
RESEARCH ARTICLE

Decoding disparity categories in 3-dimensional images from fMRI data
using functional connectivity patterns

Chunyu Liu1 • Yuan Li2 • Sutao Song3 • Jiacai Zhang1

Received: 14 September 2018 / Revised: 5 September 2019 / Accepted: 29 September 2019 / Published online: 9 October 2019
� Springer Nature B.V. 2019

Abstract
Humans use binocular disparity to extract depth information from two-dimensional retinal images in a process called

stereopsis. Previous studies usually introduce the standard univariate analysis to describe the correlation between disparity

level and brain activity within a given brain region based on functional magnetic resonance imaging (fMRI) data. Recently,

multivariate pattern analysis has been developed to extract activity patterns across multiple voxels for deciphering cate-

gories of binocular disparity. However, the functional connectivity (FC) of patterns based on regions of interest or voxels

and their mapping onto disparity category perception remain unknown. The present study extracted functional connectivity

patterns for three disparity conditions (crossed disparity, uncrossed disparity, and zero disparity) at distinct spatial scales to

decode the binocular disparity. Results of 27 subjects’ fMRI data demonstrate that FC features are more discriminatory

than traditional voxel activity features in binocular disparity classification. The average binary classification of the whole

brain and visual areas are respectively 87% and 79% at single subject level, and thus above the chance level (50%). Our

research highlights the importance of exploring functional connectivity patterns to achieve a novel understanding of 3D

image processing.
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Introduction

One of fundamental visual abilities is the perception of

three-dimensional (3D) word. This ability is closely con-

nected with the binocular disparity. Namely: the horizontal

separation of the eyes allows both of eyes to have a slightly

different viewpoint of the world (Bridge et al. 2007). And

the visual system uses this difference to extract depth

information from the two-dimensional retinal image, this

process is called stereopsis. Even though scientists have

spent nearly 50 years studying binocular depth perception

in animals and humans and have gained substantial

achievements, it is still worth being further researched.

Early researches reveal that the cortical neurons can

convey signals related to binocular depth perception.

Recordings from the cortices of cats and macaques show

that the disparity populations are structured in V1 (Barlow

et al. 1967), V2 (Nienborg et al. 2006), V3/V3A (Hubel

et al. 2015; Anzai et al. 2011), and MT (DeAngelis et al.

1998; Krug et al. 2011). Functional magnetic resonance

imaging (fMRI) studies of the human visual cortex report

that V3A, V7, MT, and LO produced disparity-evoked

responses (Bridge et al. 2007; Backus et al. 2001; Neri

et al. 2004).

As initial studies of the visual field were dominated by

univariate analyses, i.e. general linear model (GLM) pro-

posed by Friston et al. (1995), research on the interaction

between neurons or voxels was relatively scarce. Recently,

however, researchers have introduced multivariate pattern

analysis (MVPA) (Norman et al. 2006) to characterize

multivoxel pattern selective perception of binocular dis-

parity (Preston et al. 2008; Li et al. 2017), decode the depth
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position (Finlayson et al. 2017) and discriminate the

binocular disparity categories (Li et al. 2017) across the

human visual cortex. Compared with traditional univariate

method, MVPA methods are more sensitive which capture

the correlative information among voxels. The most com-

monly used MVPA methods were the machine learning

methods, such as ‘one-nearest neighbor’ classifier (Haxby

et al. 2001), support vector machine (SVM) (Norman et al.

2006), logistic regression model (Yamashita et al. 2008)

and random forest (Langs et al. 2011). However, as

Naselaris pointed out, most of these MVPA methods use

patterns of activity across an array of voxels to discriminate

between different levels of stimulus, experimental or task

variables (Naselaris et al. 2011). Therefore, they do not

fully utilize the discriminative information across brain

regions, and the explorations of the hidden connections

(such as functional connectivity) between voxels or regions

of interest (ROIs) are especially scarce.

Functional connectivity (FC) patterns in fMRI can

exhibit dynamic behavior in the range of seconds (Deli

et al. 2017) and with a rich spatiotemporal structure,

thereby providing a novel representation of mental states.

Functional connectivity refers to the functionally integrated

relationship between spatially separated brain regions that

represent similar patterns of activation (Smith et al. 2011;

Tozzi et al. 2017). FC can be extracted at different spatial

scales (Betzel et al. 2017), such as at the level of the whole

brain, across a set of related brain regions, or within a

specific ROI. Establishing FC patterns first requires the

definition of functional nodes based on spatial ROIs, after

which a connectivity analysis between each pair of nodes

based on their fMRI time series may be performed (Pan-

tazatos et al. 2012).

Functional connectivity (FC) patterns have been suc-

cessfully used to decode subject-driven cognitive states,

such as memory retrieval, silent-sing, mental arithmetic,

rest (Shirer et al. 2012), emotion categories (Pantazatos

et al. 2012; Dasdemir et al. 2017), object categories

(Hutchison et al. 2014; Wang et al. 2016; Fields et al. 2017;

Liu et al. 2018), semantic representation (Fang et al. 2018;

Mizraji et al. 2017), visual attention (Parhizi et al. 2018),

and tracking ongoing cognition (Gonzalez-Castillo et al.

2015). However, whether the disparity information in 3D

perception can be represented by FC patterns and whether

functional connectivity across brain areas facilitates the

discrimination of disparity categories still remain

unknown. Previous studies using traditional MVPA meth-

ods have revealed that many single brain regions are

involved in disparity processing (Preston et al. 2008; Li

et al. 2017). However, few studies have investigated per-

ceptual binocular disparity at the whole-brain level, as it

may require the amalgamation of calculations conducted at

the voxel or neuronal level. Calculations based on FC

patterns are much smaller than those based on voxel or

neuronal patterns, providing the approach suitable to study

the perception of binocular disparity at larger scales level.

In addition, the potential contributions of FC patterns to

characterize binocular disparity recognition at large scales

remain unexplored.

To estimate FC pattern of implicit disparity processing,

we introduced traditional fMRI block design to obtain

blood oxygen level dependent (BOLD) activity. To decode

disparity categories, the present study constructed FC

patterns at three different spatial scales: whole brain, visual

cortex, and single ROI. The discrimination of FC patterns

is evaluated by Random Forest classifier. To verify the

superiority of FC patterns, we also compared accuracies

achieved when using interactivity (pair-wise correlations)

versus independent voxel (voxels time series) within the

same visual-cortex ROIs.

The remainder of the paper is organized as follows.

‘‘Materials and methods’’ section describes our datasets

and the details of the proposed data-processing method. In

‘‘Results’’ section, the results of accuracies of decoding the

three disparity level accuracies under the three spatial scale

FC patterns were presented. Finally, in ‘‘Discussion’’ sec-

tion, the details of results are discussed, including the

potential implications of this study and indication of future

directions of related researches.

Materials and methods

Materials

Participants

Twenty-seven participants (13 men; right-handed; median

age, 25 years) volunteered for the experiment and were

compensated for their time. All participants had normal or

corrected-to-normal visual acuity; provided written,

informed consent; and were debriefed on the purpose of the

study immediately following completion. Participant

recruitment and experiments were conducted with the

approval of the Beijing Normal University (BNU) Imaging

Center for Brain Research, National Key Laboratory of

Cognitive Neuroscience and Learning as well as the

Human Research Ethics Committee. All participants were

screened for stereo deficits using four stereo tests (Yan

1985). The stereo tests guaranteed that the participants

were able to distinguish between crossed and uncrossed

disparities in the experiment. Meanwhile, after the exper-

iment, we asked each participant if they could perceive the

disparity in the crossed-disparity and uncrossed-disparity

tasks. All participants responded that they could perceive

the disparity.
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fMRI data acquisition

A 3T Siemens scanner equipped for echo planar imaging

(EPI) at the Brain Imaging Center of BNU was used for

image acquisition. For each participant, functional images

were collected with the following parameters: repetition

time (TR), 2000 ms; echo time (TE), 30 ms; flip angle

(FA), 90�; field of view (FOV), 200 9 200 mm2; in-plane

resolution, 3.13 9 3.13 mm2; 33 slices; slice thickness,

3.5 mm; gap thickness, 0.7 mm. The localizer scans were

obtained using the EPI with the following parameters: TE,

30 ms; TR, 2000 ms; flip angle, 90�; FOV;

192 9 192 mm2; in-plane resolution, 3 9 3 mm2; 33 sli-

ces; slice thickness, 3 mm; gap thickness, 0 mm.

Stimuli and experimental design

The present study used forty stimulus shapes (Fig. 1) with

a line width of 1.3�. Each shape covered a maximum visual

angle of 12� 9 12� and was presented against a mid-gray

background (26� 9 14�). A CIE 1931 xyY color space was

used to describe the luminance and chromaticity values of

the shape (Y = 1130, X = 1/3, y = 1/3) and background

(Y = 672, x = 1/3, y = 1/3). For each shape, we generated

stimuli with 3 different levels of disparity (± 30 arcmin

and 0 arcmin). The positive disparity levels (? 30 arcmin)

correspond to uncrossed-disparity and the negative dis-

parity levels (- 30 arcmin) correspond to crossed-dispar-

ity. The stimuli presented in our experiments totaled to

120. Each stimulus was displayed using a 3D LCD with

LED Backlight (LGD 2343p, 1920 9 1080 pixels)

positioned in the bore of a magnet at a distance of 110 cm

from the point of observation. Participants wore polarized

glasses and viewed the stimuli through a mirror attached to

the head coil and tilted at 45�.
For the selection of crossed and uncrossed disparity

levels, the disparity levels varied from - 36 to 36 arcmin

in studies of Preston et al. (2008) and Goncalves et al.

(2015). In our study, the crossed and uncrossed disparity

levels (± 30 arcmin) is within the disparity range in those

previous studies. Moreover, Minini’s study pointed out that

large disparities can induce stronger neural activities in

visual cortex than small disparities (Minini et al. 2010).

Meanwhile, previous fMRI studies indicated that larger

disparity can easily cause the visual fatigue (Lambooij

et al. 2009) and the decrease in cortical activity (Backus

et al. 2001). Considering the cortical activity and the visual

fatigue, very large or small disparity levels are not fit for

our experiment. So the selected disparity levels in our

study (± 30 arcmin) should be reasonable.

The fMRI experiment featured a block-design paradigm

that consisted of two runs. Crossed-disparity (C), uncros-

sed-disparity (U), and zero-disparity (Z) tasks were pre-

sented in a pseudorandom fashion. The stimuli sequences

CUZUZCZUCZCU and UCZCZUZCUZUC indicate two

sequential runs, where C, U, and Z refer to crossed-dis-

parity, uncrossed-disparity and zero-disparity blocks,

respectively. Each run consisted of twelve 24-s task blocks.

Between successive blocks, we displayed a 12-s fixation

block. An individual trial consisted of a stimulus shape

presentation period of 1.5 s and an inter-stimuli interval of

0.5 s, thus 2 s in total. Twelve trials with the same disparity

Fig. 1 Schematic illustration of the stimuli-viewing task (Li et al. 2017). a Forty shapes that were used to generate stimuli with different

disparities. b Diagram of the depth arrangement in the stimuli. c The experiment featured a block-design paradigm that consisted of two runs
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were presented in a given task block. Twelve stimulus

shapes included in each block were randomly selected from

forty stimulus shapes (Fig. 1). During the task block, each

participant was required to press a button with his or her

right index finger if the two successive stimuli were dif-

ferent and with his or her left index finger if the two suc-

cessive stimuli were the same. During the fixation blocks,

participants were asked to fixate on a cross at the center of

the screen.

Data preprocessing

The preprocessing of functional images was performed

using SPM8 (Welcome Department of Cognitive Neurol-

ogy, University College of London, London, UK; https://

www.fil.ion.ucl.ac.uk/spm/) and the DPABI toolbox

(Chao-Gan et al. 2016). The processing included the

deletion of the first five volumes due to artifacts related to

signal stabilization in the initial images of each session,

realignment, normalization, and smoothing. The fMRI

images were realigned to the first image of the scan run and

normalized to the Montreal Neurological Institute (MNI)

template. The voxel size of the normalized image was set

to 3 9 3 9 4 mm3. Images were smoothed with an 8-mm

full-width at half maximum (FWHM) Gaussian kernel.

ROI

For whole-brain FC patterns, we used the Harvard–Oxford

Atlas to obtain 112 ROIs across the entire in every subject.

For FC patterns across visual cortical areas, we mapped

visual regions to select ROIs for each participant, using

standard mapping techniques. Retinotopic areas V1, V2d,

V3d, V7, V2v, V3v, and V4v were defined using rotating

wedges and expanding stimuli comprised of concentric

rings. V4v was defined as the region of retinotopic acti-

vation in the ventral visual cortex adjacent to V3v. V7 was

defined as the region anterior and dorsal to V3A. The

human motion complex (hMT ?/V5) and localizing image

(LOC) were defined using independent localizer scans. The

hMT ?/V5 area was defined as the set of voxels in the

lateral temporal cortex that responded with a significantly

high rate (p\ 10-4) to a coherently moving array of dots.

The LOC was defined as the set of voxels in the lateral

occipito-temporal cortex that produced significantly stron-

ger responses (p\ 10-3) to intact object images than to

scrambled images (Kourtzi et al. 2000). The scrambled

images were created by dividing the intact images in a

square grid and by scrambling the positions of each of the

resulting squares.

For each visual ROI in the Talairach space, gray matter

voxels were selected from both hemispheres and sorted

according to their T-statistics calculated by contrasting all

stimulus conditions (C, U, and Z) with the fixation baseline

across the two runs. For each hemisphere of each ROI, 100

voxels were selected from among those with a T of[ 0 as

calculated via the aforementioned T-statistical analysis.

When 200 voxels were not available in a cortical area, we

used the maximum number of voxels that featured a

T-statistic of [ 0. For example, only 194 voxels were

selected from the V3v area in participant 1.

Methods

Sliding window

The classification problem in fMRI data is described using

the following mathematical formula:

f : fMRI sequenceðt1; t2Þ ! k ð1Þ

where t1; t2ðt1\t2Þ are two different time points, and k is

the category of binocular disparity of the 3D images

viewed by the subject. We thus mapped the FC patterns

constructed in the time interval (t1; t2) to the respective

binocular disparity categories.

Previously, a limited set of mental tasks (Shirer et al.

2012; Richiardi et al. 2011), different categories of object

(Wang et al. 2016), and arousal levels (Tagliazucchi et al.

2012) were discriminated in task fMRI studies on the basis

of localized changes in FC in the range of 45 s to 2 min. In

our experiment, one block only consists of 12 time points,

and we were concerned that fMRI time series in one block

are not long enough to estimate a stable FC pattern. In

addition, Pantazatos et al. (2012) have adopted fMRI time

series of two blocks to estimate FC patterns to decode

unattended fearful face states successfully. Based on these

findings, we adopted two different window lengths (48 s

and 72 s) to estimate the FC pattern of each disparity task

across multiple blocks.

We concatenated all TRs under the same disparity cat-

egories and obtained corresponding concatenated fMRI

time series for C, U, and Z. There was a total of 96 TRs for

each concatenated category time series. Segmentation of

the fMRI time series without any overlap would have

yielded small sample sizes and resulted in overfitting.

Instead, a sliding-window method allowed for the analysis

of temporal cross-correlations between windowed seg-

ments of the BOLD fMRI signal over time. Here, the

sliding window had a step of one TR along the fMRI time

series. FC patterns for the nodes i and j in the sliding

window were estimated based on the correlations among

ROIs as follows:
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q i;j;t;w ¼
Pt

s¼t�w�1 ðyi;s � l̂i;wÞðyj;s � l̂j;wÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pt

s¼t�w�1 ðyi;s � l̂i;wÞ2
� � Pt

s¼t�w�1 ðyj;s � l̂j;wÞ2
� �r

ð2Þ

where w is the length of the sliding window, t represents

the time point, w indicates t2 � t1, and i; j denote the ROI

index (or voxels), qi;j;t;w represents the functional connec-

tivity values of two brain regions (ROIs or voxels) under

time-series length w, and li;w represents the time series

mean value along the sliding window w.

We obtained the FC pattern matrices between each pair

of nodes for each fMRI segment by:

Xk
t ¼ ðqi;j;t;wÞi;j ð3Þ

where i; j ¼ 1; . . .;m, m represents the number of nodes

(ROIs or voxels), Xk
t represents the FC pattern matrices of

k category of binocular disparity at time point t. Each FC

pattern was a m� m connectivity symmetry matrix. Given

the symmetry of FC pattern matrices, the lower-left trian-

gle matrix was used to reflect the connectivity strengths

among all m ROIs.

FC pattern space

For each binocular disparity category, the brain-state space

was denoted as Xk, while k indicated the category of

binocular disparity level of a given stimulus. In previous

studies on binocular disparity, the brain-state space was

represented by patterns of voxel activation, assuming that

voxel patterns are independent of one another. This notion

has dominated many methods via an essential spatial

coding mechanism across signal independent-neuronal

populations, ignoring the relationships among regions. In

fact, the FC patterns can identify these correlations among

brain regions. In our study, a brain-state space of binocular

disparity was projected onto the space represented by FC

features. We denoted the FC pattern samples in each cat-

egory space as

xkt ¼ linearly lowhalf ðXk
t Þ

� �

¼ ðq1;1;t; q2;1;t; . . .; qi;jði� jÞ;t; . . .; qm;m;tÞ

¼ ðx1;t; x2;t; . . .; xM;tÞ; M ¼ mðm� 1Þ
2

:

ð4Þ

where xkt represents FC pattern samples in k category

space. All FC patterns xkt for each disparity category were

pooled together to yield the FC pattern spaces of each

category. Furthermore, we calculated the lower-left trian-

gle matrix

Xk ¼ xkt t ¼ 1; . . .; nj
� �

;Xk � Xk ð5Þ

where n is the number of samples (FC patterns) for a given

disparity category, and k denotes the disparity category.

The construction of FC-pattern spaces can be summa-

rized into two steps: (1) all the time series for a given

category were segmented with a sliding window, and (2)

windowed fMRI time series of all m ROIs were used to

compute the FC matrix. Within each window, we averaged

all voxel values within a ROI to compute ROI the time

series. We then calculated the ROI-pairwise correlations.

The lower-left triangle matrix Xk was used as the brain

representation of disparity stimuli in the classification

model. Figure 2 shows the flow of the decoding disparity

categories using MVPA based on FC patterns.

MVPA

MVPA refers to a diverse set of methods that analyze

neural response as patterns of activity that reflect the

varying brain states that a cortical field or system can

produce (Haxby 2012). MVPA analyzes brain activity with

methods such as pattern classification, representational

similarity analysis, hyperalignment, and stimulus-model-

based encoding and decoding. MVPA treats the fMRI

signal as a set of pattern vectors stored in an N �M matrix

with N observations (e.g., stimulus conditions, time points)

and M features (e.g., voxels, cortical surface nodes, func-

tional connectivity) defining an M-dimensional vector

space (Haxby et al. 2014). The goal of MVPA is to analyze

the structure of these high-dimensional representational

spaces. The random forest (RF) is an ensemble classifier

that uses decision trees as base learners (Breiman 2001). In

visual fMRI task, Langs et al. (2011) found that RF could

detect stable distributed patterns of brain activation and

capture the complex relationships between the experi-

mental conditions and the fMRI signals. Therefore, RF was

used to classify the functional connectivity patterns of

different tasks.

Classifier

We denoted the training data and test data as follows:

Ttrain ¼ ðxi; kÞ i ¼ 1; . . .; n1jf g; xi 2 Xk

Ttest ¼ ðxj; kÞ j ¼ 1; . . .; n2j
� �

; xj 2 Xk
ð6Þ

where xi; xj represents the FC patterns, k denotes the dis-

parity category, n1; n2 represent the sample number. The

four fMRI blocks from the first runs were used to train the

classifier and the four fMRI blocks from the second runs

were used compile the test dataset.

Decision trees are discriminative classifiers performing

recursive partitioning of a feature space to yield a poten-

tially non-linear decision boundary. The objective of
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decision tree building is to obtain the set of decision rules

that can be used to predict the outcome of a set of input

variables. At each decision node of the decision tree, the

CART algorithm (Breiman 2017) seeks cut-off points in

the continuous variable function f that minimize the Gini

value. The Gini value was computed as follows:

iðf 0 Þ ¼
X

k 6¼l

pðk f
0�

� Þpðl f 0
�
� Þ ð7Þ

where k; l denote the class of the disparity level, and pðk f 0j Þ
is the conditional probability of class k for the FC pattern

feature f 0.

Fig. 2 The flowchart of the task and analysis procedures. a Partic-

ipants were presented in various block (24 s in length) with depth

information of three categories-crossed disparity (C), uncrossed

disparity (U), and zero disparity (Z), putting together the same depth

information EPI sequences by the cross block technique. b Choosing

appropriate ROIs atlas. c Constructing FC patterns space. Firstly, time

series were extracted from each ROI, and then using a length window

with fixed step to sliding the time series, calculating the pairs of ROI

time sequence correlation coefficient under the fixed window length

relative to each category, last taking the lower half of the matrix and

transform it into a vector. d Category-paired samples and Random

Forest machine learning model were trained in training set and tested

in test set. XK
i represent i set of FC patterns space of K state (C, U, Z)
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The FC samples were randomly selected from the

training set to yield a new training set. An arbitrary number

of K attributes of the samples in the new training set were

then randomly selected to train a Decision Tree classifier

using the CART methodology (Breiman 2017) without

pruning. Repeating the above process N times we obtained

a Random Forest model containing N classifiers. The final

disparity category was voted by the N classifiers. In the

experimental process N was set to 40. The random forest

was implemented with sklearn (Abraham et al. 2014) on

Python 3.6 with the following parameters: boot-

strap = True, class_weight = None, criterion = Gini value,

max_depth = None, max_feature = sqrt, max_leaf_nodes =

None, min_impurity_decrease = 0.0, min_impurity_split

= None, min_samples_leaf = 1, min_samples_split = 2,

min_weight_fraction_leaf = 0.0, n_trees = 40, random_

state = None.

Results

Results of individual classifiers

Figures 3 and 4 show the decoding accuracies of the FC

patterns under the three disparity conditions at the indi-

vidual level. FC patterns were extracted at different slid-

ing-window lengths (48 and 72 s) and brain areas (whole

brain and visual areas) to train classifiers for each subject.

For the 48-s (24-TR) sliding window, we obtained 25

(48 - 24 ? 1) training samples from the first run and 25

testing samples from the second run per subject and cate-

gory. For the 72-s (36-TR) sliding window, we obtained 13

(48 - 36 ? 1) training samples from the first run and 13

testing samples from the second run. Figures 3 and 4 dis-

play the individual results from the FC patterns in the

whole brain and visual areas, respectively.

The average binary accuracy was 80.2% for the 48-s FC

patterns covering the whole brain and 94% when the

sliding window increased to 72 s (Fig. 3). The classifica-

tion accuracy of 72-s window was significantly better

(p\ 0.05) than that of the 48-s FC pattern for both the two-

category and the three-category classification.

The average binary classification accuracies of the FC

patterns restricted to visual areas were 79% for the 48-s FC

pattern and 78% for the 72-s FC pattern (Fig. 4). There was

no significant difference between the two values. Com-

paring these results to those obtained for the whole-brain

FC pattern, we found that the classification effect was

better for the whole brain than for the ROIs in a single

visual area.

Results of common classifiers

Our analysis of individual results demonstrated that FC

patterns computed from windowed fMRI time series can

predict the viewed image category at the individual level.

We further investigated the comparison among individual

FC patterns with the performance of a universal classifier

in all subjects. All samples from the 27 subjects were

pooled together to yield an across-subject dataset. For the

48-s and 72-s sliding windows, the training datasets across

Fig. 3 The average decoding classification accuracies from two kind

time scale FC pattern on individual subject. Figure showed the three

binary classification, including crossed disparity(C) versus uncrossed

disparity(U), crossed disparity(C) versus zero disparity(Z), uncrossed

disparity(U) versus zero disparity(Z), and one three classification (C

vs U vs Z). Error bar represent the variance between all subjects.

Asterisk represent the significant difference (p\ 0.05), which was

obtained by paired t test

Fig. 4 The average decoding classification accuracies from two kinds

of brain visual area FC pattern on individual subject. Figure show

three binary classification, including crossed disparity(C) versus

uncrossed disparity(U), cross disparity(C) versus zero disparity(Z),

uncrossed disparity(U) versus zero disparity(Z), and one three

classification (C vs U vs Z). Error bar represent the variance between

all subjects. Asterisk represent the significant difference (p\ 0.05),

which was obtained by paired t test
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subjects contained 1350 (50 9 27) and 702 (26 9 27)

samples per disparity category, respectively. We randomly

divided the data set into five subsets and applied the

Random Forest models to classify the FC patterns

according to five-fold cross-validation. The average

decoding accuracy results of the binary classification and

the three-way classification of the FC patterns in the whole

brain and the visual areas are shown in Figs. 5 and 6,

respectively.

The average binary decoding accuracies for common

classifiers were 58% (48-s FC) and 59% (72-s FC) at the

whole-brain level (Fig. 5). The difference between these

measurements was non-significant. The across-subject

average binary decoding accuracies were 67% (48-s FC)

and 65% (72-s FC) at the brain visual level (Fig. 6). The

difference between the two values was also non-significant.

Of note, both pairs of values were significantly above

chance (50%). Comparing the results presented in Figs. 5

and 6, we found that the classification effect of the FC

pattern in the visual area is better than the classification

effect of the whole-brain FC pattern, regardless of the time

window.

Comparison of voxel activation and FC patterns

The classification results using voxel activation and FC

patterns of selected ROIs in visual areas are shown in

Fig. 7. The time series course of each voxel was detrended

and transformed into a z-score for each experimental run.

The FC pattern in the signal ROI was obtained by

calculating the correlation matrix among voxels in the ROI

with a 72-s sliding window.

We found that the classification accuracies of the FC

pattern were significantly better than those of the voxel

pattern for all ROIs in all subjects (Fig. 7). We also found

that V7, V3d, V3A, and MT showed the highest accuracy

during the decoding disparity level of the FC patterns.

Discussion

The present experiment represents that FC patterns

extracted from fMRI data can be used to discriminate

disparity categories in 3D images. As the extraction of the

FC pattern requires enough long time series of fMRI data,

we concatenated TRs in different blocks that presented

stimuli of the same categories. We then used sliding-win-

dow technology to construct fMRI segments corresponding

to FC samples. To obtain the nodes in the FC patterns, we

considered different spatial scales, including whole-brain

and visual-area FC patterns. We then verified the perfor-

mance of binocular disparity decoding from the FC pat-

terns by adopting a machine-learning method (random

forest). We also evaluated the effect of decoding disparity

level at the individual and across-subject levels. Our find-

ing that decoding accuracies were generally above chance

level demonstrates that FC patterns represent the infor-

mation that is involved in the processing of disparity cat-

egories. Our comparison between the classification effects

of the FC patterns and voxel values in visual-area ROIs

further supports the superiority of the former.

To decode disparity categories at the individual level,

we adopted two sliding windows (24 TR and 36 TR) at

Fig. 5 The average decoding classification accuracies from two kinds

of whole brain FC pattern across subject. Figure show the three binary

classification, including crossed disparity (C) versus uncrossed

disparity (U), crossed disparity (C) versus zero disparity (Z),

uncrossed disparity (U) versus zero disparity (Z), and one three

classification (C vs U vs Z). Error bar represent the variance between

all subjects. Asterisk represent the significant difference (p\ 0.05),

which was obtained by paired t test

Fig. 6 The average decoding classification accuracies from two kinds

of brain visual area FC pattern across subject. Figure show the three

binary classification, including crossed disparity (C) versus uncrossed

disparity (U), crossed disparity (C) versus zero disparity (Z),

uncrossed disparity (U) versus zero disparity (Z), and one three

classification (C vs U vs Z). Error bar represent the variance between

all subjects
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three spatial scales (ROI, visual area, whole brain). For the

whole-brain and visual-area FC patterns, we found that

both sliding windows could decode the disparity category

with accuracy above chance level, indicating that FC pat-

terns contain discrimination information for different

stimulus tasks when the subject viewing different disparity

categories at short temporal scales. These results agree with

those of previous studies: FC can reflect discriminative

information for decoding categorical (Wang et al. 2016;

Stevens et al. 2015) or semantic information (Pantazatos

et al. 2012; Fang et al. 2018). For the whole-brain FC

patterns, we found that the classification effect of the 72-s

FC pattern was significantly higher than that of the 48-s FC

pattern but identified no significant differences among the

local visual-area FC patterns. This finding suggests that

additional time points may be important to estimate the of

stable FC patterns at large-scale spatial FC patterns level.

Furthermore, the classification results of the whole-brain

FC pattern were better than those of the local visual-area

FC pattern. This finding agree with those of previous

studies reporting that: the whole-brain FC pattern contains

more information to decode brain states (Shirer et al. 2012;

Gonzalez-Castillo et al. 2015; Richiardi et al. 2011). For

the whole-brain FC pattern, the mean accuracies of the 48-s

and 72-s FC patterns were above 80%, providing further

support for the feasibility of separating fMRI time series

into time windows of 30–60 s to identify favorable whole-

brain connectivity (Shirer et al. 2012; Gonzalez-Castillo

et al. 2015; Allen et al. 2014; Yang et al. 2014).

For the across-subject classification results, the effect

accuracy of the whole-brain FC patterns was much lower

than the individual-subject level, indicating variance

between subjects was large, and the whole-brain FC pat-

terns cannot overcome variance at a short temporal scale.

However, the classification effects of local visual-area FC

patterns were better than whole-brain FC patterns. This

finding may be attributed to less variance between subjects

at the level of local visual areas than at that of the whole

brain.

As shown in Fig. 7, the classification accuracies using

MVPA based on FC patterns were higher than those based

on the voxel time series values. Our comparison demon-

strates that the three binary classifiers utilized more dis-

crimination information to decode disparity information

than that conveyed in the voxel time series. This conclu-

sion is also confirmed by previous research (Pantazatos

et al. 2012; Wang et al. 2016). Pantazatos et al. (2012)

found that functional connectivity features are more

informative than beta estimates derived from the original,

smaller voxel size when they decoded unattended fearful

faces using MVPA based on voxel patterns and FC pat-

terns. Wang et al. (2016) successfully decoded four object

categories based on FC patterns in whole-brain areas, even

when the contributions of regions showing classical cate-

gory-selective activations (general linear model analysis

Fig. 7 The comparison results of decoding disparity categories using

MVPA based on functional connection pattern and voxel pattern

within 10 visual ROIs. The error bar represented the standard error

mean. Asterisk represent the significant difference (p\ 0.05), which

was obtained by paired t test. a The mean prediction accuracies of

crossed disparity(C) versus uncrossed disparity (U). b The mean

prediction accuracies of crossed disparity (C) versus zero disparity

(Z). c The mean prediction accuracies of zero disparity (Z) versus

uncrossed disparity (U)
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based on voxels) were excluded. In the present study, the

decoding results from the ROIs in the areas V7, V3d, V3A,

and MT were relatively better than those from other ROIs

in visual areas, which support previous findings that ROIs

in these visual areas better perceive disparity categories

(Bridge et al. 2007; Anzai et al. 2011; DeAngelis et al.

1998; Neri et al. 2004). Of note, V7, V3d, and MT are

situated in dorsal areas of the brain; our results therefore

agree with previous reports of dorsal areas evincing more

adaptation to disparity categories (Preston et al. 2008; Li

et al. 2017). Previous research has further shown that

areaV3A contributes the most to the perception of disparity

levels; however, our results contradict this finding. As V3A

is adjacent to V3d and V7, the ROIs of these areas may

overlap, and we therefore speculate that small deviations

that rise when the single ROIs are manually cut may lead to

the conflicting data. Regardless of this inconsistency, prior

research and our own results indicate that visual areas that

respond strongly to binocular disparity are located in the

dorsal visual cortex.

Several additional factors may contribute to the high

accuracy of decoding disparity information. First, func-

tional connectivity across ROIs contain more information

than a single ROI or voxel. Second, the Random Forest

model is a boost classifier that can improve the accuracy of

category decoding. Third, we used sliding window tech-

nology to construct functional connectivity patterns. A

sliding window analysis is typically marred by a relatively

small number of data points, which may be overcome with

recent technological advances in fMRI acquisition (Bacz-

kowski et al. 2017). For example, multiband imaging

allows for sub-second repetition times (Feinberg et al.

2010) and thereby increases the number of sample points.

This feature further increases the robustness of correlation

estimates and enables a better characterization of high-

frequency components, which are mostly affected by non-

neuronal noise, such as cardiac and respiratory rhythms.

Finally, the face that we considered whole-brain connec-

tivity patterns instead of a subset of connections may have

increased accuracy for the shortest windows. Gonzalea-

Castillo et al. (2015) also found that valuable information

for tackling cognition is spatially distributed across the

whole brain.

Even though accuracies of decoding binocular disparity

categories by FC patterns were higher than voxel patterns,

the former method still has some limitations. For example,

estimating FC patterns requires much more time informa-

tion than MVPA methods based on voxel patterns. Finally,

our investigation did not consider the peak information of

brain networks, such as vertex-position information or

vertex angle information. Combining our results with such

peak information may better characterize brain state pat-

terns to decode 3D visual categories.

Conclusion

In this study, MVPA based on FC patterns was adopted to

decode disparity categories. We constructed FC patterns at

three different spatial scales by calculating the correlations

of BOLD time series across different ROIs or voxels. Our

results indicate that FC patterns could be used as brain-

state patterns to decode 3D visual information. Comparing

the effects of MVPA based on FC patterns and those based

on voxel patterns, we found that FC patterns contained

more discrimination information during the decoding of

disparity categories. Our method is different from previ-

ously reported MVPA methods based on voxels or ROIs, in

that, it identifies effective connectivity information patterns

whose feature representation functions have yet to be

investigated in 3D image. Our research therefore highlights

the importance of exploring functional connectivity pat-

terns to achieve a full understanding of 3D image

processing.
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