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Abstract
Motor imagery (MI) is a mental representation of motor behavior and has been widely used in electroencephalogram based

brain–computer interfaces (BCIs). Several studies have demonstrated the efficacy of MI-based BCI-feedback training in

post-stroke rehabilitation. However, in the earliest stage of the training, calibration data typically contain insufficient

discriminability, resulting in unreliable feedback, which may decrease subjects’ motivation and even hinder their training.

To improve the performance in the early stages of MI training, a novel hybrid BCI paradigm based on MI and P300 is

proposed in this study. In this paradigm, subjects are instructed to imagine writing the Chinese character following the flash

order of the desired Chinese character displayed on the screen. The event-related desynchronization/synchronization (ERD/

ERS) phenomenon is produced with writing based on one’s imagination. Simultaneously, the P300 potential is evoked by

the flash of each stroke. Moreover, a fusion method of P300 and MI classification is proposed, in which unreliable P300

classifications are corrected by reliable MI classifications. Twelve healthy naı̈ve MI subjects participated in this study.

Results demonstrated that the proposed hybrid BCI paradigm yielded significantly better performance than the single-

modality BCI paradigm. The recognition accuracy of the fusion method is significantly higher than that of P300 (p\0.05)

and MI (p\0.01). Moreover, the training data size can be reduced through fusion of these two modalities.
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Introduction

A brain–computer interface (BCI) provides a new com-

munication channel for direct access between brain and

external devices and is different from communication

channels that rely on the conventional neuromuscular

pathways of peripheral nerves and muscles (Mak and

Wolpaw 2009). Several different neural activities, such as

visual evoked potentials (Gergondet and Kheddar 2015),

auditory evoked potentials (Hwang et al. 2017), event-re-

lated potential (Hoffmann et al. 2008), visual attention

(Gaume et al. 2019), and event-related desynchronization/

synchronization (ERD/ERS) (Pfurtscheller and Lopes da

Silva 1999), have been utilized in electroencephalogram

(EEG)-based BCIs.

Motor imagery (MI) is a mental representation of motor

behavior and does not rely on external stimuli. The MI task

elicits changes in the rhythmic activities of the brain, which

are observed in the electrophysiological signal as ERD/
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ERS phenomenon (Pfurtscheller 1977, 1992), specifically

in mu (8–12 Hz) and beta frequency bands (13–30 Hz)

(McFarland et al. 2000; Pfurtscheller et al. 2006). The

corresponding differences in EEG signals in the frequency

and spatial domains can be extracted to discriminate mental

states. Several applications, including neuroprosthesis

control (Müller-Putz et al. 2005), 2D cursor control (Jinyi

Long et al. 2012b), and wheelchair control (Tang et al.

2018), use MI-based BCIs to provide user control. Several

studies have involved stroke patients in BCI-feedback

training (Daly et al. 2009; Frisoli et al. 2012; van Dokkum

et al. 2015; Pichiorri et al. 2015; Kim et al. 2016; Frolov

et al. 2017). However, important questions remain to be

addressed for implementing BCI-based rehabilitation in

clinical applications (Pichiorri et al. 2017). In many cases,

the EEG features of different mental states in MI-based

BCIs are not sufficient to provide reliable EEG control

commands (Guger et al. 2003; Blankertz et al.

2008a, 2010). Approximately 20% of BCI users are unable

to obtain sufficient accuracy for control using MI (Guger

et al. 2003). This phenomenon is called “BCI inefficiency”

(Kaufmann et al. 2013). To address this shortcoming, many

advanced methods have been proposed to improve the

recognition performance of MI-based BCIs, including

channel selection (Garrett et al. 2003; Arvaneh et al. 2011;

He et al. 2013; Qiu et al. 2016) and feature extraction

methods (Zhang et al. 2017; Miao et al. 2018; Feng et al.

2018). In addition, the performance of MI-based BCI

systems depends primarily on the subject’s ability to

modulate his/her sensorimotor rhythms. For naı̈ve subjects,

proficient modulation ability can be achieved via proper

training (Neuper et al. 1999). Various training methods

based on feedback have been proposed (Hwang et al. 2009;

Zich et al. 2015; Abdalsalam et al. 2018) given that feed-

back can help subjects verify the effects of various MI

strategies by providing them with instant information about

control effects. However, inhibitory and facilitative effects

on MI training can be induced by feedback, and these

effects vary between subjects (McFarland et al. 1998; Yu

et al. 2015). This problem is particularly pronounced in

older stroke patients, and many patients have associated

comorbidities, such as depression (Kertesz and Sheppard

1981; Di Carlo et al. 2000), which inhibit their ability to

adapt quickly to the training. Excessive unintended or

inaccurate feedback/control may frustrate subjects and, in

severe cases, even obstruct the training.

Recent studies have shown that multi-modal brain signal

fusion can effectively improve the performance of BCIs

(Jinyi Long et al. 2012b; Amiri et al. 2013; Yin et al. 2015;

Ma et al. 2017; Puanhvuan et al. 2017). To provide

effective continuous feedback for MI training, a hybrid

BCI paradigm combining MI and steady-state visually

evoked potentials (SSVEPs) was proposed (Yu et al. 2015).

The hybrid BCI system based on SSVEP and MI can

effectively identify the intentions of the subjects. More-

over, the hybrid feedback BCI paradigm can be used to

enhance MI training. However, SSVEP stimuli will cause

extreme fatigue in subjects because of the fast repetition of

the flashing stimuli (Gergondet and Kheddar 2015). In

comparison with SSVEP, the P300 protocol could alleviate

fatigue to some degree (Ma et al. 2017). Several studies

have shown that the combination of P300 and MI can help

improve performance in terms of wheelchair control (Jinyi

Long et al. 2012a), computer cursor control (Li et al. 2010),

and speller systems(Yu et al. 2016). However, no P300-MI

hybrid paradigm that focuses on improving MI training

exists. Moreover, these paradigms do not instruct subjects

in performing the imagination, which might negatively

affect MI performance (Qiu et al. 2017). For instance,

subjects could attain better MI performance by imagining

familiar actions (Gibson et al. 2014).

In the present study, a hybrid BCI paradigm based on

MI and P300 is proposed to improve the MI training for

Chinese people. Combining MI and P300 modalities is

hypothesized to improve the feedback accuracy in the

initial training stage, so as to remedy the limitation of MI

training. In the paradigm, two Chinese character outlines

are first displayed on the screen. Then, the strokes of each

Chinese character are flashed (stroke by stroke) in accor-

dance with natural writing. The subjects are asked to

imagine writing the Chinese character and follow the flash

order of the desired character. During the task, the ERD/

ERS phenomenon is produced with writing imagination.

Simultaneously, the P300 potential is evoked by the flash

of each stroke. To fuse the P300 and MI classification

outputs, a simple and effective fusion method is proposed,

in which the unreliable P300 classifications are corrected

by the reliable MI classifications. In our paradigm, the flash

interval of the strokes of a single Chinese character is

larger than 1 s, thereby providing a softer stimulus for

users. Chinese people are familiar with writing Chinese

characters, thereby helping to modulate their sensorimotor

rhythms. The proposed hybrid paradigm is believed to

exhibit two main advantages over existing MI training

paradigms. First, it may help subjects modulate sensori-

motor rhythms effectively with a softer stimulus. Second,

the performance of the BCI system can be further improved

by fusing the two features. Both offline and online recog-

nition results demonstrate that the recognition accuracy of

the fusion method is significantly higher than using P300 or

MI features alone. In addition, the size of the required

training data can be reduced by combining the two

features.
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Materials and methods

Subjects and EEG acquisitions

Eighteen healthy subjects (12 males and 6 females, aged

22–28 years, mean 23.6±3.7 years) with no prior experi-

ence with MI-based BCIs participated in the experiment.

The local ethics committee approved the consent form and

experimental procedure, and all subjects signed a written

consent form prior to the experiment. According to self-

reports, all subjects were right-handed with no clinical

history of neurological disorders, and all reported Man-

darin Chinese as their native language.

The subjects were seated on a comfortable chair that

was located 80 cm away from a standard 19-inch LED

monitor (60 Hz refresh rate, 192091080 screen resolution)

in an electromagnetically shielded room. During the task,

subjects were asked to relax and avoid unnecessary

movements.

EEG signals were recorded using 26 scalp electrodes in

accordance with the International 10-20 System, with a

sampling rate of 256 Hz. The 26 electrodes were placed at

F3, Fz, F4, FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, C6,

CP3, CP1, CPz, CP2, CP4, P7, P3, Pz, P4, P8, O1, O2, and

O3. Most of the electrodes were located over the post-

acrosomal and parietal region on the basis of previous

reports (Hoffmann et al. 2008; Jin et al. 2011; Huang et al.

2018; Feng et al. 2018). All channels were referenced to

electrode A1 located over the right mastoid, and the ground

(GND) was placed on the forehead. The impedance of all

electrodes was kept below 20 KΩ, and signals were

amplified by a g.HIMP amplifier pre-processed with a

hardware bandpass filter (0.1–30 Hz) and notch filter

(50 Hz). All electrodes were used for feature extraction and

calculating.

Experimental paradigms

The experimental protocol comprised a screen cue prompt-

ing the user to imagine writing the prompted Chinese char-

acter. Two Chinese characters and a forearm were displayed

on the screen. The forearm was used to prompt subjects to

perform anMI task on the associated side (left or right) ofMI.

The Chinese character outlines were initially displayed on

the screen in the preparation stage, and then each Chinese

character was flashed stroke by stroke according to the nat-

ural writing sequence. Four different Chinese characters

(“生”,“末”,“仗”,“正”) were used in the experi-
ment. These Chinese characters were selected because most
Chinese people are familiar with the characters and all of them
involve five strokes as in literature (Qiu et al. 2017). These
Chinese characters were randomly combined and appeared in

random on the screen, such as “生-正”, “生-末”, “仗-正”,

and “仗-末”.

Figure 1a, b illustrate an example of the screen cue

shown to subjects. Figure 1a represents a left-hand MI cue,

whereas Fig. 1b represents a right-hand MI cue. In each

trial, only one of these cues was presented to the user.

During the task, subjects were asked to imagine writing the

prompted Chinese character while following the flash of

the Chinese character. Figure 1c shows one trial of the

imagined writing task. During the 0–1.9 s preparation

phase in which the first row of Fig. 1 (either (a) or (b)) was

displayed on the screen, two outlines of Chinese characters

were shown on the screen along with a picture of a fore-

arm. Subjects were asked to focus on the Chinese character

on the side of the forearm prompted. During the 1.9–7.9 s

MI phase, the strokes of the two Chinese characters flashed

on the screen stroke by stroke according to the natural

writing sequence as illustrated by the second to the last row

of Fig. 1a or b. The flash start time sequence of the left side

Chinese character was 1.9, 3.1, 4.3, 5.5, and 6.7 s, and that

at the right side was 2.1, 3.3, 4.5, 5.7, and 6.9 s. Each flash

lasted for 150 ms. The P300 potential was evoked by the

flash of each stroke of the target Chinese character. To

Fig. 1 Experimental protocol. a Example of the left-hand MI screen

cues shown to subjects, b example of the right-hand MI screen cues

shown to subjects, c trial timing for the imagined writing task
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stably evoke P300, the interval between consecutive flashes

of each stroke was longer than 1 s (Walter 1968; Donchin

and Smith 1970; Donchin 1981; Pritchard 1981). If a

subject focused on the left Chinese character, the

P300 signal was time locked with the left flash time

sequence, and conversely, if a subject focused on the right

Chinese character, the P300 signal was time locked with

the right flash time sequence. Subjects were asked to

imagine writing the Chinese character while following the

flash order of the corresponding Chinese character. As a

result, the P300 potential (elicited by the stroke flashes)

and the ERD/ERS phenomenon (elicited by MI) were

produced simultaneously during the task. During the 7.9–

10 s rest phase, an empty black background was displayed

on the screen. Each subject completed three offline sessions

and one online session, and each session consisted of 40

trials (with a balanced number of left and right classes).

Feature extraction procedure

P300 feature extraction

Generally, amplitude variations(Hoffmann et al. 2008),

matched filter (Serby et al. 2005), calculation of area, and

peak picking (Farwell and Donchin 1988) can be used to

discriminate P300. Recent studies have shown that shape

features (Alvarado-González et al. 2016) and phase locking

value (PLV) (Kabbara et al. 2016) are efficient tools for

discriminating target and non-target visual-evoked

responses. Moreover, a satisfactory performance can be

obtained when combining PLV and traditional features

(Kabbara et al. 2016). Thus, in this study, amplitude vari-

ations and PLV features were combined for P300

classification.

First, a window with a length of 800 ms ranging from

flash stimuli onset to 800 ms after flash stimuli was

extracted (Hoffmann et al. 2008). The data segments

extracted in accordance with the left and right flash time

sequences were denoted as Xutl and Xutr, respectively,

where t ¼ 1; 2; . . .; 5, corresponding to the five strokes of

each character. If the forearm appeared on the left side and

subjects focused on the left Chinese character and per-

formed the left-hand MI, Xutl denotes the target data seg-

ment, whereas Xutr denotes the non-target data segment. If

the forearm appeared on the right side, Xutl denotes the

non-target data segment, whereas Xutr denotes the target

data segment. Then, a third-order Butterworth bandpass

filter was used to filter the EEG between 0.1 and 12 Hz

(Kolev et al. 1997; Jansen et al. 2004; Jin et al. 2011).

For amplitude variation feature extraction, the EEG data

were down-sampled from 256 to 36.6 Hz by selecting

every seventh sample from the filtered EEG (Hoffmann

et al. 2008).

The PLV feature extraction is based on phase coupling

between two signals quantified by PLV. With Sx tð Þ and

Sy tð Þ being the signals over two electrodes, PLV is calcu-

lated as follows (Wang et al. 2006; Wei et al. 2007; Kab-

bara et al. 2016):

PLV ¼ ejDh tð Þ
D E

t

��� ��� ð1Þ

where �h it is the operator of averaging over time;

Dh tð Þ ¼ hx tð Þ � hy tð Þ; and hx tð Þ and hy tð Þ denote the

instantaneous phase of Sx tð Þ and Sy tð Þ, respectively, which
can be calculated using Hilbert transform (Le Van Quyen

et al. 2001; Wang et al. 2006). The PLV feature extracted

in accordance with the left and right flash time sequence

are denoted by Xvtl and Xvtr, respectively, where

t ¼ 1; 2; . . .; 5.

MI feature extraction

Several methods have been introduced to EEG analysis for

MI feature extraction, including band power, autoregres-

sive, common spatial pattern (CSP) algorithms and its

improved methods, and PLV (Wei et al. 2007; Kirar and

Agrawal 2016; Mingai et al. 2016; Miao et al. 2017).

Among them, CSP is an efficient feature extraction method

that has been widely used in MI-based BCI systems

(Ramoser et al. 2000; Qiu et al. 2017). Furthermore, the

combination of multiple types of features can effectively

improve the classification accuracy due to their comple-

mentarities (Wei et al. 2007). Here, we combined CSP and

phase coupling measure-based method to extract multiple

features for MI classification. For each trial, EEG signals

from 2.5 to 7.5 s post cue-onset were selected for feature

extraction.

The classification performance of CSP is largely

dependent on the selected frequency bands used for

bandpass filtering of the EEG data (Blankertz et al. 2008b;

Zhang et al. 2015, 2017). However, the optimal filter band

is typically subject-specific and is difficult to determine

manually (Zhang et al. 2015). Thus, a sparse filter band

common spatial pattern (SFBCSP) (Zhang et al. 2015) was

used to generate optimal filter bands automatically. Several

studies (Tam et al. 2011; Qiu et al. 2016; Miao et al. 2017)

have shown that precise electrode selection can helps

improve the performance of MI-based BCIs. Ten channels

with great contributions to the classification were selected

by adopting Fisher’s linear discriminant criteria (Tam et al.

2011; Mingai et al. 2016).

The implementation procedure of SFBCSP is summa-

rized as follows.
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First, the raw EEG is bandpass filtered by a set of

overlapping sub-bands. Second, CSP is utilized to extract

the corresponding features on the filtered signals at each

sub-band. The extracted CSP features can be described as

G ¼ g1; g2; . . .; gi; . . .; gN½ �T2 R2MK�N , where gi denotes

the feature vector extracted from the EEG sample at the i-

th trial, N is the number of samples in the training set,

2 M is the number of patterns selected in CSP, and K is the

number of sub-bands. In the present study,M=2; sub-bands

were chosen from the frequency range 8–30 Hz because it

contains all mu and beta frequency components of the

EEG, which are important for the discrimination task

(Ramoser et al. 2000), each sub-band has a bandwidth of

4 Hz with 2 Hz of overlap between sub-bands, which is

consistent with those in previous studies (Kai et al. 2008;

Zhang et al. 2015), that is, a total of K=10 sub-bands are

used.

Finally, significant CSP features can be extracted by

following the sparse regression model

w� ¼ argmin
w

1

2
Gw� yk k22þk wk k1 ð2Þ

where w� is a sparse weight vector to be generated, w 2
R2MK is the weight vector of the extracted CSP features,

y 2 RN is the class labels, �k k1 denotes the l1-norm, and λ
is a positive regularization parameter for controlling the

sparsity of w� (a larger λ can result in sparser w�). The
optimization problem in (2) can be solved by coordinate

descent algorithm (Friedman et al. 2010). With learned w�,
the sparse feature vector can be denoted by g� ¼ g � w�.

The phase coupling measure-based features are extrac-

ted from coupling between any two electrodes within each

of the two ellipses around C3 and C4 (Wei et al. 2007). The

PLV of each coupling electrodes is calculated using

Eq. (1). The PLV feature can be denoted by p.

Classification scheme

Bayesian linear discriminant analysis (BLDA) (Hoffmann

et al. 2008) is utilized to classify the MI and P300 features.

In addition, a P300 and MI classification fusion method

was proposed to improve classification accuracy, in which

unreliable P300 classifications were corrected by reliable

MI classifications.

BLDA for MI and P300 classification

BLDA is regarded as an extension of Fisher’s linear dis-

criminant analysis (FLDA). In contrast to FLDA, BLDA

regularization is used to prevent overfitting to high

dimensional and possibly noisy datasets, where the degree

of regularization is automatically and quickly estimated

from training data through Bayesian analysis (Hoffmann

et al. 2008). Assuming that the target vector t and feature

vectors X are linearly related with additive white Gaussian

noise �

t ¼ wTXþ � ð3Þ
The likelihood function for the weights w can be

described as follows:

p Djb;wð Þ ¼ b
2p

� �N=2

exp � b
2

� �
XTw� t
�� ���� ��2 ð4Þ

where D denotes the pair {X, t}, β denotes the inverse

variance of �, and N denotes the number of samples in the

training set. The bias term can be omitted assuming that the

feature vectors contain one feature that is always equal to

one.

To perform inference in a Bayesian setting, assume that

the weight vector w satisfies the Gaussian prior distribution

governed by a single precision parameter a:

p wjað Þ ¼ a
2p

� �D=2

exp � a
2

wj jj j22
� �

ð5Þ

In accordance with the Bayesian rule, the posterior can

be computed as follows:

p wja; r2; t� � ¼ p tjw; r2ð Þp wjað Þ
p tja; r2ð Þ ð6Þ

Given that the likelihood and prior satisfy Gaussian

distributions, the posterior also exhibits a Gaussian distri-

bution. Thus, the mean l and covariance R of the posterior

satisfy the following equations:

R ¼ r�2XTXþ aI
� ��1 ð7Þ

l ¼ r�2RXTt ð8Þ
For a new test sample x̂, the predictive distribution can

be computed as follows:

p t̂ja; r2; x̂; t� � ¼
Z

pðt̂jw; r2; x̂Þpðwja; r2; tÞdw ð9Þ

The predictive distribution also satisfies the Gaussian

distribution with mean and variance of

l̂ ¼ lT x̂ ð10Þ
r̂2 ¼ r2 þ x̂TRx̂ ð11Þ

For a binary classification model, consider a target

t 2 N1=N;�N2=Nf g. The hyperparameters α and r2 can be

automatically and iteratively estimated using a previously

described procedure (MacKay 1992).

With a learned posterior mean, l, of the weight vector,

w, a new P300 feature vector can be classified using a

simple linear discriminant criterion:
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tP300 ¼
1; if lT

PN
t

Xptl [ lT
PN
t

Xptr

�1; if lT
PN
t

Xptl\lT
PN
t

Xptr

8>><
>>:

ð12Þ

where Xptl and Xptr denote the combination of amplitude

variation and PLV features of P300, N is the number of

strokes.

MI features can be classified by

tMI ¼ 1; if lTXm[ � l0
�1; if lTXm\� l0;

	
ð13Þ

where Xm denotes the combination of SFBCSP and PLV

features of MI, l0 is the discriminant threshold. In the

present study, l0 ¼ 0.

P300 and MI classification fusion

As described in the previous section, the P300 potential and

the ERD/ERS phenomenon are generated simultaneously

in this experimental paradigm. In general, P300 produces

higher classification accuracy and is more robust than MI

(Bishop 2006). However, there are also cases where the

P300 classifications are incorrect whereas the MI classifi-

cations are correct. To improve the classification accuracy,

we can consider using the reliable MI classification to

correct the unreliable P300 classification.

According to the statistical theory governing BLDA,

classification errors arise from regions of the input space

where the largest of the posterior probabilities p t̂jx̂ð Þ is

significantly less than unity, or equivalently, where the

joint distributions p t̂; x̂ð Þ have comparable values (Nasra-

badi 2007). These are the regions where we are relatively

uncertain about class membership (as shown in Fig. 2).

Correspondingly, in a BLDA model, a larger predictive

mean l̂ more strongly represents the characteristics of

P300 and MI features as defined by the training set

(Hoffmann et al. 2008). Thus, l̂ can be defined as the

classification confidence. For a MI classification, if l̂j j is
less than a threshold Tc, it can be considered as an unre-

liable classification. For P300 classification, a single clas-

sification is deemed unreliable if the classification

confidences l̂l and l̂r satisfy the following conditions:

1. sign l̂lð Þ ¼ sign l̂rð Þ
2. l̂lj j\Tc and l̂rj j\Tc

where Tc is a reliability threshold that can be obtained via

cross-validation. Typically, Tc can be set to a value that

produces a high error rate for unreliable classifications and

a low error rate for reliable classifications. The first con-

dition denotes that Xl and Xr are classified into the same

class. The second condition denotes that the class mem-

bership of Xl and Xr are relatively uncertain. Obviously,

both conditions result in unreliable or low-confidence

classification outputs, which we aim to prevent.

For an unreliable classification of P300, the modification

criteria are defined as follows:

1. If the P300 classification result is consistent with the

MI classification result, keep the classification result

unchanged.

2. If the P300 classification result differs from the MI

classification result and the predictive mean of MI is

less than the reliability threshold, use the P300

classification result.

3. If the P300 classification result differs from the MI

classification result and the predictive mean of MI is

larger than the reliability threshold, use the MI

classification result.

The procedure for P300 and MI classification fusion is

summarized in Fig. 3.

Results

EEG results

To verify whether the MI and P300 tasks could be simul-

taneously analyzed and whether their corresponding fea-

tures could be independently extracted, the ERD/ERS maps

and EEG waveforms are studied in this section. The ERD/

ERS maps over channels C3 and C4, the grand averaged

target and non-target time-series data over channel Cz from

three typical subjects, and the average value of all the

subjects are shown in Fig. 4. These electrodes were

selected for illustrative purposes because the left- and

right-hand motor cortices are mainly localized in the C3Fig. 2 Illustration of unreliable region
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and C4 electrode regions (Pfurtscheller and Aranibar 1979;

Pfurtscheller 1992; Pfurtscheller and Neuper 1997; Qiu

et al. 2017; Ono et al. 2018), whereas Cz is a primary

electrode used for P300 analysis (Sellers et al. 2006;

Hoffmann et al. 2008; Jin et al. 2011).

From Fig. 4, obvious ERD/ERS phenomena can be

observed at channel C3/C4 when subjects perform right-

hand/left-hand MI tasks while following the flashing

strokes of the Chinese characters. Additionally, for the

target waveform (shown in red waveform), a positive ERP

occurred approximately 300 ms after the flash onset. For

the non-target waveform (shown in blue waveform), two

smaller peaks occurred approximately 300 ms before and

300 ms after the P300 potential of the target waveform.

This is because non-target data segments have a −300 or

300 ms offset compared with the target data segments. The

above results consistently show that the task designed for

the experiment can effectively yield MI and P300 features

simultaneously. The characteristics of these signals are

similar to those evoked through a single-modality task

(McFarland et al. 2000; Jansen et al. 2004; Huang et al.

2018).

Offline classification results

To quantify the classification performance, we developed

measures related to the P300 classification, which included

the error rate of unreliable classification (UER), error rate

of reliable classification (RER), and error correction rate

(CR). These are defined as follows:

UER ¼ UF

UT þ UF
ð14Þ

RER ¼ RF

RT þ RF
ð15Þ

CR ¼ CT

UF
ð16Þ

Fig. 3 Procedure for P300 and MI classification fusion

Fig. 4 ERD/ERS maps (first row) over channels C3 and C4 and the grand averaged time series data (second row) of target and non-target

responses over channel Cz from three typical subjects (a–c) and average value of all subjects (d)
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where UER denotes the error rate, which satisfies the

unreliable P300 classification conditions; UF is the number

of false classifications; and UT is the number of true

classifications when the output is deemed unreliable. RER

denotes the error rate when the P300 classification condi-

tions are considered reliable, RF is the number of false

classifications, and RT is number of true classifications

when the output is deemed reliable. CR denotes the prob-

ability of error correction, and CT is the number of cor-

rected classifications (using MI classification output) of

unreliable classifications. UER, RER, and CR in a 10-fold

cross-validation of 18 subjects are shown in Table 1.

The first result of note is the large difference between

UER and RER. The average value of UER (21.46±7.20%)

is larger than that of RER (1.13±2.00%). Furthermore, all

subjects, except S10, showed a higher UER versus RER.

This finding means that the probability of error in an

unreliable classification is significantly higher than that in

reliable classification. The lowest error correction rate was

50.00%, and the highest error correction rate was 100.00%.

The averaged error correction rate of the fusion method

was 75.51±22.87%.

Furthermore, to evaluate the effects of the P300 and MI

fusion method on classification performance, the average

classification accuracies of MI, P300, and P300 fusion with

MI (P300?MI) for 18 subjects are presented in Fig. 5. A

paired sample t test was used to assess the difference in

classification accuracy for P300?MI versus MI and

P300?MI versus P300. The Lilliefors test was used to

verify whether the sample distribution satisfies the condi-

tion of the paired sample t-test.

As shown in Fig. 5, the P300 and MI classification

fusion method (P300?MI) yielded a higher average clas-

sification accuracy than P300 or MI modalities alone. All

subjects except S2 and S9 demonstrated a higher classifi-

cation accuracy using the P300 and MI fusion method than

using only P300. The average classification accuracy

(mean±SD) using the P300?MI technique was 97.29±

3.65%, which was 12.27% and 2.57% higher than those of

P300 (94.72±4.54%) and MI (85.02±9.09%), respec-

tively. Paired sample t-test also showed that the classifi-

cation performance of P300?MI was significantly better

than that of P300 (p\0.01) and MI (p\0.01).

Effect of reducing training data on classification
performance

Theoretically, a high classification accuracy can be

achieved using more training data for classifier calibration

because more training data help mitigate against over-fit-

ting. However, more training data require longer EEG

recording time, which consequently reduces the practica-

bility of the BCI system. As such, an effective BCI system

should be able to obtain a high classification accuracy with

shorter training data.

We investigated the classification accuracy of each

method using different lengths of training data. Figure 6

shows the classification accuracies using the P300, MI,

P300?MI fusion method, averaged for all subjects, with

training data lengths from 20 to 90% of the entire data

(with an increment size of 10%). The training data were

randomly selected for each evaluation. To avoid the

influence of randomness on the results, both of the evalu-

ations were repeated 100 times, and the average classifi-

cation accuracies were calculated (Peterson et al. 2017).

As shown in Fig. 6, the average classification accuracies

of all three methods increased with longer training data.

However, for all training data lengths, the combined P300

and MI technique showed higher classification accuracy

than P300 or MI alone. Moreover, the P300?MI fusion

method achieved high recognition accuracy with less

training data. If we consider a classification accuracy

threshold (90%), only 40% of the training data is needed to

achieve this accuracy using the P300?MI technique,

whereas 60% of the training data is needed to achieve this

accuracy using P300 alone.

Table 1 Error rate of unreliable classification (UER), error rate of

reliable classification (RER), and error correction rate (CR) of 18

subjects using 10-fold cross-validation

Subjects UER (%) RER (%) CR (%)

S1 20.37 3.67 63.64

S2 25.00 0.00 75.00

S3 20.83 2.00 60.00

S4 26.09 0.00 83.33

S5 35.42 8.24 52.94

S6 23.81 0.00 100.00

S7 16.67 0.00 100.00

S8 21.74 0.00 80.00

S9 28.57 2.50 50.00

S10 6.25 0.00 100.00

S11 13.64 1.25 66.67

S12 28.57 0.00 50.00

S13 16.67 0.00 100.00

S14 20.00 0.00 100.00

S15 20.69 2.78 100.00

S16 13.33 0.00 50.00

S17 15.38 1.67 50.00

S18 22.22 0.00 100.00

Mean±SD 21.46±7.20 1.13±2.00 75.51±22.87
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Online classification results

Figure 7 shows the online classification accuracies of MI,

P300, and P300 fusion with MI (P300?MI) for 18 sub-

jects. The average online classification accuracy (mean±

SD) using P300?MI method was 93.94±5.19%, which is

10.62% and 2.50% higher than that using P300 (91.25±

9.04%) and MI (81.61±8.79%), respectively. Paired

sample t-test also showed that the online classification

performance of P300?MI was significantly better than that

of P300 (p\0.05) and MI (p\0.01).

Discussion

The primary goal of this study was to design a hybrid BCI

paradigm on the basis of MI and P300 potentials to

improve feedback performance at the early stages of BCI-

feedback training. The key to a hybrid BCI system is that

the two signal components must be yielded simultaneously

and independently (Li et al. 2010). The recognition of the

MI task is fundamentally based on the ERD/ERS, which is

reflected in the EEG frequency spectrum. As shown in

Fig. 4, the ERD/ERS in mu (8–12 Hz) or beta rhythm (13–

30 Hz) can be clearly seen at channel C3 or C4, which is

consistent with the findings reported in previous MI studies

(Pfurtscheller and Lopes da Silva 1999; Blankertz et al.

2010; Faller et al. 2012; Ma et al. 2017). For P300, the task

recognition is based on the characterized peak components

in the time domain. As shown in Fig. 4, a positive ERP

occurred for target data segments at approximately 300 ms

after stroke flash onset. These results together demonstrate

that the desired signal features (i.e., ERD/ERS for MI and

P3 for P300) can be simultaneously obtained in the imag-

ination of Chinese character writing tasks.
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Fig. 5 Offline classification accuracy (%) of MI, P300, and P300

fusion with MI (P300?MI) for 18 subjects. The average classification

accuracies (mean±SD) of MI, P300, and P300?MI are 85.02±

9.09%, 94.72±4.54%, and 97.29±3.65%, and the p-values of

P300?MI versus P300 and P300?MI versus MI are 5.56E−06 and

1.36E−06, respectively

Fig. 6 Classification accuracies using P300, MI, and P300?MI

fusion method, averaged for all subjects, for different lengths of

training data
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In terms of recognition performance, both P300 and MI

features were discriminable (see Figs. 5 and 7). The online

classification accuracy of MI in three of the subjects was

more than 90%, and the average classification accuracy of

all subjects was more than 80% in their first MI training. As

such, imagination of writing Chinese characters can help

subjects modulate their sensorimotor rhythms effectively.

As expected, the average accuracy and stability of the P300

recognition outperformed those of MI. However, MI is

often indispensable because in several BCI applications,

such as those used for BCI-based stroke rehabilitation, MI

is better suited than evoked potentials, such as the P300

response. Though P300 performance is generally superior

to that of MI, the recognition accuracy of P300 can be

further improved by incorporating complementary infor-

mation from MI. According to the statistical results (see

Table 1), the unreliable P300 classification error rate was

significantly higher than the reliable classification error

rate. Erroneous P300 classifications when the output is

unreliable can be corrected by MI. Using this method, the

averaged error correction rate reached 75.51±22.87%.

According to the ensemble learning theory, when the out-

put of two or more classifiers has a certain accuracy and

diversity, the accuracy and robustness can be improved by

combining these classifiers (Zhou 2012). Here, a fusion

method of P300 and MI classification, which automatically

corrects an unreliable P300 classification with a reliable MI

classification, was proposed. The recognition results

showed that the recognition accuracy of the fusion method

was significantly higher than that of P300 (p\0.05) and MI

(p\0.01) alone. In particular, for the two subjects (S3 and

S5) with low MI classification accuracy [\70%, less than

BCI “efficiency” threshold (Kübler et al. 2001)], a

remarkable improvement in BCI performance can be

achieved through the hybrid paradigm.

In addition, the required length of the training data can

be reduced through the fusion of the two features, which is

very important in practical applications. Generally, in real-

world applications, such as in BCI-based stroke rehabili-

tation systems, a long period of offline data is required to

train the classifier prior to online use (Jin et al. 2011; Faller

et al. 2012). The long time required to perform these offline

recordings consequently decreases the practicability and

convenience of the BCI system. Therefore, understanding

how the offline training time can be reduced is essential for

producing useful and practical BCIs (Shenoy et al. 2006;

Wu and Ge 2013; Kindermans et al. 2014; Jiao et al. 2019).

MI usually takes a long time to train before a sufficiently

high recognition performance can be achieved, while the

time required for P300 training time is less (the average

classification accuracy of P300 is considerably higher than

that of MI with smaller data set sizes; see Fig. 5). More-

over, the fusion of P300 and MI signals can further shorten

the training data length. As shown in Fig. 6, the fusion of
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Fig. 7 Online classification accuracy (%) of MI, P300, and P300

fusion with MI (P300?MI) for 18 subjects. The average classification

accuracies (mean±SD) of MI, P300, and P300?MI are 81.61±

8.79%, 91.25±9.04%, and 93.94±5.19%, and the p-values of

P300?MI vs. P300 and P300?MI vs. MI are 0.03 and 1.45E−06,
respectively
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P300 and MI can result in a higher average accuracy (90%)

with lesser training data than using only P300, which

requires 50% more data to achieve the same accuracy. In

addition, the fusion method can also be combined with

other technologies (semi-supervised learning, online

adaptive learning, and transfer learning) to further reduce

the offline training time.

Conclusion

A hybrid BCI paradigm based on MI and P300 by imag-

ining writing Chinese characters was proposed in this

study. ERD/ERS phenomenon and P300 potentials were

yielded simultaneously via imagining writing Chinese

characters and following flashing strokes of these charac-

ters on a screen. On the basis of statistical theory, a P300

and MI classification fusion method was proposed for

enhancing BCI performance. The results showed that the

proposed hybrid BCI paradigm yielded higher recognition

accuracy than BCI systems using only MI. Additionally,

the offline training time could be shortened by fusing P300

and MI features. Our future work will focus on developing

an online feedback incorporating adaptive learning to fur-

ther shorten the offline data collection time. We will also

focus on applying this paradigm to stroke patients to verify

its performance in stroke rehabilitation training.
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