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Abstract
Various patterns of electrical activities, including travelling waves, have been observed in cortical experimental data from

animal models as well as humans. By applying machine learning techniques, we investigate the spatiotemporal patterns,

found in a spiking neuronal network with inhibition-induced firing (rebounding). Our cortical sheet model produces a wide

variety of network activities including synchrony, target waves, and travelling wavelets. Pattern formation is controlled by

modifying a Gaussian derivative coupling kernel through varying the level of inhibition, coupling strength, and kernel

geometry. We have designed a computationally efficient machine classifier, based on statistical, textural, and temporal

features, to identify the parameter regimes associated with different spatiotemporal patterns. Our results reveal that

switching between synchrony and travelling waves can occur transiently and spontaneously without a stimulus, in a noise-

dependent fashion, or in the presence of stimulus when the coupling strength and level of inhibition are at moderate values.

They also demonstrate that when a target wave is formed, its wave speed is most sensitive to perturbations in the coupling

strength between model neurons. This study provides an automated method to characterize activities produced by a novel

spiking network that phenomenologically models large scale dynamics in the cortex.

Keywords Supervised learning � Spatiotemporal patterns � Izhikevich spiking model � Rebounding neuronal network �
Gaussian coupling kernel � Synchrony and travelling waves � Fast switching in neural activity

Introduction

Spatiotemporal patterns of propagating electrical activity

are prevalent in the cortex. These events include travelling

waves in the motor (Rubino et al. 2006), visual (Zanos

et al. 2015; Xu et al. 2007; Roland et al. 2006), and

auditory cortices (Song et al. 2005; Reimer et al. 2010), as

well as standing waves/synchronous firing alternating with

travelling waves in the visual cortex (Benucci et al. 2007;

Zanos et al. 2016), and rarer patterns such as ripples/

wavelets (Patel et al. 2013), and spiral waves (Huang et al.

2004).

The detection of spatiotemporal patterns are instrument-

independent, occurring in voltage-sensitive dyes, EEG and

implanted multi-electrode array studies. Interestingly, they

do not encode sensory stimuli in sensory areas (Chen et al.

2006; Jancke et al. 2004; Xu et al. 2007) nor movement

parameters in motor areas (Rubino et al. 2006; Takahashi

et al. 2011). Nevertheless, since they reflect a temporal

variance in the firing rate of sub-populations (Jacobs et al.

2007; Jansen and Brandt 1991), they might be a mechanism

to prioritize the processing of behaviourally relevant

information (Ermentrout and Kleinfeld 2001). It suffices to

say that the functional relevance, much less the computa-

tional role of cortical travelling waves, synchrony, and

other activity, remains incompletely understood (for a

recent review see Muller et al. 2018). Given the sheer

quantity of neuroelectrophysiology data that is experi-

mentally collected, it would be useful to compare spa-

tiotemporal activity in the cortex with a common method.

Our approach focuses on designing a simple yet accurate
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machine classification tool to qualitatively analyze a

mathematical model of spatiotemporal pattern generation.

Until recently, previous methods have focused on coarse

velocity information to analyze travelling waves. One can

manually identify spatiotemporal patterns of interest,

thereby producing a template, and then compute correla-

tions with other events to find matches (Han et al. 2008;

Takahashi et al. 2011). Tracking the center-of-mass of

matched events then provides location and velocity infor-

mation. Often, before this approach is applied, voltage

measurements are first transformed into a phase represen-

tation through a Hilbert transform (Hahn 1996) or Morlet

wavelets (Torrence and Compo 1998). Since waves can be

defined as a phase offset that varies as a function of space,

one can detect both standing and travelling waves with this

method (Rubino et al. 2006; Muller et al. 2014).

In the last few years, studies have taken advantage of

work in the field of machine vision to increase information

yield from data. The so-called optical flow algorithms

convert raw or phase-transformed data (Townsend et al.

2015) into a dense (individual-pixel scale) vector fields that

encode the movement of activity patterns between time

points (see Horn and Schunck (1981) for the canonical

formulation of this problem). This allows the calculation of

velocity much more accurately than in previous methods as

well as the identification of geometric features such as

spiral patterns, sources, and sinks (Mohajerani et al. 2013;

Afrashteh et al. 2017; Townsend and Gong 2018). How-

ever, as in correlation methods, the focus has always been

on the analysis of events of interest from experimental

data, rather than classification of spatiotemporal patterns in

neuronal activity.

To this end, we have trained a random forest (Breiman

2001) machine classifier to distinguish spatiotemporal

activity patterns. We thoroughly consider many statistical

1D measures, and 2D measures (from the field of image

analysis) to produce an optimal feature set with which to

train the classifier. As training data, we use a simple

spiking neuronal network model that produces a surpris-

ingly large range of 2D patterns while varying a set of

parameters.

Many of the cortical waves in the literature travel with

speeds between 10 and 80 cm/s, which is consistent with

conduction through unmyelinated horizontal fibres in cor-

tical layer II/III (Girard et al. 2001; Sato et al. 2012) which

may be part of a feedback loop with inhibitory interneurons

of layer IV (Muller et al. 2018). This inhibitory/excitatory

interplay can modelled by the ‘‘synaptic-footprint method’’

(Ermentrout and Kleinfeld 2001): a center-surround cou-

pling method, consisting of short-range excitatory con-

nections, and an annulus of longer-range inhibitory

connections. This topology shows rapid switching between

spatiotemporal patterns, at least in networks of phase

oscillators (Heitmann et al. 2012, 2015).

Rebound firing in neuronal networks can gener-

ate oscillatory activity that propagates slowly, consistent

with experimentally observed travelling waves (Golomb

et al. 1996; Coombes and Doole 1996; Adhikari et al.

2012). Additionally, rebound firing has been hypothesized

to have a role in coupling visual and oculomotor activity

through travelling waves. When local inhibition is relieved

after a saccade, a rebound effect may lead to the observed

generation of waves that reorder the firing of neurons that

are passed over (Zanos et al. 2015). Interestingly, the wave

events appear suddenly, a ‘‘fast-switching’’ aspect we wish

to recapitulate. The relationship between center-surround

spatial topology and rebounding temporal responses has

not been yet explored in a 2D spiking network model,

making it a novel system that can be studied with our

machine classification approach.

We chose the Izhikevich simple spiking model as our

artificial neuron model to develop our spiking network

(Izhikevich 2003). This model is very computationally

efficient; it can produce nearly any spiking pattern of

interest and is canonical to more biophysically realistic

models such as the Hodgkin–Huxley model (Izhikevich

2004). When coupled with the synaptic footprint method,

the network displays many spatiotemporal patterns. These

include network wide travelling waves, localized wavelets,

synchrony, and noise-induced network spiking (Eytan and

Marom 2006). By manipulating the values of five param-

eters: level of inhibition, synaptic coupling strength, width

of the kernel, order of the kernel, and noise, we demon-

strate through the machine classifier that the network can

switch between these activity regimes.

Since a mathematical analysis of this network is diffi-

cult, and since the number of possible parameter combi-

nations is large, we have an ideal scenario to employ our

automated approach. Using the classification algorithm, we

are able to map eight spatiotemporal regimes across five

primary parameters. Our results reveal that noise could

spontaneously drive switching between synchrony and

travelling waves, but in the absence of noise, switching can

also be induced by varying coupling strength, level of

inhibition and/or the width of the coupling kernel. Alto-

gether, we present a machine learning scheme that rapidly

and efficiently categorizes spatiotemporal patterns. Addi-

tionally, by applying a simple coupling scheme that mirrors

putative wave generation mechanisms in the cortex, we can

phenomenologically produce spatiotemporal patterns sim-

ilar to those in the cortex.
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Neuronal model

A dynamical depiction of the Izhikevich rebounding neu-

ron model can be seen in Fig. 1a. The neuron is excitable,

both through depolarizing and hyperpolarizing inputs, due

to the shape of the nullclines. This means that activity

initiated by an inhibitory stimulus is self-propagating,

causing spikes generated by a rebounding neuron to induce

depolarization in nearby neurons as seen in Fig. 1b.

These neurons are coupled together through a center-

surround coupling kernel inspired by previous work that

showed rapid switching of local field potential (LFP)

dynamics in the motor cortex (Heitmann et al. 2012, 2015).

Although this is the first time that this particular kernel has

been given a thorough analysis in a spiking model. In this

center-surround kernel a neuron has a strong, local, exci-

tatory connectivity and sparse long range inhibitory con-

nectivity (see Fig. 1c). It has been previously shown such a

pattern is ubiquitous in the cortex and is able to produce

waves and synchrony in neuronal models (Ermentrout

1998; Ermentrout and Terman 2010). This kernel is then

convolved with the network at each node to produce the

synaptic coupling. This network structure was constructed

to mirror efferent inhibitory inputs from distal brain areas

which triggers propagation of spatiotemporal events as

described by Fig. 1d.

Model description

In the network model developed, we use Izhikevich spiking

neurons, equally spaced (i, j) on a square lattice of size

N � N. The simplicity of this model allows for fast simu-

lation of networks even up to the scale of the cortex

(2:0� 106), using an ordinary workstation. Even though

the model is phenomenological in nature, it is capable of

spiking and rebounding upon stimulation. Its dynamics is

governed by the following pair of ordinary differential

equations,

dv

dt
¼ 0:04v2 þ 5vþ 140þ SIsyn þ Iapp þ Dn ð1Þ

du

dt
¼ p1ðp2v� uÞ; ð2Þ

combined with an auxiliary after spike resetting, given by

if v� 30 mV; then v p3 and u uþ p4: ð3Þ

The parameters (p1; p2; p3; p4) are chosen to generate a

network of rebound spiking neurons (Izhikevich 2004) (see

Table 1). The applied current (Iapp) is a strong

Fig. 1 Neuronal and network properties. a Nullclines of the

Izhikevich neuronal model (as defined by the legend) governing the

dynamics of post-inhibitory rebound exhibited by the model. A

typical solution produced by the entire network (gray line) is

superimposed onto the phase space. b A simulated trace of a

particular rebounding neuron. An inhibitory stimulus (red bar)

induces a rebounding spike. c Several profiles of the coupling kernel

K1;2, defined by Eq. (5), for various levels of inhibition determined by

the value of the level of inhibition parameter x specified in the

legend. d A hypothesized wave generation mechanism. Distal brain

areas activate local inhibitory interneurons in the cortex. These inhibit

layers II/III pyramidal cells. When the suppression is relived, a

rebound-generated travelling wave propagates across layers II/III
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hyperpolarizing input applied for 1 ms in a symmetrical

disc-shaped domain (25 units in diameter) in the center of

the network. For some trials, Gaussian white noise (n), with
a scaled noise intensity D is added. The synaptic input (Isyn)

at time tm is a two-dimensional (zero-padded) convolution

of the (N � N) matrix C of spikes and the (p� p) coupling

kernel matrix K. An element of the spike matrix, ci;j, is 1 if

the neuron in position ði; jÞ spikes at time tm�1, and zero

otherwise. The synaptic input is scaled by a parameter S,

representing synaptic coupling strength. The coupling

kernel is a convex combination of a Gaussian function

(G½0�ðx; bÞ, where b is related to the full width at half

maximum) and its scaled nth derivative (G½n�ðx; bÞ), with x
as a weight parameter. Based on the above, the synaptic

input and the coupling kernel can be described mathe-

matically by

Isyn ¼ Ctm�1 � Ki;jð�x; b;xÞ ð4Þ

Ki;jð�x; b;xÞ ¼ xGið�x; bÞ þ ð1� xÞGjð�x; bÞ; ð5Þ

where

Gnð�x; bÞ ¼ ð�1Þ
n
2b c ð

n
2
Þ!
n!

dn

d�xn
e�b�x

2 ð6Þ

and �x ¼ jx� x0j and n is even.

Numerical simulations and parameter values

A fixed time-step 2nd order Runge–Kutta method is ideal

for conducting the computations due to its efficiency and

accuracy (Hopkins and Furber 2015). The time step is kept

small at 0.1 ms, in order to reduce numerical errors. The

spatiotemporal activity patterns formed from the simula-

tions are stable over a wide range of network sizes. A

standard network size of 100 � 100 neurons is used for all

simulations unless otherwise stated.

In order to quantify the effect of inhibitory and excita-

tory (I/E) connections, the ratio of signed volumes

(D� ¼ fx : Gn\0g;Dþ ¼ fx : Gn [ 0g) is calculated for

various kernels, as follows

I/E balance ¼
RR

D�Gnð�x; bÞ dxRR
DþGnð�x; bÞ dx

: ð7Þ

This I/E balance ratio is an important determinant of the

types of spatiotemporal patterns that form.

Parameter values of the neuronal and network models

are adapted from (Izhikevich 2003). For the whole list of

parameter values, see Table 1.

Spatiotemporal pattern classifier

We use a machine classification approach to tackle the

problem of sorting and labelling large number of simula-

tions. Several potential features are examined before

selecting a subset of them (see Table 2 for a summary of all

considered features). The details of feature selection are

explained in the ‘‘Results’’ section.

Classification features and training data

First, we use common statistical measures such as the

median and range computed across all time points and for

every neuron in the network. These provide excellent

coarse-grained information about the magnitude of activity

present. Second, in order to take a measure of the temporal

change in activity, a kymograph (Ghai 2012) is produced

for each simulation. This is a plot comprised of concate-

nated 1-D slices from each N � N frame, which, in effect,

transposes moving fronts of activity into curves (see Fig. 2

as an example). For target waves, these curves follow a

tight linear or quadratic form. The length of a curve

Table 1 Neuronal and network parameters

Parameter Value Description

p1 0.03 The time scale of the recovery variable

p2 0.25 The sensitivity of the recovery variable

p3 �60 The after-spike reset value of the membrane potential

p4 4 Value of the after-spike step for the recovery variable

N 100 Length of each side of the square network lattice

Vmax 30 Voltage cut-off value

S Varied [0, 25] Synaptic coupling strength factor

x Varied [0, 1] Weight value indicating the level of inhibition [see Eq. (5)]

b Varied [0.01, 0.1] Determines kernel width; related to full width at half maximum of the parent Gaussian function

n Varied [2, 28] The order of the Gaussian derivative kernel used

D Varied [0, 3] Strength factor of Gaussian white-noise added to each neuron
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indicates the distance the wave travels, while the curvature

can be measured to determine wave speed. Finally, gaps in

the kymographs indicate quiescent periods in the simula-

tions. The total of these quiescent periods is the quiescence

measure.

Third, we employ a common technique for summarizing

3D (i.e., x, y, t) data by computing the intensity projections

of our simulations. For each neuron at location (i, j), we

calculate the median value for all time points (see Table 2).

The median intensity projection can then be thought of as a

texture. This texture can be analyzed using Haralick fea-

tures (Haralick et al. 1973), which were developed to give

numerical values to intuitive aspects of an image. Haralick

features are computed using the MATLAB graycomatrix,

and graycoprops functions.

Before feeding the features into a classifier, it is trained

on a set of manually categorized simulations. We have

sorted 441 simulations (200 ms each) into eight categories

of interest: (I) quiescence, where the network is not excited

by a stimulus with lasting effect; (II) ‘‘slow’’ smooth

waves, that propagate smoothly and have a wavefront in

tens-of-millisecond timescale (comparable to real data);

(III) ‘‘fast’’ smooth waves, that have few millisecond

timescales; (IV) slow ‘‘granular’’ waves, that propagate in a

lurching manner and have discontinuous wavefronts;

(V) fast granular waves; (VI) ‘‘pinning’’, where the net-

work has intermittent quiescence; (VI) travelling wavelets

(or ‘‘bumps’’); and (VIII) whole network synchrony. Rep-

resentative kymographs for these eight categories are

shown in Fig. 2. The distinction between smooth and

granular waves is clear when comparing the bottom row of

Fig. 2a and the top row of Fig. 2b. This obvious qualitative

difference leads us to consider these wave events as sep-

arate types.

In total, parameters representing synaptic strength,

noise, kernel width, kernel order, and level of inhibition

(denoted by S, D, b, n and x, respectively) are varied in

200 ms simulations. An example of the parameter regimes

Table 2 List of features to identify spatiotemporal patterns

Description Formula

1-Statistic

Median Middle ordered voltage value across time. Middle value

Range Range of normalized values across time. maxðvi;jÞ �minðvi;jÞ
Mean Average value across time.

1
N2

PN2

i;j

vij

Sum Total value across time. PN2

i;j
vij

Skew Measure of asymmetry of the probability distribution of values across time PN2

i;j

E½v3
ij
��3lr2�l3
r3

Kurtosis Measure of ‘‘tailed-ness’’ of the probability distribution of values across time PN2

i;j

E½ðvij�lÞ4 �
ðE½ðvij�lÞ2Þ2

2-Kymograph

Quiescent Duration Amount of time the network is not in an active state. See text

Speed Propagation rate from a central stimulation source. See text

3-Texture

Connected Components Number of distinct clusters of activity. Bwconncomp

Homogeneity Similarity of voltage values throughout the recording. PN2

i;j

vij
1þji�jj

Entropy Randomness of the image PN2

i;j

vij lnðvijÞ

Correlation Correlation between a pixel and its neighbors. PN2

i;j

ði�liÞðj�ljÞvij
rirj

Energy Uniformity in the image. PN2

i;j
v2ij

Contrast Intensity contrast between a pixel and its neighborhood. PN2

i;j

ji� jj2vij
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Fig. 2 Kymographs of network simulations as the weight parameter

(x, shown above each kymograph) is varied from top-left to bottom-

right in each panel. Each kymograph is N units tall, and consists of

concatenated vertical cross-sections every millisecond for 200 ms.

a In the presence of high synaptic strength (S ¼ 15), spatiotemporal

pattern varies from synchrony (solid yellow), to ‘‘granular’’ waves

(mottled yellow), to travelling bumps (bumpy texture). Asterisk

indicates pinning phenomenon, where quiescence occurs between the

dashed lines. b In the presence of low synaptic strength (S ¼ 5), the

curvature in the kymographs increases, indicating that wave speed

diminishes as x increases. At higher values of x, waves do not make

it to the edge of the network, or do not start at all. (Color

figure online)

Fig. 3 Classification of spatiotemporal patterns. a level of inhibition

(x) and synaptic strength (S) are varied on the abscissa and ordinate

respectively. Each square represents a median intensity projection of

the entire network for 200 ms of simulation time. Qualitatively

different spatiotemporal patterns are present. b Categorization of

activities seen in a: (I) no activity (purple), (II) slow smooth waves

(blue), (III) slow granular waves (pink), (IV) fast smooth waves

(yellow), (V) fast granular waves (teal), VI) pinning (orange), (VII)

travelling bump field (lime green), and (VIII) synchrony (red). c Five
examples of spatiotemporal patterns; from left to right, smooth target

waves, granular target waves, synchrony, quiescence, and travelling

bumps. All snapshots are taken at representative time points to

showcase the qualitative patterns and are labelled with their parent

category number. (Color figure online)
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associated with the eight categories identified when vary-

ing synaptic strength S and level of inhibition x are shown

as intensity projections in Fig. 3. For each simulation, the

selected features of Table 2 are extracted and input into the

classifier.

Classifier algorithm

We have chosen the random forest algorithm out of a panel

of other methods (e.g., support vector machines, naive

Bayes and simple decision trees) as it produces the lowest

error rates during validation. The MATLAB treebagger

function is used to create a random forest classifier as it

performs automatic cross-validation (fivefold) and also

reports an error for the overall classifier (i.e., ‘‘out-of-bag

error’’ or OOB error). In short, for every decision tree in

the forest (100 total), observations are partitioned based on

threshold values for each feature. Each individual tree only

consists of a subset of features, and is trained only on a

subset of observations. This subset approach makes the

random forest resistant to overfitting when compared to

other classification algorithms (Breiman 2001).

The final set of selected features are shown in Table 2,

and consist of six individual measures in four types: (1)

summary statistics of the simulation across time; (2) a

texture analysis feature (Haralick et al. 1973); (3) features

based on the kymograph representation of the simulations;

and (4) the number of independent clusters of activity (or

‘‘connected components’’), quantified using the MATLAB

bwconncomp function). Before computing the features, the

network simulation is downsampled to a total of 80 total

frames, for computational efficiency. The pixel values for

each frame are normalized by the maximum from the entire

set of frames. The classification process is blind to the type

of simulated or experimental data given, as long as the data

can be represented as magnitude values at discrete points

on a lattice.

Software

The network model and classification algorithm are coded

in MATLAB (MathWorks Inc., Massachusetts, USA)

versions 2017(a,b) and 2018a. Software is run on a DELL

Precision Tower 5810 (Intel Xeon CPU E5-1630 @

3.7 GhZ, with 32 GB of RAM). The codes used for the

classifier and producing the simulations can be obtained

online (Oprea et al. 2019).

Results

Spatiotemporal patterns in the Izhikevich-based
neuronal network

Snapshots of some of the spatiotemporal patterns produced

with the model network are shown in Fig. 3c. In this case, a

network of forty thousand Izhikevich neurons (200� 200)

are simulated with several coupling parameters. In every

panel, the same standard central hyperpolarizing stimulus

is applied, and all other parameters are held constant except

for the kernel parameters (x; S; b; n; and D). The important

parameter values for each panel in Fig. 3c are shown in

Table 3.

The network model in this framework produces 8 dis-

tinct spatiotemporal activities. Target waves are generated

as rebound events in the excitable network (see Fig. 3c, II).

An inhibitory input at the center of the network transiently

produces a travelling wave of activity. Although, the

stimulus is only for one millisecond at t ¼ 0, several wave-

fronts are formed. Interestingly, when low amplitude

Gaussian white noise is added, these waves are followed

transiently by a long period of whole network synchrony

(Fig. 4). What makes these fast transient transitions

between target-wave activity to synchrony peculiar is that

they spontaneously occur without stimulus.

These network spikes are spontaneous, random syn-

chronization events of a network of coupled neurons. They

arise in networks that are otherwise homogeneous except

for small differences in connectivity. The generator for

each synchronous event changes over time as other sub-

populations take on the role. The network spiking observed

in the model presented here is due to the interaction of

random noise with the slow recovery variable u. The slow

return to baseline of the recovery variable prevents sub-

populations that have had significant recent firing activity

from firing again.

When considering the wave activity of this Izhikevich-

based network model, we find that the speed of these waves

depends on several parameters, particularly the scaling

factor that represents the strength of synaptic coupling

S and the level of synaptic noise D. Indeed, by selecting

parameter regimes that correspond to target waves, the

speed of the these waves can be increased arbitrarily by

increasing the coupling strength. Depending on the cou-

pling kernel used, spiral waves can be also produced with

up to several rotors. A striking form of activity that can be

seen, is the self-replicating travelling wavelets (‘‘bumps’’)

produced using the 2nd order Gaussian derivative (a.k.a.

‘‘Mexican hat’’ or ‘‘Ricker’’) kernel (Fig. 3c, VII). These

are created from the rebounding effect of the network.

Wavelets come into existence in areas that have recently
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been passed through by the inhibitory ‘‘tails’’ of another

wavelet. These wavelets are reminiscent of travelling

bumps obtained in neuronal field models (Pinto and

Ermentrout 2001) where they have been hypothesized to

play a role in working memory (Lu et al. 2011), and have

been shown to appear in a variety of brain areas (Wu et al.

2008; Prechtl et al. 1997; Ermentrout and Kleinfeld 2001).

Feature selection and classifier error

We have designed a machine classification algorithm to

automatically identify the various activities based on a set

of features (see ‘‘Classification features and training

data’’ Section). Features are selected from a larger bank of

possible metrics: (1) common statistics which include:

mean, sum, median, range, variance, skewness (asymmetry

of distribution), and kurtosis (‘‘peakedness’’ of the distri-

bution). Each of these are applied to a vector of voltage

values across time. (2) Measures of kymographs: that

include fit to a quadratic (indicating curvature), slope of the

fit (speed of the activity), and quiescent duration. (3) Firing

time histograms: these provide mean and skewness mea-

sures of the temporal spiking activity. (4) The number of

isolated areas of activity (connected components). (5)

Haralick texture features: that includes entropy (random-

ness of the image), homogeneity (consistency across the

recording), correlation (how correlated a pixel is to its

neighborhood), energy (uniformity in the image) and

contrast (intensity contrast between a pixel and its neigh-

borhood) (Haralick et al. 1973).

In a random forest, prediction time increases with the

number of features. We therefore wish to reduce the clas-

sifier input to as few predictors as possible. We are able to

eliminate a large number of the initial feature set by

removing instances of high correlation between features, as

these do not convey any additional information (results not

Table 3 Parameter values for

representative spatiotemporal

patterns

Category Kernel orders (n) x b S D

I Quiescence 2nd, 4th 0.15 0.03 2 0

II Waves (smooth, slow) 2nd, 4th 0.3 0.03 12 0

III Waves (granular, slow) 2nd, 4th 0.6 0.03 12 0

IV Waves (smooth, fast) 2nd, 4th 0.3 0.03 20 0

V Waves (granular, fast) 2nd, 4th 0.75 0.03 20 0

VI Pinning 4th 0.9 0.02 20 0

VII Bump Field 2nd, 4th 0.9 0.03 20 0

VIII Synchrony 2nd, 4th 0.3 0.03 25 2

Fig. 4 Network spiking during

spontaneous transition from

wave to synchrony. a Time

series of network spiking

showing the action potential-

like structure of the waveform

transitioning to synchronous

activity. After 500 ms, recovery

from refractoriness allows for a

greater peak amplitude in

subsequent spikes. b Snapshots

of the 2D network model with a

central stimulus, inducing

network spiking in the form of

initially target wave (two left

panels) followed by a whole

network synchrony (two right

panels), caused by noise-

induced threshold crossing
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shown). Eleven features are considered for further evalu-

ation (see Fig. 5a). Due to the relatively low number of

feature combinations that need to be tested (211), all pos-

sible subsets are compared in a brute force search for the

lowest classification error (see Fig. 5b). Additional feature

selection techniques show similar results, such as forward

selection, backward selection, and principal component

analysis. The OOB error, is an error measure of the

MATLAB function treebagger. As indicated by Fig. 5b,

after 6 features, the marginal benefit of adding another

feature to the classifier is low. A list of six features that

occur most frequently in high performing subsets (see

Fig. 5a) are chosen. They are quiescent duration, homo-

geneity, speed, median, range and connected components.

With these six features, observations are classified at a rate

of about 2200 observations per second at an average

accuracy of 94.4%. Therefore even an increase in input size

from 1000 to 10,000 observations would only take 4 sec-

onds longer to fully classify.

Classifier allows rapid parameter regime
exploration

The machine classifier is used to scan parameter space in

order to find regimes where waves and synchrony (the two

most prominent activity types seen in experimental

recordings) are adjacent to each other and thus allow for

fast transitions between the two. Fast switching between

these activity types can be produced by perturbing the

network through a stimulus Heitmann et al. (2012). If

waves and synchrony regimes are adjacent in parameter

space, it should only require a small perturbation to induce

this effect. This is different from the spontaneous switching

characterized earlier. The kernel width (b), the synaptic

strength (S), the level of inhibition (x), and the kernel order
(n) parameter values are scanned in parameter space to find

such a domain. Each of the activity types shown in Fig. 3b

can be recognized within the parameter ranges considered

for the level of inhibition x and synaptic strength S, (see

Fig. 6a). In the three kernel orders tested (n ¼ 2; 4; 8) with

kernel width b ¼ 0:025, synchrony and waves dominate at

low levels of inhibition, while quiescence and wavelets

dominate at higher levels. Increasing the kernel order

gradually expands the regimes associated with synchronous

and smooth waves at the expense of the other categories.

This indicates that inhibition decreases the spatial extent of

spatiotemporal phenomena, as exemplified by travelling

bumps at high values of omega.

Based on this, we limit our search to inhibitory levels

below x ¼ 0:60, in order to focus on regimes where

smooth waves and synchrony are present. The Gaussian

derivative kernel is kept at the fourth order, n ¼ 4, due to

the smaller quiescent regime. We find that wave and syn-

chronous activities are all present for the entire range of

synaptic input, with the quiescent regime gradually

diminishing at higher width values until it eventually dis-

appears (Fig. 6b). As before, increasing the width or order

of the coupling kernel makes the wave and synchronous

regimes dominate over other regimes of activities within

the parameter space and allow them to become adjacent to

each other. In particular, moderate levels of inhibition have

the smooth slow wave and synchronous regimes closest at

low coupling strength values. These results thus provide

insights onto possible coupling topologies required to

0 2 4 6 8 10 12

Number of features

0

10

20

30

40

50

60

O
O

B
-E

rr
o

r 
(%

)

Quies
ce

nce

Hom
ogen

eit
y

Sum
Ske

w
Mea

n

Var
ian

ce

Contra
st

Spee
d

Med
ian

Ran
ge

Conn. c
om

p.

Feature

0

2

4

6

8

10
A

B

F
re

q
u

en
cy

Fig. 5 Results of brute force feature selection obtained by construct-

ing a random forest of every possible combination of the strongest 11

features. a Frequency of features in the best performing random

forests. b The OOB error reported for each set of features (each circle

represents one member of the power set of features). The dashed line

shows the general decreasing trend of the OOB error upon the

addition of more features. Notice that inserting additional features to a

set of 6 existing ones marginally improves the OOB error
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produce stimulus-induced fast switching between syn-

chrony and travelling waves through post-inhibitory

rebound. This type of stimulus-induced switching should

be distinguished from that induced by noise in a sponta-

neous manner.

Classifier outputs follow inhibitory/excitatory
balance contours

As suggested before, the inhibitory components of the

Gaussian kernel affect the spatiotemporal activities of the

network model significantly. To investigate this further, we

examine the effect of kernel order on the types of activity

produced (recall that higher order coupling kernels possess

smaller inhibitory contributions). Although center-surround

patterns greater than that represented by the 4th order

kernel (i.e., center—near surround—far surround) are less

likely to be realistic topologies in vivo, the ease of

parameter scanning with the classifier allows us to explore

them. We use moderate coupling strength and kernel width

values (i.e., S ¼ 10, and b ¼ 0:025) in order to narrow the

focus on wave behaviour. Our results reveal that kernel

order has an intriguing nonlinear relationship with the level

of inhibition (Fig. 7a). At low orders, less manipulation of

x is required to transition between spatiotemporal states,

even though smooth slow waves exist at all kernel orders.

In order to understand the nonlinear effects of kernel

order and level of inhibition, we measure the I/E balance in

the network, quantified as the signed ratio of the volumes

under the surface of the coupling kernel (see Eq. 7). This

can be thought of as the synaptic contributions that exci-

tatory and inhibitory connections have on the network.

Thus higher values of x implies inhibitory dominance.

Figure 7b shows that both parameters effect the I/E bal-

ance, but the effect of kernel order saturates after n ¼ 10.

Note that due to the rebounding nature of this network, we

see activity even at high levels of inhibitory dominance.

Comparing the two panels, when inhibition is dominant,

granular and (especially) travelling bump patterns domi-

nate. In fact, the transitions between spatiotemporal

regimes occur at specific values of the I/E ratio, with all

other parameters kept equal, as seen by the contour curves

in Fig. 7b. For instance, smooth waves cease to occur when

the inhibition is more than about half as strong as excita-

tion. Also, fast smooth waves transition to slow smooth

waves when inhibition becomes more than 10% as strong

Fig. 6 The regimes of spatiotemporal patterns obtained when various

model parameters are varied, showing how these parameters affect

model outcomes. The various regimes of behaviour obtained when

varying a the coupling strength (S) and the level of inhibition (x) at
different values of the order of the coupling kernel (n) specified on the

top of each panel, and b the coupling strength (S) and width of the

kernel (b), at different levels of inhibition (x) specified on the top of

each panel. The width of the Gaussian kernel parameter is kept fixed

at b ¼ 0:025 in a while the order of the coupling kernel is kept fixed

at n ¼ 4 in b. The various activities produced by the model are color-

coded according to the color-bar shown to the left of each panel.

(Color figure online)
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as excitation. These results suggest that the balance

between synaptic inputs is a determining factor in the

patterns produced by this spiking rebounding network.

Discussion

In this study, we designed a fast and simple automated

method to classify spatiotemporal activities of the Izhike-

vich-based neuronal network (associated with the eight

types of activities identified). We show that moderate

levels of the inhibition and small values of coupling

strength bring the synchronous and smooth slow wave

regimes adjacent to each other. Simulations in which

travelling waves and synchronous regimes are adjacent in

parameter space represent the most physiologically inter-

esting ones as they allow perturbations (induced by stimuli

or noise) to cause fast switching between them. Millisec-

ond time-scale switching between synchrony and waves

have been found in LFP recordings in both the motor

(Heitmann et al. 2012) and visual (Zanos et al. 2015)

cortices. In both of these cases, neuronal firing was altered.

A theoretical interpretation is that this places the system

in a bistable state, in which (at least) two forms of com-

putation may be switched between as needed. Directionally

polarized dendritic arbors have been suggested as a

mechanism by which layer II/III pyramidal cells may

detect travelling waves (Heitmann et al. 2015). Therefore,

on a scale larger than monosynaptic connections, neurons

in a small brain region may send signals that change the

computational properties of their neighbours (Muller et al.

2018). Our results detected by the machine classifier reveal

that strong local excitatory coupling along with weaker

peripheral inhibitory coupling are best suited to produce

regimes where synchrony and travelling waves are

adjacent.

Interestingly, adjacent parameter regimes produce spa-

tiotemporal patterns similar to those seen in other experi-

mental data. Our fast travelling waves exhibit a rapid albeit

‘‘lurching’’ manner of propagation. This is similar to waves

observed in thalamic preparations (Golomb et al. 1996;

Destexhe et al. 1996). This is a likely consequence of the

rebounding nature of our network, as other rebounding and

inhibition heavy network architectures have produced

similar waves in 1D networks (Rinzel et al. 1998).

We additionally observe transient and spontaneous

switching in the presence of noise that is stimulus inde-

pendent. This type of switching is due to the nature of

Izhikevich model that allows action potentials to occur

through both inhibitory and excitatory stimulation. This

Fig. 7 The relationship between kernel order, level of inhibition, and

spatiotemporal patterns. a The output of the classifier, identifying the

spatiotemporal activities of the network model when kernel order (n)

and the level of inhibition (x) are varied, with each pattern color-

coded based on the color-bar to the right. Here, synaptic strength and

kernel width are kept fixed at intermediate values. b The heatmap of

the I/E balance, measured as the ratio of volumes under the surface of

the coupling kernel, when the level of inhibition and kernel order are

varied within the same ranges as in panel a. The heatmap is color-

coded based on the color-bar to the right. Note the correspondence

between the specific I/E values marked with white contours, and

edges of spatiotemporal regimes in panel a. (Color figure online)
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effect is similar to network spiking behaviour, seen in

in vitro plated pyramidal cells (Eytan and Marom 2006;

Orlandi et al. 2013). Intriguingly, it appears that wave-like

pacemaking may be a default state for neuronal cultures in

the absence of strong input.

Certainly a biophysically accurate model such as

Hodgkin–Huxley could produce rebound behaviour

(Hodgkin and Huxley 1952). However this would be

computationally infeasible given the size of the network we

wish to construct. Two modified versions of the simple

integrate-and-fire model may potentially be appropriate;

integrate-and-fire-or-burst (Smith et al. 2000) and res-

onate-and-fire (Izhikevich 2001) both produce rebounding

for some parameter regimes. However their computational

efficiency advantage to the Izhikevich simple spiking

model is minimal to none, and they have overall smaller

repertoire of spiking patterns (Izhikevich 2004). We

therefore expect our novel Guassian kernel-coupled spiking

Izhikevich network to represent a good model to further

explore spatiotemporal patterns in cortex-like networks.

One exciting outcome of using this network analysis

approach, is that the classifier seems to have zeroed-in on

some intrinsic property of the network that delineates

spatiotemporal regimes. The inhibitory/excitatory balance

was not an explicit part of any of the data features we

considered. However, different levels of I/E balance

tracked boundaries in two-parameter space. We also saw

that other pairwise combinations of parameters show

redundancy (notice the synchrony/fast-wave/slow-wave

tend to always appear adjacent in Fig. 6). This finding

suggests a future model optimization approach; namely,

map the spatiotemporal regimes by automated classifica-

tion, find combinations of parameters that produce greatest

variety of patterns, then remove or combine the remaining

parameters. Of course, the variety quantification and

parameter removal could be automated as well. In this

manner a complex model may be simplified with little user

input.

The classifier itself possesses several strengths. First it is

computationally inexpensive, performing 2200 per second;

even large data-sets can be quickly run through the clas-

sifier on an average computer. Second, the features are

simple to understand; they represent intuitive aspects of the

2D simulation videos. Third, the classifier does not depend

on the type of data, or the size of the data. This is because

the features are dimensionless statistics computed in a

frame-wise manner. Fourth, we can update the classifier

with additional data, features, or spatiotemporal categories

to broaden its applicability. For example, the addition of

Fourier/wavelet (Johannesen et al. 2010), or fractal fea-

tures (Maeda et al. 1998), the latter of which have been

found to pair well with Haralick texture features (Korch-

iyne et al. 2014), can be incorporated into the classifier.

Compared to other supervised learning algorithms, the

random forest has relatively few hyperparameters, and

therefore requires less optimization. Random forests are

also unlikely to overfit (Breiman 2001). Since they consist

of many decision trees independently labelling input data,

the majority vote of the forest evens out outliers, leading to

more robust classification (Breiman 2001). In comparison,

support vector machines require an appropriate choice of

kernel (linear, polynomial, radial basis function, etc. )

(Andrew 2000). In addition, the hyperparameters must be

well chosen (e.g., regularization penalty, regularization

strength, polynomial degree, gamma etc.) (Andrew 2000).

This amount of extra optimization seemed unnecessary

given the already high accuracy of the random forest.

Although our focus was on classification, it would be

useful to implement a multilevel approach, where a cursory

labelling pass finds interesting simulations to explore in

more depth. Ideally one could implement an optical flow

methodology (Townsend and Gong 2018) which can

extract frame-by-frame information about the spatiotem-

poral phenomena. Since optical flow is more computa-

tionally expensive, a selection criterion should be

provided.

The natural next step for spatiotemporal pattern analysis

would be leveraging the full force of deep learning (in

particular, convolutional neural networks, CNNs) that have

exploded in popularity in the past few years. They have

been applied to cancer diagnoses (Fakoor et al. 2013),

chest pathologies (Bar et al. 2015), and EEG pathologies

(Schirrmeister et al. 2017) among many other things. Of

course, the major hurdle to developing CNN classifiers is

the need for a large pre-existing databank of images for

training. These exist for pathologies, but the community of

cortical wave researchers have yet to organize a similar

initiative. One potential downside of CNNs is that they are

black boxes, while our random forest approach uses

human-intelligible features.

These results emphasize that a simple machine classi-

fication approach can be a powerful tool in analyzing a

rebounding network of excitable Izhikevich neurons. While

simple, the network produces many spatiotemporal patterns

similar to those found in experimental data. Our results are

particularly relevant for studies where the computational

cost of running simulations is low, but the parameter space

is large and not easily tractable through analytical methods.

As a future avenue, the algorithm could be adapted to

analyzing stochastic experimental recordings by addition-

ally implementing de-noising techniques.
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