
RESEARCH ARTICLE

Effects of synaptic integration on the dynamics and computational
performance of spiking neural network

Xiumin Li1 • Shengyuan Luo1 • Fangzheng Xue1

Received: 3 September 2019 / Revised: 7 January 2020 / Accepted: 11 February 2020 / Published online: 19 February 2020
� Springer Nature B.V. 2020

Abstract
Neurons in the brain receive thousands of synaptic inputs from other neurons. This afferent information is processed by

neurons through synaptic integration, which is an important information processing mechanism in biological neural

networks. Synaptic currents integrated from spiking trains of presynaptic neurons have complex nonlinear dynamics which

endow neurons with significant computational abilities. However, in many computational studies of neural networks,

external input currents are often simply taken as a direct current that is static. In this paper, the influences of synaptic and

noise external currents on the dynamics of spiking neural network and its computational capability have been investigated

in detail. Our results show that due to the nonlinear synaptic integration, both of fast and slow excitatory synaptic currents

have much more complex and oscillatory fluctuations than the noise current with the same average intensity. Thus network

driven by synaptic external current exhibits remarkably more complex dynamics than that driven by noise external current.

Interestingly, the enhancement of network activity is beneficial for information transmission, which is further supported by

two computational tasks conducted on the liquid state machine (LSM) network. LSM with synaptic external current

displays considerably better performance in both nonlinear fitting and pattern classification than that with noise external

current. Synaptic integration can significantly enhance the entropy of activity patterns and computational performance of

LSM. Our results demonstrate that the complex dynamics of nonlinear synaptic integration play a critical role in the

computational abilities of neural networks and should be more broadly considered in the modelling studies of spiking

neural networks.
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Introduction

In our brain cortex, synaptic integration is a complex

process which describes how neurons integrate the

receiving inputs from thousands of presynaptic neurons

before the generation of a nerve impulse (action potential)

(Williams and Stuart 2002). And this event endows neu-

rons with significant computational abilities. Thus, synap-

tic integration has an important physiological role in

information processing in central neurons. Experimental

evidence has demonstrated that considerable computation

occurs within dendrites themselves, and that local

interactions between synaptic events in dendrites, together

with active dendritic conductances, have influences on the

rate and precise timing of axonal action potential output

(Gulledge et al. 2005). Temporally synchronous and spa-

tially clustered synaptic inputs can make a single dendrite

perform highly nonlinear synaptic integrations in layer 5

pyramidal neuron (Li 2014). In Neftci et al. (2016), the

authors proposed Synaptic Sampling Machine which is a

class of spiking neural network model using synaptic

stochastic to perform Monte Carlo sampling and unsuper-

vised learning. Their results show that synaptic unrelia-

bility can induce the necessary stochasticity and vastly

improve the performance of spiking neural networks in

practical machine learning tasks over existing solutions

Neftci et al. (2016). Relevant extensive studies on synaptic

integration have attracted much attention in neurophysio-

logical studies in recent years (Spruston 2008; Kumamoto
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et al. 2012; Sultan et al. 2015; Howard and Baraban 2016;

Justus et al. 2017).

With the rapid development of computational neuro-

science, modelling studies of spiking neural networks

(SNN) have becoming increasingly attractive. Spiking

neurons are modelled as differential equations with non-

linear dynamical characteristics, such as the Hodgkin and

Huxley (1990), Liu et al. (2013), FitzHugh (1961), Zhou

et al. (2009), Wang et al. (2017), Izhikevich (2003), Li

et al. (2016, 2017a, b), and Morris Lecar Chen et al. (2017)

models, and so on. Spiking in neuronal network has been

recently studied in autapse-related neural population (Guo

et al. 2016a, b; Yilmaz et al. 2015, 2016). There are sev-

eral recent reviews cover the advances about chimera states

in neuronal networks (Majhi et al. 2019), functional

importance of noise in neuronal information processing

(Guo et al. 2018), and network science of biological sys-

tems at different scales (Gosak et al. 2018). However, in

most of these studies synaptic currents are only considered

in the recurrent connections within the network. While

external currents which act as background stimulation

applied to the neurons are usually simplified as a direct

current which is static and different from the synaptic

current in the biological system. The influences of synaptic

integration in external background on the dynamic char-

acteristics of network are often ignored and the computa-

tional performances of SNN with biologically realistic

external driven signal are rarely investigated.

Thus, inspired from the paper (Li et al. 2013) where a

biophysiologically-detailed layer 5 pyramidal neuron

model is used to study the experimentally observed phe-

nomenon of frequency preference, in this paper we adopt

the similar strategy to generate the dynamic external cur-

rent by integrating each presynaptic input from a Poisson

spiking train. Both of the fast and slow excitatory synapses

such as the AMPA current and NMDA current are con-

sidered by tuning the rising and decay time constant of the

synapse model. Our results show that the dynamical com-

plexity of SNN driven by this biologically plausible

synaptic current is remarkable higher than that of SNN

driven by a noisy direct current with the same average

intensity. In addition, computational applications of SNNs

with different kinds of external driven currents are inves-

tigated. We use this model to investigate which kind of

external currents can drive the system to reach higher

computational capability. Our study shows that liquid state

machine (LSM) with synaptic external current has much

better performance than LSM with direct external current

in the tasks of nonlinear fitting (approximation of several

real-time independent inputs) and pattern classification.

Methods

Neuron model

The Izhikevich neuron model (Izhikevich 2003), which has

been shown to be biologically plausible and computation-

ally efficient, is adopted. This model satisfies the following

equations:

_vi ¼ 0:04v2i þ 5vi þ 140� ui þ I þ I
syn
i

_ui ¼ aðbvi � uiÞ
ð1Þ

if vi [ 30mV, then
vi  c

ui  ui þ d

�
ð2Þ

where i ¼ 1; 2; . . .;N, vi represents the membrane poten-

tial, and ui is a membrane recovery variable. The param-

eters a, b, c, and d are dimensionless, with the following

selected values: a ¼ 0:02, b ¼ 0:2, c ¼ �65, and d ¼ 6

(Izhikevich 2003). I stands for the externally applied cur-

rent, and I
syn
i is the recurrent synaptic current through

neuron i and is governed by the dynamics of the synaptic

variable sj as follows (Wang and Rinzel 1992; Van et al.

1994):

I
syn
i ¼ �

PN
1ðj6¼iÞ gijsjðvi � vsynÞ

_sj ¼ aðvjÞð1� sjÞ � sj=s

aðvjÞ ¼ a0=ð1þ e�vj=vshpÞ
ð3Þ

The parameter gij is the synaptic conductance from the jth

neuron to the ith neuron. The conductance values are

randomly distributed in [0, 0.015]. The synaptic recovery

function aðvjÞ can be considered as the Heaviside function.

When the presynaptic cell is in the silent state vj\0, sj can

be reduced to _sj ¼ �sj=s. Otherwise, sj jumps quickly to 1

and acts on the postsynaptic cells. Here, the excitatory

synaptic reversal potential vsyn is set to 0, the initial value

of sj is 0. Other parameters used in this paper are a0 ¼ 3,

s ¼ 2, and vshp ¼ 5. The initial values of v and u are set to

be � 65 mV and 0, respectively.

Note that the external current I in Eq. (1) remarkably

influences the firing activity of neural network (Li et al.

2017b). In this study, inhibitory synapses have similar

effect as the external current. Adding inhibition is equiv-

alent to increase the intensity of excitatory external current,

making the network response in a balanced firing rate. For

simplicity, we did not include inhibitory synapses in this

study. Here two types of external current were applied to

the neurons: one is synaptic currents integrated from

Poisson spiking trains, another is direct current with white

noise. In the following subsection, we will introduce the

external current in detail.
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External current

Neurons are connected by synapses in biological neural

networks. When presynaptic neuron emits a spike, then

neurotransmitters are released from the synapses and bind

to receptors located in the postsynaptic cell to excite or

inhibit the postsynaptic neurons. This process facilitates the

transmission of information. The two most common neu-

rotransmitters in the brain are glutamate and GABA

(gamma-aminobutyric acid), which act on the excitatory

and inhibitory receptors, respectively. The most prominent

excitatory receptors for glutamate are the AMPA (a-amino-

3-hydroxy-5-methyl-4-isoxazole-propionic acid) and

NMDA (N-methyl-D-aspartic acid) receptors. Ion channels

controlled by AMPA receptors produce fast excitatory

synaptic transmission in the central nervous system, while

NMDA-controlled-channels are significantly slower (Li

2011). The time course of the current through receptors

(synaptic current) includes rise and decay phases (Destexhe

et al. 1998). NMDA receptors mediate the prototypical

slow excitatory synaptic currents in the brain. Synaptic

transmission mediated by NMDA receptors has slower rise

and decay courses. This transmission is described using the

postsynaptic potential (PSP) kernel (Gütig and Sompolin-

sky 2006) (as shown in Fig. 1a).

AMPA receptors mediate synaptic currents that are

substantially faster than NMDA. Here, we assume that the

rise of AMPA-mediated transmission is instantaneous, and

synaptic inputs only decay exponentially (see the dotted

red line in Fig. 1a). As in Li et al. (2013), Destexhe et al.

(1998), Vargas-Caballero and Robinson (2004), two sim-

plified PSP kernels are used to describe the synaptic

transmission Kampa and Knmda respectively:

Kampaðt � tiÞ ¼exp½�ðt � tiÞ=sd� ð4Þ

Knmdaðt � tiÞ ¼V0ðexp½�ðt � tiÞ=s1�Þ � exp½�ðt � tiÞ=s2�Þ
ð5Þ

where ti denotes the spike times of the ith afferent, the

factor V0 ¼ 2:12 normalizes PSP kernel to 1. The param-

eters sd/s1 and s2 donate decay time constants of mem-

brane integration and synaptic currents, respectively. Here

sd ¼ 30 ms, s1 ¼ 32 ms and s2 ¼ 8 ms.

The synaptic external currents are generated as follows.

First, a Poisson spiking train (rate is 50 Hz) is converted

into AMPA or NMDA synaptic inputs by AMPA kernel

Kampa or NMDA kernel Knmda respectively. Then, we use

synaptic integration to integrate the synaptic inputs as

AMPA synaptic external current Iampa (Fig. 1b) or NMDA

synaptic external current Inmda (Fig. 1c), respectively. The

integration is as follows:

Iampa ¼
X
tk

AampaKampaðt � tkÞ ð6Þ
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Fig. 1 External currents applied

to neurons in the spiking neural

network. a PSP kernel: solid

line represents NMDA kernel,

while dotted line represents

AMPA kernel. b AMPA

synaptic external current

generated through a Poisson

spike train (upper colored

spikes) which is converted into

dynamic synaptic inputs by

AMPA kernel and then

integrated by synaptic

integration: dotted line

represents the average value of

current. c NMDA synaptic

external current. d Noise

external current (Gaussian noise

is added to the static direct

current). (Color figure online)
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Inmda ¼
X
tk

AnmdaKnmdaðt � tkÞ ð7Þ

where tk denotes the Kth spike time in the spike train. The

constants Aampa and Anmda are the weighting coefficients of

the AMPA and NMDA kernels, respectively, which can

affect directly the intensity of the synaptic external cur-

rents. We select Aampa ¼ 5, Anmda ¼ 3 to ensure that Iampa
and Inmda have the same average intensity (see the red

dotted line in Fig. 1b, c).

For the direct external current, it is composed of a direct

constant current and a white noise to obtain the noise

external current (see Fig. 1d):

Inoise ¼ lþ Dn ð8Þ

where l is the mean value of the noisy external current, and

n is the Gaussian noise with zero mean and intensity D that

represents the white noisy. We select l ¼ 7:3 and D ¼ 1 to

make it share the same average intensity as the synaptic

external currents.

Dynamic analysis

In this paper, the spiking neural network is composed of

200 neurons which are all-to-all randomly connected with

recurrent synaptic weights normalized in a range of 0 and

0.015 (Fig. 2). The dynamics of SNN under different

external currents (noise or synaptic external current) are

shown in Fig. 3. The development of the membrane

potential over time of a randomly selected neuron in the

network is plotted in Fig. 3a–c, driven by AMPA/NMDA

synaptic external current, or noise external current,

respectively. We can see that although the total average

intensity of these external currents are identical, the firing

patterns in response are quite different. Under the driven of

noise external current, the neuron fires nearly periodically,

which is much simpler than the irregular firings triggered

by the synaptic external current (AMPA or NMDA). The

spacial-temporal responses of the whole network are shown

in Fig. 3d–f. The firings of the network with noise external

current are highly synchronized, while networks with

synaptic external current (AMPA or NMDA) fire more

uniformly and dispersedly. For networks with AMPA or

NMDA synaptic external current, there is no big difference

in responses between these two cases.

Obviously, the dynamics of networks with synaptic

external current are more complex than that of the network

with noise external current. To further illustrate this phe-

nomenon, the distributions of inter-spike interval (ISI) of

SNN are shown in Fig. 4a–c for AMPA, NMDA synaptic

external current, and noise external current, respectively.

The ISI distributions corresponding to both of the synaptic

external currents are broad and diverse, while the corre-

sponding distribution of noise external current is narrow

and unitary. These results indicate the diversity and com-

plexity of the firing patterns of SNN driven by synaptic

external currents are better than those of SNN with noise

external current. Moreover, the complexity of the network

activity induced by these external currents are further

compared and measured based on the information entropy

(H), which is defined as follows:

H ¼ �
Xn
i¼1

pi log2 pi ð9Þ

where n is the number of unique binary patterns, and pi is

the probability that pattern i occurs (Shew et al. 2011). For

calculation convenience, the neuronal activities are mea-

sured in pattern units (unit = 10). In Table 1, parameters for

the input external current, i.e. average intensity (Davg) and

standard deviations (SDs), and the output response, i.e.

mean firing rate fnet and activity entropy are compared for

different external current. With the same average intensity,

the standard deviations of the synaptic external currents are

much larger than that of noise external current, leading to

the higher activity entropy of network activity in response

to synaptic external currents. While due to the identical

input intensity, differences between mean firing rates of all

networks are not quite obvious. This result indicates that

synaptic integration is beneficial for generating oscillatory

external currents, which can trigger complex and diverse

network responses with high activity entropy. Entropy

characterizes the information capacity of the population. It

can also be tuned by changing the parameter of decay time

synaptic current

SNN

synaptic response noise response

noise current

Fig. 2 Schematic diagram. The spiking neural network (SNN) is

driven by two kinds of external current (synaptic or noise current),

which trigger different dynamic responses of SNN
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constant of synaptic input as shown in Fig. 5. As sd
increases, the average intensity of the synaptic current also

increases due to synaptic integration. While when the

network is driven by excessive external current, neurons

fire more synchronously, thus resulting in lower activity

entropy.

It is believed that a network with low entropy presents a

challenge in information transmission in the cortex, that is,

results in limited information transmission from input to

output (Shew et al. 2011). Significant evidence suggests

that maximization of entropy is an organizing principle of

neural information processing systems (Laughlin 1981;

Dan et al. 1996; Garrigan et al. 2010). Our results

demonstrate that synaptic integration can significantly

increase the entropy of neural network, indicating that

information transmission of networks could be improved.

To verify this point, we have conducted several computa-

tional tasks based on the model of SNN in the following

sections. Since the complexities (or entropies) of the firing

activity of networks in response to AMPA or NMDA

synaptic current with the same average intensity are almost

identical (see Table 1), we select AMPA synaptic current

as the synaptic external current in the subsequent simula-

tions. And in the next two subsections, all of the parameter

settings of SNN are the same as in the Sect. 3.

Nonlinear fitting

The liquid state machine (LSM) model proposed by

Natschläger et al. (2002) is one of the few biologically

plausible computational neural network model for real-

0.2 0.4 0.6 0.8 1

time(s)

-65

0

30

V(
m

V)

(a)

0.2 0.4 0.6 0.8 1

time(s)

-65

0

30

V(
m

V)

(b)

0.2 0.4 0.6 0.8 1

time(s)

-65

0

30

V(
m

V)

(c)

(d)

(e)

(f)

Fig. 3 Dynamic responses of

single neuron and neural

networks with different external

currents. Membrane potentials

(V) of the neurons with

a AMPA or b NMDA synaptic

external current or c noise

external current. Firing

activities of the network in

response to d AMPA synaptic

current or e NMDA synaptic

current or f noise external

current. We can see that

although the total average

intensity of these external

currents are identical, the firing

patterns in response are quite

different. Under the driven of

noise external current, the

neuron fires nearly periodically,

which is much simpler than the

irregular firings triggered by the

synaptic external current

(AMPA or NMDA)
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time computing on time-varying inputs. This model uses a

recurrent SNN to hold and nonlinearly transform the

information from the previous input stream to the high-

dimensional transient state of neural network (Li et al.

2017b). In this section, a biologically relevant real-time

computational task is designed to compare the computa-

tional capability of LSMs with synaptic or noise external

current. Figure 6 shows the architecture of the network for

nonlinear fitting task, i.e. the output is expected to be the

approximation of the linear or nonlinear functions of input

signals. All of the recurrent neurons are driven by a com-

mon background synaptic or noise external current.

Meanwhile, neurons in the recurrent SNN are equally

divided into four groups where each group received input

only from one of the four input streams. Only the readout

weights (Wout) are trained using a simple regression

technique.

Similar as in previous relevant studies (Maass et al.

2007; Li et al. 2017b), the inputs are four independent
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Fig. 4 ISI distributions of

networks with a AMPA or

b NMDA synaptic external

current or c noise external

current. The ISI distributions

corresponding to both of the

synaptic external currents are

broad and diverse, while the

corresponding distribution of

noise external current is narrow

and unitary

Table 1 Parameters of the different external currents, i.e. the average

intensities (Davg), standard deviations (SDs)

Type Davg SD fnet (Hz) Entropy

Iampa 7.30 4.19 16.88 7.93

Inmda 7.30 3.70 16.52 7.90

Inoise 7.30 1.00 16.78 2.76

And comparisons of the mean firing rate fnet and activity entropy of

the network in response to different external currents
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(b)Fig. 5 Activity entropy of

networks (a) and average

intensity of synaptic external

current (b) with increased decay

time constant sd . Note that when
sd increases, the integrated

synaptic inputs become more

smooth, which trigger regular

firings with low activity entropy

(see the subplot shown in a)
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signal streams generated by the Poisson process with ran-

domly varying rates riðtÞ, i ¼ 1; . . .; 4, where each input

stream consists of eight spike trains (see Fig. 7a). Spiking

trains are then converted into input streams by synaptic

integrations as described in Eq. 4. Notably, the input

stream relies on action potentials (spikes) rather than on the

firing rate for increasing the dynamic complexity of the

circuits. Synaptic weight from input to the recurrent net-

work is 0.1. The baseline firing rates for streams 1 and 2 are

chosen to be 5 Hz, with randomly distributed bursts of 120

Hz for 50 ms. The rates for Poisson processes that generate

the spike trains for input stream 3 and 4 are periodically

updated by randomly drawing from the two options 30 Hz

and 90 Hz. The readout component is trained by linear

regression according to the teaching signal. The output of

the readout component of the trained LSM should

approximate the teacher signal r1 þ r3 as much as possible

(Fig. 7b). The firing activities of LSM with synaptic

(AMPA) or noise external current are shown in Fig. 7c, d,

respectively. Comparison of readout responses between

LSM with two kinds of background current (as shown in

Fig. 7e, f) demonstrate that non-synchronous and complex

network activity is beneficial for the nonlinear fitness of

LSM with synaptic external current. LSM driven by

synaptic external current shows higher dynamical entropy,

which contributes to the much lower mean relative errors

(MREs) than LSM driven by noise external current (as

shown in Fig. 8). The key point for the well fitness of the

target curve is whether the high-dimensional transient

states of the liquid neural network are diverse and complex

enough. When the liquid is driven by the noisy constant

background current, the firings are more synchronous and

regular which result in poor performance. This result

indicates that the oscillatory synaptic integration can sig-

nificantly enhance the computational performance of SNN.

Temporal pattern classification

In this section, a temporal pattern classification task

(Häusler et al. 2003; Li et al. 2017a) is used to study the

effects of the synaptic or noise external current on the

performance of LSM for pattern classification. The archi-

tecture of LSM for spike pattern classification is shown in

Fig. 9. Similar as the previous section, external current is

added into the recurrent network as background stimulation

environment. Besides, spike trains with four templates are

used as the input signals for the classification task. Each

template (donated as class) consisting of one channel of 25

Hz Poisson spike train with duration of 500 ms. The input

stimulus are produced by adding Gaussian distributions to

the templates with mean zeros and standard deviation (SD)

of 6 ms (SD is referred as jitter). We generate 10 training

samples for each template, that is, 40 training samples for

classifying four spike patterns task. A total of 40 jittered

versions of the templates are generated. The number of

readout neurons is equal to the number of templates. The

readout component is trained by linear regression accord-

ing to the teaching signal. The performance of classifica-

tion accuracy is measured by evaluating the correction

coefficient (CC) as in Li et al. (2017a). The index of the

readout neuron with maximum CC is selected as the

readout recognizing the template from which the input

spike train is generated. CC is described as follows:

synaptic current

Liquid

synaptic response noise response

noise current

Input Readout

Input 1

Input 2

Input 3

Input 4

synaptic output

noise output

Wout

Fig. 6 Architecture of the LSM

network for nonlinear fitting

task. All of the recurrent

neurons are driven by a

common background synaptic

or noise external current.

Meanwhile, neurons in the SNN

are equally divided into four

groups where each group

received input only from one of

the four input streams. Neurons

applied with different inputs are

marked with different colors.

The output synaptic weights

Wout are trained by linear

regression to make the output

response fit/approximate the

teacher signal as much as

possible. (Color figure online)
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CC ¼
Pl

i¼1ðYi � YÞðY�i � Y�ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl
i¼1ðYi � YÞ2

Pl
i¼1ðY�i � Y�Þ2

q ð10Þ
where Y is the actual output, Y� is the target output (teacher

signal) of LSM, Y and Y� are the average values of Y and

Y�, respectively.
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Fig. 7 Nonlinear fitting task on

liquid state machine. a Four

independent input streams

(lines) are synaptically

integrated by eight Poisson

spike trains (dots) with

randomly varying rates

riðtÞ; i ¼ 1; . . .; 4. b Teacher

signal r1 þ r3. c, d Firing

activities of LSM with synaptic

or noise external current,

respectively. e, f Readouts of
the trained LSMs with different

external currents (red lines),

compared with the target output

(blue lines). Comparison of

readout responses between LSM

with two kinds of background

current demonstrate that non-

synchronous and complex

network activity is beneficial for

the nonlinear fitness of LSM

with synaptic external current.

(Color figure online)

(a)

synaptic noise
0

2

4

6

8

H

(b)

synaptic noise
 0%

 5%

10%

15%

20%

M
R

E

Fig. 8 a Activity entropy

(H) and b mean relative errors

(MREs) of LSM with synaptic

or noise external current. LSM

driven by synaptic external

current shows higher dynamical

entropy, which contributes to

the much lower mean relative

errors (MREs) than LSM driven

by noise external current
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As can been seen in Fig. 10a, when the number of

templates is increased which means that recognition com-

plexity is increased, the (testing) classification accuracy of

LSM drops quickly, especially for LSM driven by noise

external current. Moreover, the accuracy of LSM with

synaptic external current is always much higher than that of

LSM with noise external current. Figure 10b shows that

LSM with synaptic external current also performs much

more robust with the increase of jitter added to the tem-

plates (i.e. noisy disturbance in inputs is increased). This

result illustrates that synaptic external current can also

enhance the performance of LSM in pattern classification.

Conclusions

In this paper, effects of synaptic integration on the

dynamics and computational performance of a spiking

neural network are investigated. Compared with the tradi-

tional direct current signal with white noise, synaptic cur-

rent integrated from Poisson spiking trains can significantly

synaptic current
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noise current
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Input 1

Input 2

Input 4

W1

W2

Template

1

1

2

3

4

2

3

4

Input 3
W3

W4

Fig. 9 Architecture of LSM for pattern classification task. The

external current (synaptic or noise) is added into the recurrent

network as background stimulation environment. Besides, spike trains

with four templates are used as the input signals for the classification

task. Each template (donated as class) consisting of one channel of 25

Hz Poisson spike train with duration of 500 ms. The input stimulus

are produced by adding Gaussian distributions to the templates with

mean zeros and standard deviation (SD) of 6 ms. The number of

readout neurons is equal to the number of templates. The readout

component is trained by linear regression according to the teaching

signal
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Fig. 10 Pattern classification task of LSM. a The classification

accuracy of LSM with synaptic (blue line) or noise (red line) external

current when the number of templates is increased (here jitter = 6 ms).

b Comparisons of recognition accuracy of LSM with different

external current when the vaule of jitter is increased (here the number

of templates is 4). LSM with synaptic external current always has

much higher accuracy and performs much more robust with the

increase of jitter added to the templates (i.e. noisy disturbance in

inputs is increased) than LSM with noise external current. (Color

figure online)
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increase dynamical complexity and diversity of firing pat-

terns of the network. Moreover, this dynamical synaptic

current can also obviously enhance the computational

performance of the network on tasks of nonlinear fitting

and pattern classification. As shown in Fig. 3, the back-

ground synaptic current can trigger the network population

into diverse and complex firing patterns. While the noise

background current only make the network fire in a syn-

chronous pattern. If the default state of network dynamics

is complex and has high information entropy, it is benefi-

cial for the network ready to response to any kinds of

inputs and conduct computational tasks. This result is

consistent with our previous studies about neural networks

with default chaotic or critical state performing better on

computational tasks than networks with resting state or

synchronous firings (Li et al. 2017b). These results imply

that the nonlinear synaptic integration should be paid more

attention in the modelling of computational neural

networks.

Although the difference between synaptic current inte-

grated from spiking trains and direct current with white

noise is very obvious, neural network studies in the

application of intelligent computing are mostly based on

artificial neural networks, where information is transferred

as continuous signal during the computation of linear static

units. Even if the units are spiking-based neuron models,

external stimulus are still commonly simplified to direct

currents with white noise in the computational models (Liu

et al. 2013; Zhou et al. 2009; Wang et al. 2017; Izhikevich

2003; Li et al. 2016, 2017a, b; Chen et al. 2017). Actually,

in most of the modeling studies in computational neuro-

science, input streams from both of the local and global

connections are commonly based on synaptic integrations

of spiking trains, since all of the external information is

transferred into the system in the form of firing action

potentials. It should be noted that there is a huge gap

between computational neuroscience and the application

models of neural networks. The main purpose of this work

is to emphasize the importance of one of the basic synaptic

properties broadly investigated in neuroscience, which

should be attracted much attention. Our work may give

insights for optimizing the computational performance of

spiking neural networks with high information processing

ability.
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