6), and O1 and T8. In an fMRI

study, Brattico et al. (2011) investigated the happy and sad

emotions in music with and without lyrics. Their findings

represented that the left thalamus and the right caudate are

activated in sad versus happy music. Significant differences

revealed in the left-hemispheric secondary and associative

auditory cortices, including the insula in happy versus sad

music. Also, they studied the effects of lyrics on sad versus

happy music. Their results indicated that the sad music

produced larger activations in the bilateral inferior frontal

gyrus, the left transverse, middle and superior temporal

gyri, the right superior temporal gyrus, the right inferior

parietal lobule, and the bilateral insula.

As the external events lead to emotional reactions,

perceiving internal physiological states is the main core of

emotional experience. Nguyen et al. (2016) combined the

high-resolution fMRI with simultaneous physiological

recording, to study the neural mechanism of interoceptive

integration during listening to an emotional audio-movie

(Hanke et al. 2014). They used the inter-subject correlation

strategy to evaluate the consistency of interoceptive sig-

nals, and dynamic causal modeling for deriving a network

from causal relations between regions. They demonstrated

that Anterior Insula (AI), especially in emotional moments

during the audio stream, is used as an integration hub of

interoceptive processing and in fact, the interoceptive

states shown in Posterior Insula (PI) are combined with

exteroceptive representations by AI, in order to highlight

emotional moments.

Farahani et al. (2019) used the regression Dynamic

Causal Modeling (rDCM) method to estimate the effective

connectivity in a mixed model. Their purpose was to

examine emotions and differences between emotional

states using inference of effective connectivity. For this

purpose, they used fMRI data (Hanke et al. 2014) with a

complex natural stimulation. Finally, their results indicated

that the distinction in the effective connections between

some emotional states had more intense.

Analysis based on network theory is a common method

for analyzing brain data. Studying the structure and func-

tion of the brain as a network gives a deeper insight into

brain activity in different states. Particularly, in the resting-

state fMRI dataset, nodes of brain graph may be voxels,

spatial independent components, or regions of interest

(ROIs) divided from the brain Atlas and, edges of the brain

graph may be defined based on the cross-correlation

between the time series of the nodes. Temporal network

theory is a field of network theory and, by adding more

information, results in putting aside assumptions and sim-

plifications of the network theory and hence, increases the

correspondence between the graph and the real state of the

brain (Thompson et al. 2017).

In recent years, evaluating time-varying connectivity

(TVC) in fMRI data has turned into a popular approach for

studying the temporal dynamics of a large-scale brain

network (Allen et al. 2014; Kiviniemi et al. 2011; Hutch-

ison et al. 2013; Hindriks et al. 2016; Thompson and

Fransson 2015a, 2016a; Shine et al. 2015). TVC offers a

different kind of representation in comparison with func-

tional connectivity. It derives an estimate of fluctuations of

connectivity that occur through time. There are many

methods for deriving TVC. Each of these methods can

create new insights into cognitive functions of the brain.

These methods may be categorized based on correlation,

clustering, adjacent time-points, and similar spatial con-

figurations. Thompson et al. (2017) for the first time pre-

cisely introduced temporal network theory and its metrics

in network neuroscience and showed the ability of this

method for studying the dynamic function of the brain, by

analyzing a resting-state fMRI dataset in conditions of

open-eyes and closed-eyes (in two different sessions). They

introduced the Spatial Distance (SD) method with the

approach of the weighted Pearson correlation to create

temporal snapshots and represented that this method can

calculate unified connectivity estimations for each time-

point.
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In our previous study (Ghahari et al. 2019), for the first

time, we investigated the distinction between different

emotional states during applying a long-term complex

natural stimulus using temporal network theory. We used

the SD method for deriving TVC in the fMRI data acquired

during applying an emotional auditory stimulation (Hanke

et al. 2014) and applied some binary temporal network

measures to investigate the distinction between emotional

states. Finally, we found that this analytic approach can

represent that the pattern of the brain network is different

while expressing different emotions and also varies through

time.

The Jackknife Correlation (JC) method was introduced

as a method for deriving TVC, for the first time by

Thompson et al. (2018). They compared this method with

four other methods (sliding window, tapered sliding win-

dow, SD, and temporal derivative) by using four simulation

data. Different simulations were carried out to create sig-

nals similar to the fMRI BOLD signal. Finally, they

showed that the JC and SD methods have better perfor-

mance than the three other methods for deriving TVC

(Thompson et al. 2018). The SD and JC methods were

defined based on different assumptions, however, these

methods have a very strong relationship with each other

(Thompson et al. 2018). Both JC and SD methods obtain a

unique connectivity estimate for each time-point.

The JC method is a new approach to derive TVC from

fMRI data and create the temporal network of the brain. So

far, among the studies in the field of temporal network

theory in fMRI data, most of them have used binary

measures.

In this study, the analysis was performed on the fMRI

dataset (Hanke et al. 2014) obtained while applying a

complex natural stimulus, in which the participants listened

to a certain type of stimulation in the form of an audio-

movie, which is associated with emotions similar to created

emotions in everyday life. By analyzing the data acquired

during applying a long-term complex naturalistic stimulus,

it is highly possible to extract brain responses which are a

representation of brain dynamics and states in natural

events (Hanke et al. 2014).

In this research, we considered JC method for deriving a

representation of time-varying functional brain connectiv-

ity. Then we quantified the connections using temporal

network theory. Our aim was to use a method for estima-

tion of TVC that increases temporal sensitivity as much as

possible and does not need for setting different parameters.

In order to obtain different properties of the temporal

network, we calculated temporal degree centrality (DT ),

temporal closeness centrality (CT ), fluctuability (F),

volatility (V), temporal efficiency (E), and reachability

latency (R) and thoroughly investigated weighted temporal

degree centrality (Dw;T ) and weighted volatility (Vw) within

network neuroscience. The distinction between different

emotions was studied using the above-mentioned approach.

This study investigates the distinction between regions,

time-varying functional brain connections and different

aspects of the brain function during expressing different

emotions.

Finally, we could distinguish different emotions using

the JC method and temporal network measures. It shows

that the brain network pattern changes during expressing

different emotions.

Materials and methods

fMRI data

We used the fMRI dataset that is available at www.study

forrest.org. This dataset was downloaded from http://psy

data.ovgu.de/studyforrest/phase1/. The fMRI data were

recorded from 20 right-handed healthy participants (8

females and 12 males, average age 26.6) during long-term

stimulation by ‘‘Forrest Gump’’ audio-movie (Hanke et al.

2014). To minimize the difference between the original

audio-visual movie and audio movie, a narrator describes

the movie story, which more describes the visual scenes

and facial expressions and does not interfere with the story

process (Hanke et al. 2014). The trial was carried out in

two different sessions. The movie was divided into 8 audio

segments of 15 min each and the participants listened to

four segments in each session respectively (Hanke et al.

2014). Functional images were obtained using a 32 channel

head coil on a whole-body 7-Tesla Siemens MAGNETOM

scanner with TR = 2 s, TE = 22 ms, echo spacing =

0.78 ms, BW = 1488 Hz/Px, FoV = 224 9 224 mm, 36

axial slices and 1.4 mm isotropic voxels. fMRI data were

acquired with a high spatial resolution of 2.75 mm3. A total

of 3599 volumes were recorded for each participant (Hanke

et al. 2014).

Preprocessing

In this study, we used preprocessed BOLD data

(bold_dico_dico7Tad2grpbold7Tad_nl). The preprocessing

pipeline is comprised of: Correcting distortion and motion,

registering the images anatomically through non-linear

warping transformation to BOLD group template image,

smoothing the images spatially using Gaussian kernel with

FWHM 4 mm and removing the baseline signal drifts and

well-known cardiorespiratory artefacts in lower frequency

range by applying high-pass filter with cut-off frequency of

0.0083 Hz (Hanke et al. 2014). The data of two participants
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were excluded from analysis (data of 4th participant due to

the problem in the reconstruction of image and motion

caused by coughing and data of 10th participant due to the

invalid correction of distortion).

Extracting time series of ROIs

Considering our aims in this study, most of the ROIs were

selected from visual and auditory cortices and regions

involved in emotions, which comprise forty-four regions of

Harvard-Oxford (HO) Atlas (Evans et al. 2012). Since

many subcortical regions are necessary for emotional

processing, our focus was on these structures and we

reduced the number of cortical regions by combining the

left and right of each cortical region. Extracted ROIs from

HO Atlas are shown in Table 6 in ‘‘Appendix’’.

In order to obtain the time series of ROIs, first, we

extracted the mask of ROIs from HO Atlas by using FSL

software (https://fsl.fmrib.ox.ac.uk). Then we used SPM12

software (https://www.fil.ion.ucl.ac.uk/spm/software/

spm12) to make extracted masks in identical sizes with

data. Finally, we used the averaging method, which was

done in MATLAB software with MarsBaR toolbox (http://

marsbar.sourceforge.net), to extract ROIs’ time series.

Our aim was to separately study each emotion. Hence,

considering the labeling of each second of the movie (to-

tally for all the characters), continuous volumes of BOLD

data were extracted, in which only the label of one emotion

was present. Extracted time series of five emotions were

analyzed. These five emotions included states of happiness,

sadness, anger, fear, and love. The number of time-points

and the length of each emotion are shown in Table 1.

Creating temporal snapshots

In order to create temporal snapshots for investigating the

dynamic function of the brain, we applied the JC approach

to the time series of each emotion (in each subject).

JC method is a specific version of the sliding window

method. This method uses all time-points except t to esti-

mate correlation at time-point t, which makes it possible to

obtain an inverse approximation of correlation for time-

point t. In order to correct this inversion, the correlation

value calculated at the time-point t is multiplied by - 1.

Finally, at each time-point, we have a unique correlation.

This approach is far better than the sliding window, which

uses less data (depending on window size) to calculate

correlation in a time-point, which makes it possible to have

a lower temporal sensitivity and the results with lower

accuracy (Thompson et al. 2018).

In this research, we used the Pearson correlation coef-

ficient in the JC method to estimate connectivity at time-

point t. Equation (1) (Thompson et al. 2018) computes

Jackknife Correlation between two signals x and y at time-

point t:

JCt ¼ �
PT

i xi � �xtð Þ yi � �ytð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

i xi � �xtð Þ2
PT

i yi � �ytð Þ2
q

0

B
@

1

C
A; i 6¼ t ð1Þ

where T is the number of time-points. �xt and �yt are the

expected values, with the exception of the data at time-

point t (Thompson et al. 2018):

�xt ¼
1

T � 1

XT

i

xi; i 6¼ t

�yt ¼
1

T � 1

XT

i

yi; i 6¼ t

ð2Þ

As mentioned in the Introduction section, in a recent

simulation study, the five TVC estimation methods were

examined and it was shown that the JC method has superior

performance at tracking fluctuations in co-variance over

time (Thompson et al. 2018).

After obtaining the connectivity time series using TVC

derivation, they must be post-processed so that we trust in

the results of temporal network measures in order to attain

better estimations. First, in order to stabilize the variance of

connectivity time series, we applied Fisher transformation

and then Box-Cox (BC) transformation (for more details

please refer to Thompson and Fransson 2016b). For BC

transformation, the range of k parameter in connectivity

time series was considered between - 40 and 40 with 0.1

increase and the optimum k was estimated using the

maximum likelihood method. Then, each connectivity time

series was standardized by subtracting the mean and

dividing by the standard deviation (i.e. connectivity time

series were converted into Z-values). The standardized JC

method is not biased by the underlying static functional

Table 1 Details of emotions’

time series
Emotional state Time-points Length (s) Start–stop (in 3599 time-points)

Fear 34 68 1081–1114

Happiness 63 126 2419–2481

Love 42 84 3168–3209

Anger 64 128 1115–1178

Sadness 104 208 3369–3472
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connectivity (Fransson et al. 2018). So, this issue did not

affect the results of investigating the distinction between

emotions. In the end, the variance-based thresholding

method was used (Thompson and Fransson 2015b).

Weighted temporal snapshots were created by setting the

edges with less than two standard deviations to zero, in

each connectivity time series. In order to create binary

temporal snapshots, for each connectivity time series, we

set the edges with more than two standard deviations to 1

and otherwise to 0.

For instance, Fig. 1a shows the binary temporal network

of the 15th subject in fear. In Fig. 1b, we illustrated the

strength of connections respectively in time-points of 1, 2,

3, and 34.

Applying temporal network measures

When temporal snapshots were obtained, we used two

nodal measures and four global measures to quantify

different features of the binary temporal network, which

are respectively stated in Table 7 in ‘‘Appendix’’ (for

more explanation regarding temporal network theory and

its binary measures, please refer to Thompson et al.

2017).

In order to study the weighted temporal network, we

thoroughly investigated a weighted nodal measure and a

weighted global measure which are both explained below.

As it is aforementioned, after creating weighted and

binary undirected temporal snapshots, we applied the

measures to represent different aspects of the human brain

function while expressing different emotions.

In order to calculate the shortest temporal paths, since

the temporal resolution of the dataset used is 2 s, we

considered the number of edges that can be moved in each

time-point as the total number of existing edges in each

temporal snapshot. Reachability latency measure was cal-

culated by setting the value of r to 1 (i.e. all the nodes must

be reached). Since the number of time-points in time series

of five emotions was not equal, for between-group statis-

tical analysis, we had to normalize the obtained measures.

Most measures are normalized depending on their defini-

tion, therefore normalization was done only for three

measures of temporal degree centrality, weighted temporal

degree centrality, and fluctuability.

Weighted temporal degree centrality

The effect of one node on a weighted temporal network is

the sum of edges’ weight associated with that node and

their sum through time. Weighted temporal degree cen-

trality for an ith node is calculated as:

D
w;T
i ¼

XN

j¼1

XT

t¼1

A
w;t
i;j ð3Þ

where T is the number of time-points, N is the number of

nodes, Aw;t is weighted temporal snapshot at time-point t,

and A
w;t
i;j is the weighted edge between nodes i and j at time-

point t.

This measure estimates the centrality of one node in a

weighted temporal network.

Weighted temporal degree centrality is the same as the

temporal degree centrality but it is calculated on weighted

temporal snapshots. Therefore, this measure shows which

nodes have higher connection weight through time. It is

possible that one node among all the nodes, has a higher

temporal degree centrality, but the weight of its connec-

tions becomes lower than another node.

Weighted volatility

This measure shows the variety of weighted temporal

network through time. Weighted volatility is defined as:

Vw ¼ 1

T � 1

XT�1

t¼1

D Aw;t;Aw;tþ1
� �

ð4Þ

where D is the distance function which we considered as

Euclidean distance.

The measure of weighted volatility represents the

amount of change in weighted temporal snapshots in each

time-point.

Statistical comparisons

In order to carry out statistical comparisons, we used the

nonparametric permutation test (Nichols and Holmes 2001;

Holme and Saramaki 2012). For between-group compar-

isons, null distributions were done by 100,000 permuta-

tions separately between each pair of emotions. In each

permutation, the results of temporal network measure of

subjects, were displaced randomly between the groups

(each pair of emotions) and all the comparisons were two-

tailed. In global measures, we considered the test statistic

as the median difference and mean difference. In nodal

measures and the comparisons between two measures, we

considered the test statistic as the Spearman rank correla-

tion coefficient. In statistical comparisons of the global and

nodal measures, we used Bonferroni-corrected for multiple

comparisons (p� 0:005). For determining which nodes

have a higher-than-expected centrality, we carried out 1000

permutations. In each permutation, the order of node in

results of centrality measure for each subject was displaced
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randomly and the centrality was averaged over all the

subjects. So, 44 null distributions were created. The null

distribution with the largest 950th value was chosen for

significant level (p\0:05).

Software note

The entire analyses were done using hand-written codes in

MATLAB environment. Furthermore, software called

DUDTeN was created to estimate the time-varying con-

nections by JC and SD methods and calculate the temporal

network measures, that is available at https://github.com/

shghahari/dudten (http://doi.org/10.5281/zenodo.3382274).

Results

Nodal measures

Measures of temporal degree centrality, weighted temporal

degree centrality, and temporal closeness centrality were

applied to temporal networks and then, compared between

different emotional states. Considering the statistical

comparisons that are represented in Table 2, DT , Dw;T , and

CT had no significant correlation (p� 0:005, Bonferroni-

corrected) between the pair of emotional states, which

shows the nodes have different centrality properties in

emotional states.

The scatterplots that demonstrate the statistical com-

parisons in each centrality measure for different pairs of

emotions are illustrated in Supplementary Figs. S1-S3.

Fig. 1 Thresholded temporal network of the 15th subject in fear.

a Binary temporal connections for all ROIs. Horizontal axis and

vertical axis represent the time-points and the ROIs, respectively.

Abbreviation of ROIs’ name is shown in Table 6 in ‘‘Appendix’’. We

used Dynamic-Graph-Metrics toolbox (https://github.com/asizemore/

Dynamic-Graph-Metrics) for drawing the temporal network.

b Strength of connections in time-points of 1, 2, 3, and 34. For

illustrating each temporal snapshot, we scaled the values of each

weighted temporal snapshot between 0 and 1. We used the codes that

are available at https://github.com/paul-kassebaum-mathworks/circu

larGraph to illustrate the strength of connections
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Global measures

Figure 2, shows the results of applying global measures to

temporal networks in different emotional states. The value

of averaged global measures over the entire subjects

showed a higher amount of F and R in sadness (respec-

tively, Fig. 2a, d) and a higher amount of V , Vw, and E in

fear (respectively, Fig. 2b, c, e).

As shown in Fig. 2, the mean is affected by outlier data,

therefore we trust more in the results from median-differ-

ence test statistic.

Considering Table 3, at the global level of the network,

each of the measures could show a significant difference

(p� 0:005, Bonferroni-corrected) between several pairs of

emotions. R, as well as V , with two different test statistics

(median difference and mean difference), showed identical

results. Only between fear and love, and happiness and

anger no significant difference was observed in each

measure.

Therefore, considering Table 3, between pair of emo-

tions in which significant difference was created, an emo-

tional state that has higher median (or mean) comparing to

the other state (please pay attention to Fig. 2), in F has

more diverse connections throughout the time, in V and Vw

its connections changes faster through time, in E on aver-

age, has shorter temporal paths and in R has lower infor-

mation transfer speed.

Tables of global measures that show the difference

between mean values and the difference between median

values, along with their p values, are presented in Sup-

plementary Tables S1-S5.

Statistical comparison between two measures
in each emotion

CT and DT , quantify different aspects of temporal

dynamics of the brain and we expect to find no significant

positive correlation between these two measures in each

emotion. Considering Table 4, except sadness emotion, in

none of the other emotional states, no significant relation

(p� 0:05) was found between two measures of centrality.

Strong negative correlations (p� 0:05) between E and R

were observed in each emotion (only in love, there was no

significant negative correlation). Therefore, each of these

measures can express the different properties of the tem-

poral network.

Scatterplots illustrate the statistical comparisons

between two measures randomly for two emotional states

that are shown in Fig. 3. The scatterplots of other com-

parisons are shown in Supplementary Figs. S4 and S5.

Investigating centrality of nodes in each emotion

First, the spatial distribution of centrality measures in the

brain is shown randomly in several specific emotional

states (Fig. 4). Values of three centrality measures were

averaged over all the subjects. Figure 4a shows the average

of temporal degree centrality in love, Fig. 4b shows the

average of weighted temporal degree centrality in sadness

and Fig. 4c shows the average of temporal closeness cen-

trality in fear in the brain for forty-four ROIs. The spatial

distribution of centrality measures in other emotions is

illustrated in Supplementary Figs. S6-S8.

In each emotion, nodes with higher-than-expected cen-

trality (p\0:05) were compared separately which are

presented in Table 5. In DT , in different emotional states,

there was no similar region. In Dw;T , Thal.R was both in

Table 2 Statistical comparison

of three centrality measures

between pairs of emotions

DT Dw;T CT

q p value q p value q p value

Happiness–anger 0.1210 0.4352 0.0765 0.6204 0.0988 0.5214

Happiness–fear 0.1720 0.2656 0.2016 0.1892 0.0503 0.7474

Happiness–love 0.1366 0.3736 - 0.1673 0.2757 0.2055 0.1783

Happiness–sadness - 0.0057 0.9710 0.0915 0.5512 0.2674 0.0810

Fear–anger 0.2029 0.1838 0.1366 0.3768 0.2440 0.1115

Fear–love 0.1547 0.3143 - 0.0361 0.8168 - 0.0042 0.9781

Fear–sadness 0.0911 0.5560 0.2055 0.1800 0.0971 0.5300

Sadness–anger - 0.1133 0.4633 0.0402 0.7964 0.1618 0.2941

Sadness–love 0.1053 0.4950 0.3180 0.0359 0.0906 0.5568

Anger–love - 0.0103 0.9465 - 0.1153 0.4541 0.0175 0.9095

DT is temporal degree centrality, Dw;T is weighted temporal degree centrality, and CT is temporal closeness

centrality
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Fig. 2 Violin plot of global measures in five emotions. a In each

emotion, each colored point specifies a subject. For each emotion, the

mean value of fluctuability is shown with a colored line and the

median value of fluctuability is shown with a white dot. b–e, Like a,

but respectively for volatility, weighted volatility, reachability

latency, and temporal efficiency (to illustrate violin plots, we used

the codes that are available at https://github.com/bastibe/Violinplot-

Matlab). (Color figure online)
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states of love and sadness, and Put.L was similar in states

of happiness and sadness. In CT , Pall.R in states of hap-

piness and sadness was similar. Only in happiness, Pall.R

in three centrality measures was revealed. As expected, due

to the similar definitions of the two measures of DT and

Dw;T , common regions were found in these two measures.

Considering Table 5, in each emotion in CT and DT (and

also Dw;T ), different regions became significant. The latter

shows that the regions in the brain that have short temporal

paths to all the other regions, are different from the regions

that have the most connectivity through time.

Discussion

In this research, we studied the distinction between dif-

ferent emotional states in an fMRI dataset acquired during

an emotional audio-movie stimulation. We used the

Jackknife Correlation method for creating a time-varying

functional connectivity representation and applied tempo-

ral network theory for quantifying this representation. We

used different binary measures and thoroughly investigated

two weighted measures within network neuroscience to

examine the features of binary and weighted temporal

networks.

Centrality measures can represent the temporal dynam-

ics properties of the brain network at the nodal level.

Considering the statistical comparisons, it can be said that

the nodes have different temporal centrality properties in

emotional states. Furthermore, in each emotion, nodes that

passed the significance threshold in measures of centrality

were unveiled. Our previous study (Ghahari et al. 2019)

was performed to investigate emotions in an audio-movie

dataset (Hanke et al. 2014) by using binary temporal net-

work measures. In the previous study (Ghahari et al. 2019)

and the present study, only in temporal closeness centrality,

regions of right putamen and right amygdala in sadness

were similar. If the different significant nodes in each

emotion (in temporal degree centrality and temporal

closeness centrality) were revealed, it may be due to the

different assumptions of SD and JC methods that cause the

values of centrality measures in each node and each subject

to be different between two methods, and these differences

lead the results of statistical comparisons in group analysis

to differ from each other. In the SD method, a weight

vector that was calculated for time-point t is used to esti-

mate the connectivity at t, and this method has more

parameter choices, while the JC method uses all time-

points except t to derive the connectivity at t. It is worth

mentioning, the effect of obtaining a unique connectivity

estimate for each time-point is that noise will be

Table 3 Statistical comparison of global measures between pairs of emotions

F V Vw R E

pmed pmean pmed pmean pmed pmean pmed pmean pmed pmean

H–A – – – – – – – – – –

H–F 0.0022 – 0.0037 0.0026 – – \ 0.0001 \ 0.0001 \ 0.0001 \ 0.0001

H–L – – – – – – \ 0.0001 \ 0.0001 0.0002 \ 0.0001

H–S – – – – – – 0.0022 0.0022 – –

F–A 0.0003 0.0026 0.0002 \ 0.0001 0.0038 0.0020 \ 0.0001 \ 0.0001 0.0005 0.0021

F–L – – – – – – – – – –

F–S \ 0.0001 \ 0.0001 0.0007 \ 0.0001 0.0009 0.0007 \ 0.0001 \ 0.0001 \ 0.0001 \ 0.0001

S–A – – – – – – 0.0015 0.0021 – –

S–L \ 0.0001 \ 0.0001 0.0011 0.0003 – 0.0031 \ 0.0001 \ 0.0001 \ 0.0001 \ 0.0001

A–L 0.0026 – 0.0033 0.0012 – – 0.0003 0.0009 0.0002 –

Significant p values (p� 0:005, Bonferroni-corrected) in median-difference (pmed) and mean-difference (pmean) test statistics. F is fluctuability, V

is volatility, Vw is weighted volatility, R is reachability latency, and E is temporal efficiency. F stands for fear, S stands for sadness, H stands for

happiness, L stands for love, and A stands for anger

Table 4 Statistical comparison between two measures in each

emotion

DT � CT R� E

q p value q p value

Anger - 0.1226 0.4278 - 0.8039 0.0001

Fear 0.0417 0.7865 - 0.5129 0.0319

Happiness 0.2665 0.0805 - 0.6698 0.0028

Love - 0.0453 0.7703 - 0.4489 0.0623

Sadness 0.4748 0.0012 - 0.5335 0.0249

DT is temporal degree centrality, CT is temporal closeness centrality,

R is reachability latency, and E is temporal efficiency. Significant

values are made bold and italicized
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maintained per time-point (Thompson 2017; Thompson

et al. 2018).

Although the performance of the JC method has been

investigated in resting-state and task (working memory)

fMRI data (Thompson et al. 2018; Fransson et al. 2018), so

far this method has not been used to identify brain function

during complex stimuli, such as emotional stimulus.

Therefore, there was no a priori hypothesis about how the

performance of this method to investigate a dataset

acquired from applying such stimuli, and we did not con-

sider a priori hypothesis regarding this method to examine

the distinction between emotions in the brain. Also, though

previous studies have explored the activity of different

regions during expressing different emotions in the brain,

we used a dataset obtained from applying a complex nat-

ural emotional stimulation, and based on the performed

meta-analytical studies in this field, the activation of

regions involved in emotions depends on the type and

design of stimulus (Purves et al. 2012), so we did not use a

priori hypothesis regarding the role of several particular

brain regions in different emotions.

We have compared the significant nodes in each emo-

tion with previous studies. The regions of planum tempo-

lare, frontal medial cortex, and central opercular cortex

were activated in anger that the frontal medial cortex was

found in previous studies (Murphy et al. 2003; Fulwiler

et al. 2012; Gu et al. 2019; Zhang et al. 2018). In fear, the

right hippocampus, left accumbens, and occipital pole were

found. These results are compatible with previous studies

(Koelsch 2014; Eldar et al. 2007; Schaefer 2017; Sato et al.

2004; Koelsch et al. 2013). Our findings represented the

activation of planum tempolare, heschl’s gyrus, pars tri-

angularis, anterior superior temporal gyrus, left putamen,

left thalamus, and pallidum in happiness. The regions of

pars triangularis, superior temporal gyrus, right pallidum,

and left putamen were also found in previous studies

(Park et al. 2010; Zhang et al. 2018; Johnstone et al. 2006;

Kotz et al. 2012; Mitterschiffthaler et al. 2007; Brattico

et al. 2011; Okuya et al. 2017; Pohl et al. 2013; Fusar-Poli

et al. 2009). The left putamen and right thalamus were

involved in the love emotion that are compatible with

previous findings (Acevedo et al. 2012; Bartels and Zeki

2004; Cacioppo et al. 2012). The pars triangularis was also

activated in this emotion. In sadness, the posterior

parahippocampal gyrus, right thalamus, right pallidum,

right amygdala, putamen, and hippocampus were activated

that in previous studies the hippocampus, amygdala,

putamen, and parahippocompal gyrus were found (Koelsch

2014; Mitterschiffthaler et al. 2007; Schaefer 2017; Brat-

tico et al. 2011; Koelsch et al. 2006; Fusar-Poli et al. 2009).

Appearance of different regions than similar previous

studies (with the exception of our previous study (Ghahari

et al. 2019)) that show regions engaged in emotions, might

be due to the type of auditory stimulation that is associated

with human life and makes people to empathize with the

movie while they are listening to it and is different from

types of stimulation in other studies.

Generally, the reason for the high centrality of the nodes

in regions related to visual processing is that many of the

people may have visualized or do another activity during

emotional experiences, that activate these regions. For

instance, upon hearing the voice of the narrator that

describes the scenes of war, people might visualize

wounded soldiers.

Each global measure, depending on its definition,

expresses a different aspect of brain function at the global

level. Considering the statistical comparisons, results from

the mean-difference test statistic were almost the same as

Fig. 3 Scatterplot of two measures in each emotion. a Temporal closeness centrality of each node against temporal degree centrality for sadness.

b Temporal efficiency of each subject against reachability latency for anger
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the median difference in global measures. In general,

because the mean is sensitive to outlier data, it can be said

that the confidence in the results of the median-difference

test statistic is higher. In the previous study (Ghahari et al.

2019), we used the mean-difference test statistic in statis-

tical comparisons of the global measures. In fluctuability

Fig. 4 Spatial distribution of centrality measures. a Spatial distribu-

tion of temporal degree centrality across all nodes in love. Abbre-

viation of ROIs’ name is shown in Table 6 in ‘‘Appendix’’. b Like a,

but for weighted temporal degree centrality in sadness. c Like a, but
for temporal closeness centrality in fear
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and volatility, in the previous study (Ghahari et al. 2019),

no significant difference was found between the pair of

emotions. In the other binary global measures (reachability

latency and temporal efficiency), in this study than the

previous work (Ghahari et al. 2019), there was a significant

distinction between more pairs of emotions.

In this study, we explored how the different properties

of temporal network change by an emotional audio-movie

stimulus. In the following, we endeavor to present more

description of the temporal network measures to explain

how the brain functions during expressing emotions. Based

on the results of reachability latency, it can be stated that

while a person feels sadness, the speed of information

transfer within the brain is lower than when one experi-

ences happiness, fear, love, or anger, and while one feels

happiness or anger, the speed of information transfer is

lower than the fear and love. In fluctuability, the results

demonstrate that while a person feels sadness or anger, the

brain connections are more diverse than the fear and love,

and while one feels happiness, the brain connections are

more diverse than the fear. The results of volatility indicate

that while the fear is felt, the brain connections change

faster than happiness, anger, and sadness, and while the

love emotion is experienced, the brain connections change

faster than sadness and anger. Based on the results of

temporal efficiency, while a person feels fear or love, the

brain regions are connected in a shorter time than the

emotions of happiness, anger, and sadness.

Two measures of weighted temporal degree centrality

and weighted volatility could perfectly express the prop-

erties of the weighted temporal network. Due to evaluation

based on weighted temporal snapshots, relative to binary

temporal snapshots, it may be a close study to explore the

real function of brain.

Comparing the results of present research with previous

study (Ghahari et al. 2019), it can be said that the resulting

binary measures of temporal snapshots created by the JC

method than the SD method can distinguish between more

pairs of emotional states. Therefore, by using the JC

method similar to the SD method, we could investigate the

temporal dynamics of the brain network during expressing

different emotions.

Considering the findings of the research, by using the

Jackknife Correlation method to derive time-varying

functional connections and applying the temporal network

measures to quantify these connections, we were able to

distinguish between different emotional states and to

express regions engaged in each emotion. Furthermore, we

represented that temporal network theory can investigate

different aspects of dynamic function of the brain in an

fMRI dataset acquired during a complex natural emotional

auditory stimulation. Ultimately, we could show that the

pattern of the brain network, the function of different

regions and the global function of brain regions during

expression of each emotion, change through time and differ

from another in each emotion. Also, the significant regions

in each emotion were almost in agreement with previous

studies.

In order to implement all of the analyses in current

study, we wrote the codes in the MATLAB environment

and also created the DUDTeN software that is available at

https://github.com/shghahari/dudten (http://doi.org/10.

5281/zenodo.3382274) for free.

The dataset used is a combination of different emotional

states and we separated the time series of each emotion in

order to carry out our analysis. We only extracted some

parts of the time series, which contained a specific emotion,

yet that period may be affected by the previous emotions.

Our study has been done to investigate the distinction

Table 5 Nodes with higher-than-expected centrality (p\0:05) in each emotion and each centrality measure

Anger Fear Happiness Love Sadness

DT Dw;T CT DT Dw;T CT DT Dw;T CT DT Dw;T CT DT Dw;T CT

Name of ROI PT – – – Accbns.L – F3t PT – – Thal.R – PHp PHp –

– FMC – – Hip.R – H H – – – F3t Thal.R Thal.R –

– – CO – – OP T1a T1a – – – Put.L – Put.L –

– – – – – – Pall.L Pall.L – – – – – Hip.L –

– – – – – – Put.L Put.L – – – – – – Amy.R

– – – – – – Pall.R Pall.R Pall.R – – – – – Hip.R

– – – – – – – – Thal.L – – – – – Pall.R

– – – – – – – – – – – – – – Put.R

DT is temporal degree centrality, Dw;T is weighted temporal degree centrality, and CT is temporal closeness centrality. Abbreviation of ROIs’

name is shown in Table 6 in ‘‘Appendix’’
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among five emotions that occur under natural circum-

stances of life, therefore the slight effect of previous

emotions was little importance. However, for distinguish-

ing between the emotions under natural circumstances, it is

better to use data that considered separate stimulation for

each emotion.

In order to investigate the properties of the temporal

network, other measures of the binary and weighted tem-

poral network can be used.

In the future, we intend to use other thresholding

approaches to create optimum connectivity matrices and

also to develop DUDTeN software.

We hope that this research leads to more studies in this

field in order to discover and revise new aspects of brain

function.
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Appendix

See Tables 6 and 7.

Table 6 Regions of interest extracted from HO atlas

Number of

region

Name of region Abbreviation

1 Angular gyrus AG

2 Central opercular cortex CO

3 Cuneal cortex CN

4 Frontal medial cortex FMC

5 Frontal operculum cortex FO

6 Frontal orbital cortex FOC

7 Heschl’s gyrus (includes H1 and H2) H

8 Inferior frontal gyrus, pars

opercularis

F3o

9 Inferior frontal gyrus, pars

triangularis

F3t

Table 6 (continued)

Number of

region

Name of region Abbreviation

10 Inferior temporal gyrus, anterior

division

T3a

11 Insular cortex INS

12 Intracalcarine cortex CALC

13 Lateral occipital cortex, inferior

division

OLi

14 Lingual gyrus LG

15 Middle temporal gyrus, anterior

division

T2a

16 Middle temporal gyrus, posterior

division

T2p

17 Middle temporal gyrus,

temporooccipital part

TO2

18 Occipital fusiform gyrus OF

19 Occipital pole OP

20 Parahippocampal gyrus, posterior

division

PHp

21 Parietal operculum cortex PO

22 Planum polare PP

23 Planum temporale PT

24 Subcallosal cortex SC

25 Superior temporal gyrus, anterior

division

T1a

26 Superior temporal gyrus, posterior

division

T1p

27 Supracalcarine cortex SCLC

28 Temporal occipital fusiform cortex TOF

29 Left Accumbens Accbns.L

30 Left Amygdala Amy.L

31 Left Caudate Caud.L

32 Left Hippocampus Hip.L

33 Left Lateral Ventricle VL.L

34 Left Pallidum Pall.L

35 Left Putamen Put.L

36 Left Thalamus Thal.L

37 Right Accumbens Accbns.R

38 Right Amygdala Amy.R

39 Right Caudate Caud.R

40 Right Hippocampus Hip.R

41 Right Lateral Ventricle VL.R

42 Right Pallidum Pall.R

43 Right Putamen Put.R

44 Right Thalamus Thal.R
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PT
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PN
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