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Abstract
Quantifying brain dynamics during anesthesia is an important challenge for understanding the neurophysiological

mechanisms of anesthetic drug effect. Several single channel Electroencephalogram (EEG) indices have been proposed for

monitoring anesthetic drug effect. The most commonly used single channel commercial index is the Bispectral index (BIS).

However, this monitor has shown some drawbacks. In this study, a nonlinear functional connectivity measure named

Standardized Permutation Mutual Information (SPMI) is proposed to describe communication between two-channel EEG

signals at frontal and temporal brain regions during a controlled propofol-induced anesthesia and recovery design from

eight subjects. The SPMI index has higher correlation with estimated propofol effect-site concentration and has better

ability to distinguish three anesthetic states of patient than the other functional connectivity indexes (cross-correlation,

coherence, phase analysis) and also the BIS index. Moreover, the SPMI index has a faster reaction to the effect of drug

concentration, less variability at the consciousness state and better robustness to noise than BIS.
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Introduction

Monitoring depth of anesthesia (DOA) is a major ongoing

challenge for anesthetists to reduce anesthetic drug con-

sumption, avoiding intraoperative awareness (Sebel et al.

2004; Gugino et al. 2001) and prolonged recovery (Monk

et al. 2005). Because the main target of anesthetic drug

effect is in central nervous system, electroencephalogram

(EEG) signal processing is useful for monitoring DOA.

EEG is well accepted due to high temporal resolution and

widely used in clinical application (Mumtaz et al. 2017;

Hou et al. 2017; Talebi et al. 2018; Mohammadpoory et al.

2019; Hejazi and Nasrabadi 2019).

In recent years, a number of single channel EEG-based

non-linear approaches such as fractal (Gifani et al. 2007;

Nguyen-Ky et al. 2010; Li et al. 2017a, b), Bayesian

analysis (Nguyen-Ky et al. 2013, 2014), relative power

spectrum density (Liang et al. 2018; Saadeh et al. 2019;

Shalbaf et al. 2019) Hilbert–Huang transform (Shalbaf

et al. 2012a, b), Phase-rectified signal averaging (Liu et al.

2017a, b), distribution of auto-regressive moving average

model parameters (Kuhlmann et al. 2017) and entropy

(Shalbaf et al. 2012a, b, 2013, 2018; Liang et al. 2015; Li

and Wen 2017; Mateos et al. 2018) have been proposed for

DOA assessment. The most commonly used single channel

EEG-based commercial monitor of DOA is the bispectral

index (Rampil 1998) (BIS, Aspect Medical Systems,

Newton, MA). But, this monitor has shown some draw-

backs such as sensitivity to artifact (Nguyen-Ky et al.
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2013), failure to respond to some anesthetic drugs (Jo-

hansen and Sebel 2000), and large time delays in response

to EEG changes (Pilge et al. 2006; Shalbaf et al. 2013;

Hagihira et al. 2001).

To better understand the effects of anesthetic drugs, it is

important to study not only single channel EEG in one

region, but also how the functional connectivity of different

areas of the brain in multi-channel EEG signals are chan-

ged. Anesthetics disturb communication between cortical

areas (Schrouff et al. 2011; Alkire et al. 2008; Nallasamy

and Tsao 2011; Lee et al. 2009a, b), and consequently

impair large-scale integration of information, hypothesized

to be a prerequisite to proper brain function, particularly

conscious perception (Schrouff et al. 2011; Alkire et al.

2008). Therefore, disconnection or suppression of com-

munication between brain regions, especially frontal to

parietal regions (Lee et al. 2009a, b) is hypothesized to be

an important factor in causing unconsciousness. Functional

connectivity methods have been proposed to assess rela-

tionships between simultaneous, but spatially separated,

signals (Pereda et al. 2005; Breakspear 2004; Stam 2005).

Some of the traditional linear functional connectivity

measures in the time and frequency domain such as Cross-

correlation (COR) and Coherence (COH) have been pro-

posed in multi-channel EEG signals during general anes-

thesia (Li et al. 2013; Hayashi et al. 2014; Akeju et al.

2014; Li et al. 2017a, b). But, these techniques encounter

problems with nonlinear and nonstationary EEG signals.

Another commonly used method of functional connectivity

is the phase difference of multi-channel EEG signals

named phase locking value (PLV) (Lachaux et al. 1999;

Nicolaou and Georgiou 2014; Pal et al. 2017). But, this

method is also sensitive to artifacts and nonlinear coupling

in EEG signals. Considering the points mentioned above,

nonlinear methods of functional connectivity might be

more useful for studying interdependence of multi-channel

EEG signals. Recently, nonlinear methods of functional

connectivity such as mutual information and an improved

method, Standard Permutation Mutual Information (SPMI)

have been widely applied for neurological disease diag-

nosis, such as seizures, Alzheimers dementia, and autism,

in multi-channel EEG analysis (Abásolo et al. 2008; Hall

Jr. and Sarkar 2011; Langen et al. 2009). Therefore,

characterizing brain dynamics using nonlinear functional

connectivity methods might be an important tool for

understanding and tracking the neurophysiological mech-

anisms of anesthetics.

In this work, SPMI index is utilized to investigate the

nonlinear functional connectivity of long-range two-chan-

nel EEG signals from frontal and temporal montages dur-

ing a controlled propofol-induced anesthesia and recovery.

We want to evaluate the performance of this index for

tracking anesthetic drug concentration and the ability to

distinguish three different states (awake, unconscious and

recovery states) and finally to compare with the BIS index

as single channel EEG-based commercial monitor of DOA.

Materials and methods

Subjects and data acquisition

With the approval of the Waikato Hospital Ethical Com-

mittee, EEG data of eight volunteers (five male and three

female, weight 59–120 kg, age 18–42 years) under

Propofol anesthetic were used in this study. The details

have been previously published (Williams and Sleigh

1999). All subjects gave written informed consent. Two

bipolar EEG signals were recorded at the position of Fp1-

F7 and C3-T3 according to the 10–20 international system

using scalp electrodes. The reference electrode was posi-

tioned at FpZ. By these montages, EEG activity of the left

prefrontal and left temporal was acquired. The EEG signals

and also BIS index (extracted from the pre-frontal region)

were recorded using the A-1000 BIS monitor (Aspect

Medical Systems, Natick, MA, USA) with the sampling

rate 256 Hz and 0.2 Hz, respectively. The EEG signal pre-

processing consists of three steps: Low and high frequency

filters of EEG signal set at 0.5 and 70 Hz, respectively.

Also, the notch filter is set at 50 Hz. Finally, raw EEG data

exceeding amplitude of 200 lV were removed as outlier

points. The range of the value of BIS index is between 0

and 100, but is transformed to 0–1 for comparison with

other indexes.

All subjects had a continuous infusion of Propofol at

fixed concentration of 150 ml/h (1500 mg/h) via a syringe

pump after intravenous access, and simultaneously the BIS

index and the two mentioned channel EEG signals were

recorded. Induction was stopped, when the subjects lost

consciousness. Loss of consciousness (LOC) time was

defined the time of dropping a syringe filled with water,

held between forefinger and thumb. Then, the subjects

were allowed to awake and a pre-recorded tape of random

numbers and some verbal commands such as ‘‘move your

left foot’’ at 10-s intervals was played. When the subjects

were able to respond the verbal commands correctly, the

recovery time or recovery of consciousness time was

started. 60 s after this time, the study was terminated. So in

this study, three states named awake (10 s after beginning

of study), unconscious (after LOC time) and recovery (after

responding to verbal commands) are assessed. The

sequence diagram of the experimental design over the

whole experiment period is demonstrated in Fig. 1.
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Cross-correlation (COR)

The cross-correlation is one of the classical measures of

linear interdependence between the magnitude two time

series x(t) and y(t) in time domain (Pereda et al. 2005):

Cxy ¼
1

N � s

XN�s

k¼1

x k þ sð Þy kð Þ ð1Þ

Where N is the number of samples and s is time delay

between two time series. This index ranges from - 1

(complete linear inverse correlation) to ? 1 (complete

linear direct correlation) and 0 means no linear interde-

pendence between the two signals.

Coherence (COH)

Coherence is a linear method for assessment of the inter-

dependence between two time series x(t) and y(t) in fre-

quency domain. It can evaluate the relationship of time

series at different frequency bands. It is calculated as

magnitude squared coherence based on Fourier transform,

which is ratio between the cross power spectral density

Sxy(f) and their individual auto spectral densities Sxx(f),

Syy(f).

COHxy ¼
Sxy fð Þ
�� ��2

Sxx fð ÞSyy fð Þ ð2Þ

The coherence index ranges between 0 (minimum linear

correlation) and 1(maximum linear correlation).

Phase locking value (PLV)

Phase difference of time series is independent of the

amplitude of the signals. The most commonly used phase

analysis is the PLV (Lachaux et al. 1999). This method is

independent of the amplitude of the signals and charac-

terizes relative phase difference of time series defined as:

PLV ¼ 1

N

XN

n¼1

ejDuxy tð Þ

�����

����� ð3Þ

Where N is the total number of samples of the data set and

Duxy(t) is the relative phase difference between the two

time series. The PLV takes value between 0 (minimum

phase synchrony) and 1 (maximum phase synchrony).

Standardized permutation mutual information
(SPMI)

The mutual information (MI) is an information theory

method and is used to evaluate the interdependence

between two time series based on Shannon’s information

theory (Palus 1996). This method has been proposed to

quantify strength of functional connectivity between time

series. For a pair of discrete random variables x and y

which are recorded from two time series with the proba-

bility distribution functions P(x) and P(y), respectively and

their joint probability function P(x,y), the MI between x

and y defined as:

MIx;y ¼
X

x2X;y2Y
P x; yð Þlog P x; yð Þ

P xð ÞP yð Þ ð4Þ

The MI of two random variables is a method of esti-

mating mutual dependence between them and quantifies

the amount of information that obtained from observations

of the effect of one random variable on another variable

and vice versa.

Recently, a new measure called Permutation mutual

information (PMI) is defined based on the probability

distribution of the ordinal patterns. Order pattern analysis

has proposed to evaluate dynamical characteristics of

nonlinear time series (Bandt & Pompe 2002). Given the

time series X = x(t) and Y = y(t) (t = 1, 2, …, N), we can

obtain the embedding vector xi = [x(i), x(i ? s), …,

x(i ? (m ? 1)s)] (i = 1, 2, …, N - (m - 1)s) and yi with

the embedding dimension m and time lag s. Then, sorting

the elements of vectors xi and yi in ascending order

Fig. 1 The experimental

sequence diagram with a fixed

propofol concentration
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respectively and there are m! possible order patterns in

each vectors, which is also called permutations. Next,

counting the number of each order pattern of all vectors

and we can obtain the probability of each permutation.

The permutation entropy (PE) of the two time series X

and Y are defined as:

PEX ¼ �
Xm!

i¼1

PX ið Þlog PX ið Þð Þ;

PEY ¼ �
Xm!

i¼1

PY ið Þlog PY ið Þð Þ
ð5Þ

where PX(i), PY(i) are the probability of permutation of X

and Y respectively and m is embedding dimension. Also,

the joint permutation entropy of X and Y is:

PEXY ¼ �
Xm!

i¼1

Xm!

j¼1

PXY i; jð Þlog PXY i; jð Þð Þ ð6Þ

where PXY(i, j) is the joint probability of permutation of X

and Y. Then, the PMI which is based on the probability

distribution of permutation pattern is defined as:

PMI ¼ PEX þ PEY � PEXY ð7Þ

According to the standardized mutual information, we

have introduced the standardized permutation mutual

information (SPMI) as follows:

SPMI ¼ PMI=PEXY ð8Þ

Where the range of SPMI is between 0 (X and Y are

independent) and 1(X and Y are fully correlated).

Statistical analysis

Prediction Probability (PK) statistic (Smith et al. 1996) is

used to evaluate the correlation between the EEG measured

functional connectivity index and Propofol effect-site

concentration (Ceff) (derived from pharmacokinetic/phar-

macodynamic (PK/PD) modeling (Mckay et al. 2006)) with

the 2003 Excel software. PK value of 1 means that the

index predicts Ceff correctly 100% of the time. This is done

to assess the efficiency of new index for tracking the

changes in Propofol drug effect. Furthermore, linear

regression and the Pearson correlation coefficient are used

for assessing the relationship between measured connec-

tivity index and BIS.

Statistical significant differences of the index values of

connectivity measures between awake and unconscious

states and between unconscious and recovery states of all

subjects are determined using 1-way analysis of variance

(ANOVA). The normal distribution of the index values is

investigated before performing analyses. Also, Box plots

are used to evaluate the performance of each connectivity

index in distinguishing different anesthetic states. Finally,

the coefficient of variation (the standard deviation (SD)/

mean) of each index is calculated to describe the index

stability and its robustness to noise during anesthesia

process.

Results

We calculated the functional connectivity between frontal

and temporal lobe EEG signals using SPMI index over 10-s

epochs for the whole experimental period, and for all

subjects. In the calculation of this index, we have two

adjustable parameters (m, the embedding dimension, and s,

the lag for the embedding). m is usually chosen as 4–6

because for m B 3, there would be too few possible pat-

terns. For a larger m, unrealistically long data are required

to obtain a permutation entropy value (e.g., m = 7, there

are m! = 5040 possible patterns, at least 20 s data will be

required at the sample rate of 256). We investigated the

influence of m from 4 to 6 in this study to avoid deviation

of the permutation mutual information. Selecting too small

or too large m leads to the incorrect estimation of ordinal

patterns. Also, the time delay s was tested. Too small or too

large s cause small estimated value of mutual information.

After numerous exploratory calculations, we have found

that the parameter selection m = 6 and s = 1 resulted in the

best SPMI performance to distinguish different anesthetic

states. Based on the PK/PD modeling and prediction

probability analysis, this index had the highest correlation

with anesthetic drug effect.

The SPMI index is compared with a range of commonly

used methods of functional connectivity: COR, COH, and

PLV. The functional connectivity indexes using COH and

PLV are also calculated for each of five frequency bands:

Delta d(1–4 Hz), Theta h(5–8 Hz), Alpha a(9–13 Hz),

Beta b(14–30 Hz) and Gamma c(31–40 Hz). The calcu-

lated values of SPMI, COR, COH and PLV indexes

(Fig. 2a–c) for the one subject during the whole procedure

and simultaneously the corresponding BIS (Fig. 2d) and

effect-site propofol concentration (Ceff) (Fig. 2e) for the

same subject are shown in Fig. 2. As can be seen from this

Figure, the SPMI index follows the changes in Propofol

drug effect in a usual clinical setting (Fig. 2a). While COR,

COH and PLV indexes fail to track the changes. This may

be due to the fact that EEG signals at frontal and temporal

lobes have different amplitudes and noise, which distort the

results of these measures. Also, COR, COH and PLV

indexes, as linear analysis methods, may not have adequate

ability to evaluate an EEG signal with dynamic and non-

linear behavior.

The values of SPMI and BIS index decrease from the

awake to the unconscious state and then increase at
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Fig. 2 An example of the

changes with time for the EEG

measures for one subject (a–

d) and simultaneously the

propofol effect site

concentration Ceff (e). a The

functional connectivity indexes

between two-channel EEG

signals using SPMI, COR, COH

(all frequency bands) and PLV

(all frequency bands). Three

dashed vertical lines from the

left to the right show times of

baseline (wakefulness), loss of

consciousness (LOC) and

recovery, respectively. b, c The

functional connectivity indexes

between two-channel EEG

signals using COH and PLV for

the five frequency bands: Delta

d, Theta h, Alpha a, Beta b and

Gamma c. d The functional

connectivity indexes between

two-channel EEG signals using

SPMI and simultaneously the

corresponding BIS.

e simultaneously the propofol

effect site concentration Ceff.

The irregular rises of BIS index

are identified in (d) with a circle
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recovery state. But, SPMI index tracks the effect of drug

concentration more quickly (after 80th s) than BIS partic-

ularly about the change from awake to unconscious

(Fig. 2d). In other words, SPMI has a shorter delay to

effect of drug concentration than BIS index. Also, the BIS

index demonstrates some irregular upward trends about

310–360th s and 380–420ths in unconscious state because

of substantial loss in the amount of background EEG

activity, while this deviation cannot be seen in SPMI. Thus,

the SPMI index is more robust to artifacts than BIS.

To assess the ability of predicting Ceff using the pro-

posed connectivity index, PK is computed for each subject.

The PK values of COR, COH, PLV, BIS and SPMI indexes

with Ceff are 0.63 ± 0.06, 0.62 ± 0.09, 0.61 ± 0.09,

0.77 ± 0.05 and 0.83 ± 0.05, respectively. SPMI has the

highest PK value among connectivity indexes which

demonstrate the ability of the index to predict Ceff strongly.

Also, PK value between the SPMI index and the Ceff (0.83)

is higher than between BIS and Ceff (0.77). So, the results

show that SPMI has good ability in tracking the changes in

Propofol drug effect during the whole experimental

procedure.

Figure 3 illustrates the scatter plot of the SPMI index

and BIS from 8 subjects during the whole procedure (1072

data points). Data points are fitted by a linear line with the

equation as SPMI = 0.98*BIS-0.05. Thin lines show 95%

confidence boundaries around the linear black bold line.

According to this figure, few data points are beyond the

thin lines. Furthermore, the Pearson correlation coefficient

between SPMI and BIS is 0.84 that indicates the high

similarity of these two methods in a usual clinical setting.

The ability of connectivity index to distinguish different

anesthetic states is important for DoA monitoring. SPMI,

COR, COH, and PLV index over 10-s epochs at three

anesthetic states (awake, unconscious and recovery) are

calculated for all subjects and the box plots of these

indexes are shown in Fig. 4. This is done also for BIS

index (Fig. 4). ANOVA test was used to evaluate the sig-

nificant difference between awake and unconscious states

and also between unconscious and recovery states for all

indexes and P value of each index in different anesthesia

states are calculated (Table 1). It can be seen from Fig. 4

and Table 1 that SPMI, could perfectly distinguish awake

and unconscious state as well as unconscious and recovery

state. However, other connectivity indexes cannot differ-

entiate appropriately between awake and unconscious state

and especially between unconscious and recovery state.

The P value of SPMI index is lower than BIS at awake

and unconscious state as well as unconscious and recovery

state which indicates that the proposed index is preferred

than BIS. Moreover, the coefficient of variation of SPMI

(0.122) index is considerably smaller in comparison with

BIS (0.131) index at unconscious state. It should be noted

that the stability of the index value during the unconscious

sate is very important for the reliable DoA monitoring.

These results illustrated that SPMI index directly reflects

the neurophysiologic processes governing unconscious

state and has a better robustness to noise than BIS during

the propofol-induced anesthesia.

Discussion

Despite the widespread interest in DoA monitoring over

the last decades, the neurophysiological mechanisms of

anesthetic drugs are still unknown. In this study, a new

nonlinear functional connectivity method named SPMI

index between two-channel EEG from frontal and temporal

is presented as a meaningful index for characterizing EEG

dynamics during anesthesia. SPMI index showed a better

performance than other indexes (COR, COH, and PLV) in

evaluating EEG functional connectivity changes during

anesthesia. It can follow the changes in propofol drug

effect significantly (the highest PK values with Ceff (0.83))

and distinguish awake and unconscious states, and also

unconscious and recovery states of the subject perfectly

(Fig. 4, Table 1).

The results show several benefits of SPMI index in

comparison with the BIS index. First, the BIS value has a

very complicated computation and takes more time to

calculate than our method (Pilge et al. 2006; Shalbaf et al.

2013; Hagihira et al. 2001). Second, artifact removal in
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Fig. 3 Scatter plot for the SPMI and BIS for all data points of 8

subjects during whole procedure. The best-fit line is bold and thin

lines correspond to the 95% confidence boundaries
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BIS is very difficult task (Pilge et al. 2006). Even without

the complex artifact removal process, the SPMI index is

more robust to artifacts than the BIS is. Third, the SPMI

index reacts more quickly to changing drug concentrations,

particularly about the change from awake to unconscious

state (Fig. 2d). Fourth, the coefficient of variation in SPMI

index is considerably smaller than BIS index in the

unconscious state, and has less irregularity in the uncon-

scious state during the propofol-induced anesthesia. Fifth,

the SPMI index could distinguish different states better

than BIS (Fig. 4, Table 1). Finally, through the PK statis-

tics, it is revealed that the SPMI index correlated more

closely with the Ceff than the BIS index.

The MI of two random variables evaluates the mutual

dependence between them; which reflects how anesthesia

alters the strength of information coupling between dif-

ferent cortical regions. The PMI method is an extension of

MI methods but uses symbolic dynamic characters to

represent the EEG patterns, rather than the raw EEG

waveform. Previously, the use of symbolic dynamics to

generate the permutation entropy has been shown to be a

robust index of anesthetic effect (Li and Wen 2017). The

PMI is based on the permutation entropy; thus the PMI is

an integration index of the time series, which combines the

symbolic dynamic theory, entropy theory, probability the-

ory and information theory. However, PMI is unbounded

because entropies can be arbitrarily large, so it difficult to

interpret the strength of the association between two time

series. Consequently, we have introduced the SPMI as a

possible solution for this matter.

Fig. 4 Box plots of EEG-derived functional connectivity indexes in

different anesthetic states for all subjects. a, b COH and PLV in five

frequency bands: Delta d, Theta h, Alpha a, Beta b and Gamma c.

c COR, COH (all frequency bands), PLV (all frequency bands),

SPMI, and BIS index. The coefficient of variation (SD/mean) in SPMI

index (0.122) is smaller than BIS index (0.131) at the unconscious

state

Table 1 P value of functional connectivity indexes (COR, COH,

PLV, SPMI) and BIS index in awake and unconscious state, and also

unconscious and recovery state

Awake-unconscious Unconscious-recovery

COR 0.003 0.753

COH 0.273 0.480

PLV 0.239 0.486

COH(d) 0.016 0.294

COH(h) 0.036 1

COH(a) 0.027 0.529

COH(b) 0.462 0.529

COH(c) 0.834 1

PLV(d) 0.009 1

PLV(h) 0.141 0.462

PLV(a) 0.294 0.674

PLV(b) 0.462 0.916

PLV(c) 0.294 0.834

SPMI 0.0007 0.0007

BIS 0.0009 0.0009
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SPMI is a method of using the probability distribution of

permutation patterns in evaluating functional connectivity

changes in the EEG signal during anesthesia. Propofol

causes a decrease of the available permutation patterns in

the frontal–temporal EEG signals during the anesthetic

period. Thus the frontal–temporal EEG signals become

more regular when the subject is anesthetized. This is

reflected in the decrease of the SPMI. Consequently, as

seen in Fig. 2a, d, the SPMI is decreased when receiving

intravenous anesthetics in the unconscious state and is

increased upon recovery. These results illustrated that

SPMI is able to characterize the EEG information coupling

change that occurred with the changing drug concentration,

and is a meaningful measure for characterizing EEG

dynamics during anesthesia.

There is a significant increase in synchronization

between separated channel pairs during anesthesia. Inde-

pendent cortical subnetworks change to uniform activity

patterns, more synchronous using anesthetics (Hasenstaub

et al. 2005). Moreover, long-range connection input from

other cortical areas is reduced under anesthesia (Ferrarelli

et al. 2010; Mhuircheartaigh et al. 2010). The growth of

gamma-amino-butyric-acid (GABA)-ergic currents move

the synaptic interaction towards inhibition and weaken the

long-range excitatory synaptic inputs, and finally lead to

more synchronization between frontal and temporal

regions (Drexler et al. 2005). Additionally, while using

modest doses of propofol, the main pattern is the alpha

frequency ‘‘sleep spindle’’-like waveform (Sleigh et al.

2009). Since this is coordinated in the thalamus, and con-

sequently is synchronous across widely spaced cortical

areas, it is highly probable to be the most influential on the

increase in EEG synchrony.

The results show that anesthetics impair brain function

by inducing local synchronous patterns of activity, and so

obstruct an exchange of independent data between cortical

areas (Ferrarelli et al. 2010; Mhuircheartaigh et al. 2010;

Schrouff et al. 2011). An experiment in which rats were

received visual stimuli showed that volatile anesthetics

agitate anterior–posterior synchronization of field respon-

ses (Imas et al. 2006). Another research on rats shows the

reduction of the independent EEG signals recorded from

various hemispheres (Hudetz 2002). In humans, anesthetics

decouple gamma band activity between anterior and pos-

terior cortical areas when the patients change from the

awake stage to unconsciousness (John et al. 2001). It has

been shown that feedforward and feedback connectivity is

significantly reduced with symbolic transfer entropy (Ku

et al. 2011) and a breakdown of cortical effective con-

nectivity is revealed in the anesthetized state (Ferrarelli

et al. 2010).

The following three points should be mentioned as areas

to be further explored. First, although this paper has

assessed EEG signals of just eight subjects anesthetized

with propofol, significant results prove that the differences

must be relatively robust. Second, the confusing effects of

surgical stimulation are not included in the collected data

which is based on the single deepening and lightening

protocol. Extra interference may influence our index at

surgical levels of anesthesia, because different arousal

systems induce high frequency noise on EEG signal.

However, results show that our index is robust to this type

of high oscillation noise. Third, due to the EEG recording

limitations in the operating room, only two EEG montages

from frontal and temporal were recorded in this study. It

would be better to use several EEG montages and choose

the optimal one to properly assess depth of anesthesia in

clinical application. However, it has been shown that

anesthetic drugs mostly influence the frontal and temporal

cortex of the brain.

Conclusion

Functional connectivity in neuronal networks has been

increasingly recognized as a key feature for establishing

the interaction and communication between different

regions of the brain and reflects the functional relation

between spatially separate cortical signals. This study

reveals that a nonlinear functional connectivity measure,

named the SPMI, between pairs of EEG signals at frontal

and temporal can track the changes in propofol drug effect

efficiently and estimate anesthetic state of patient better

than other indexes. The SPMI index is also better than the

commercially available BIS index, because of faster reac-

tion, close correlation to the effect of drug concentration,

low variability at the consciousness state, and finally better

ability to distinguish the three anesthetic states. The SPMI

index is a promising connectivity measure for quantifying

EEG dynamics during anesthesia and is a significant index

for designing a new two-channel EEG monitor system for

DOA.
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