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Abstract
Frequency coupling in nervous system is believed to be associated with normal and impaired brain functions. However,

most of the existing experiments have been concentrated on the coupling strength within frequency bands, while the

coupling strength between different bands is ignored. In this work, we apply phase synchronization index (PSI) to

investigate the cross-frequency coupling (CFC) of Electroencephalogram (EEG) signals. The PSI matrixes for the multi-

channel EEG signals are calculated from interictal to ictal period in each sliding time window. The results show that CFC

changes obviously once seizure occurs between the different bands, and such alteration is earlier than the appearance of

clinical symptoms in seizure. Considering the similar role of the within-frequency coupling (WFC), we further reconstruct

multi-layered brain networks, including CFC networks and WFC networks. The graph metrics are applied to investigate the

variation of network structure of the epileptic brain. Significant decreases/increases of the local/global efficiency are found

in d–b, d–a, h–a and d–h bands from the CFC network, while WFC network shows a significant decline in the local

efficiency in h and a bands. These findings suggest that CFC may provide a new perspective to observe the alteration of

brain structure when seizure occurs, and the investigation of functional connectivity across the full frequency spectrum can

give us a deeper understanding of epileptic brains.

Keywords Cross-frequency coupling � Phase synchronization index � Functional brain network � Synchronization �
Epilepsy

Introduction

Epilepsy is a chronic neurological disease characterized by

paroxysmal abnormal electrical discharges of neurons in the

brain (Roper and Yachnis 2002). According to the latest

epidemiological data, there are about 50 million people

affected by epilepsy globally, and nearly 30% patients can-

not be controlled with anticonvulsive medication and sur-

gery (Greter et al. 2018). The unpredictable epileptic

seizures may cause permanent damage to patient’s brain and

increase the risk of accidental injuries as a result of losing

control of their bodies during seizure. Electroencephalogram

(EEG), as a technique monitoring the electrophysiological

activities, has proved to be an effective tool in investigating

brain function with the nature of non-invasion and high time

resolution (Mormann et al. 2000; Abasolo et al. 2005). The

scalp EEG shows a drastic increase in amplitude and shows

sharp wave, spike wave or spike (or sharp) slow wave

complex during ictal state, and thus is considered as a pre-

ferred tool to detect the seizures (Iasemidis et al. 2003;

Benbadis and Allen Hauser 2000). However, the accurate

diagnosis of epilepsy that is based on the visual inspection of

continuous temporal EEGwaveformusually requires several

days of EEGmonitoring, and is tedious, time-consuming and

prone to human error (Tetzlaff et al. 2003; Medvedev et al.

2011;Martis et al. 2013;Donos et al. 2015;Hortal et al. 2016;

Yuan et al. 2018). Therefore, we need to propose a new,more

discriminative feature for the diagnosis of epilepsy.

Epileptic seizures are related to the excessive synchro-

nization or abnormal activities in the brain cortex and such

abnormal synchrony dynamics in the brain can affect

& Chen Liu

liuchen715@tju.edu.cn

1 School of Electrical and Information Engineering, Tianjin

University, Tianjin, China

2 Department of Neurology, Tangshan Gongren Hospital,

Tangshan 063000, Hebei, China

123

Cognitive Neurodynamics (2020) 14:35–49
https://doi.org/10.1007/s11571-019-09551-y(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-019-09551-y&amp;domain=pdf
https://doi.org/10.1007/s11571-019-09551-y


function connectivity and information transmission within

and cross different brain regions (Percha et al.

2005; Tecchio et al. 2018). The current research on epi-

lepsy that is based on phase synchronization of scalp EEG

mainly focuses on the interaction between different leads

within a single frequency band (Amiri et al. 2016). How-

ever, the importance of investigation on cross-frequency

coupling (CFC) is growing (Zheng and Zhang 2013;

Nishida et al. 2014) and correlation models that is based on

the selection of single band are considered as incomplete.

Although the CFC is indeed much weaker than the within

frequency coupling (WFC), CFC may indeed play an

important role in the result of electrophysiological studies

through the correlation models consisting of both WFC and

CFC. Canolty and Knight (2010) accounted for CFC might

serve as a mechanism to transfer information from large-

scale brain networks operating at behavioral timescales to

the fast, local cortical processing required for effective

computation and synaptic modification, thus integrating

functional systems across multiple spatiotemporal scales.

In addition, CFC has proved to be associated with the

attack and progression of neurological disorders such as

epilepsy. Villa and Tetko (2010) used the index of reso-

nance to measure the CFC and found that the coupling

strength varied with the changes triggered by the circuits

involved in the initiation of the epileptic seizures. In

addition, some rodent experiments revealed that CFC was

stronger in the seizure onset zones (Nariai et al. 2011;

Weiss et al. 2013; Ibrahim et al. 2014; Amiri et al. 2016),

and during the pre-ictal and ictal phases (Samiee et al.

2018). Such studies suggested that the CFC measures

might also be a good biomarker for detecting seizure onset

and termination (Guirgis et al. 2015; Malladi et al. 2018;

Jacobs et al. 2018).

Over the past decade, the brain is gradually seen as a

complex network with dynamic interactions between local

and further remote brain regions (Wang and Meng 2016).

Since studying on the single feature of electrophysiological

signal is regarded as insufficient, the measurement of brain

functional network parameters is becoming a focus in

many neurological studies, and it has a rapid development

in the network analysis based on EEG (Biswal et al. 1995;

Buckner et al. 2009). Moreover, growing evidence shows

that the network properties are altered in neurological

disorders such as Alzheimer’s disease, Parkinson’s disease

and epilepsy (Apkarian et al. 2005; Rogasch and Fitzgerald

2013). Ponten et al. (2007, 2009) have found that func-

tional neural network changed during epileptic seizures and

the network became more regular in weighted and

unweighted analyses, compared to the more random pre-

ictal network configuration. Adebimpe et al. also found that

the benign epileptic brain networks showed functionally

disrupted patterns compared to healthy controls. Recently,

a framework of multi-layer network has been developed,

combining the within- and cross- frequency interactions

(Adebimpe et al. 2016). Müller et al. (2016) constructed a

hyper-frequency network across the spectrum from 2 to

20 Hz, and found that the network showed temporal and

topological changes during rest and stimulus processing

state. Cai et al. (2018) found that the properties of network

based on CFC were altered compared to the normal con-

trols. Hence, the multi-layer network analysis may also

benefit our understanding about the etiological mechanism

of epilepsy.

The conventional automatic detection of EEG record-

ings is generally dependent on the examination of the linear

features like frequency or wavelength, voltage or ampli-

tude, waveform regularity, and reactivity to eye opening

(Kirmani 2013; Jiang et al. 2017). While in recent years, a

growing attention is paid to the nonlinear and nonstationary

properties of electrophysiology signal like scalp EEG

(Kannathal et al. 2005; Zhang et al. 2015). Nonlinear

features such as fractal dimension, Lempel–Ziv complex-

ity, entropy have been extracted from complex electro-

physiology signals, and applied to the analysis and

diagnosis of neurological diseases. For instance, Kannathal

et al. (2005) proved that entropy estimators can distinguish

normal and epileptic EEG data with more than 95% con-

fidence. Zhang et al. (2015) estimated the fractal dimen-

sions of preprocessed EEG and applied this feature into

seizure detection. Based on this, an average sensitivity of

94.05% can be achieved. These methods are all used to

study the nonlinear characters of a single channel. How-

ever, the brain is a delicate organ to realize the separation

and integration of the information. There are interactions

between the different brain regions. Therefore, the rela-

tionship between the EEG signals of different channels

should also be considered. Analyzing the brain functional

connectivity and the neural synchronization facilitates the

exploration of the pathological neuronal synchronization

associated with the neurological diseases (Mormann et al.

2000; Lo 2010; Qu et al. 2012). Phase synchronization

index (PSI), as a quantification index, can describe the

features of two time-series of neurophysiological signals,

which has been used in EEG analysis recently (Wacker and

Witte 2011; Belluscio et al. 2012; Zheng and Zhang 2013;

Szymanski et al. 2017). For instance, Edakawa et al. (2016)

found a strong coupling exists between the phase of b
(12–35 Hz) and the amplitude of high c (35–200 Hz) fre-

quency bands. However, most of the existing PSI-based

studies focused on the difference between epileptic patients

and normal controls, which ignored the change trends of

synchronization strength during seizures. Based on the

definition of PSI, we use PSI to estimate the coupling

changes from the EEG signals in the different channels

during serizures.
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Thus, in this work, we concentrate on the variation of

functional brain connectivity within and between different

frequency bands during a period of time near the onset.

Firstly, the original scalp EEGs are divided into four fre-

quency bands: d (0–3.75 Hz), h (3.75–7.5 Hz), a
(7.5–15 Hz) and b (15–30 Hz). Then we apply PSI to

quantify the connectivity strength between different

regions across the four frequency bands, with both CFC

and WFC being considered. Finally, we construct a multi-

layer functional brain network based on the PSI matrixes

and explore the abnormal network properties for epilepsy

by estimating global efficiency, local efficiency and small

world characteristic based on graph theory.

Experiment design and EEG recording

Subjects information

This work uses the CHB-MIT scalp EEG dataset which

were contributed by Children’s Hospital Boston (CHB) and

the Massachusetts Institute of Technology (MIT). These

recordings were collected from 22 subjects (5 males of

ages between 3 to 22 years and 17 females of ages between

1.5 to 19 years). For each subject, the EEG signals were

sampled at 256 Hz with 16-bit quantization and each

channel of the EEG data was obtained by the potential

difference between two different electrodes. Most cases

contain 23 bipolar EEG signals while a few cases contain

less or more channels. Therefore, only the onset records

that contain the 23 EEG channels (FP1-F7, F7-T7, T7-P7,

P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FZ-CZ, CZ-PZ,

FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-

O2, P7-T7, T7-FT9, FT9-FT10, FT10-T8, T8-P8) was

selected to keep the samples uniform (the chb15 was

excluded, and the information of the remaining epileptics is

shown in Table 1). The location to place electrodes is

shown in the Fig. 1a.

Preprocessing

To concentrate on the change of epileptic brain near sei-

zure, we first select 120 s-length (60 s before and 60 s after

the seizure onset) EEG data for each seizure. Previous

study showed that most brain activity occurred between 0

and 30 Hz (Adebimpe et al. 2016), and changes in EEG

during seizure might occur in multiple frequency compo-

nents. Therefore, we decompose each channel of selected

EEG data into four sub-bands: d, h, a and b by a band-

passed finite impulse digital filter that based on fast Fourier

transform (Salvador et al. 2005). A sliding window is

applied to each session of EEG recordings to split the

signals into segments to investigate the occasion that the

change of synchronization. In order to achieve high con-

fidence of the data, the EEG data is segmented into 3 s

epochs with 2 s overlap.

Method

Phase synchronization index

Phase Synchronization Index (PSI) is utilized to quantify

the phase coupling strength within and between different

frequency bands. To compute the PSI, we apply Hilbert

transform (Thuraisingham et al. 2012) to extract the

instantaneous phase of all electrodes from the original EEG

data. Let xðtÞ be a real-valued signal and let ~xðtÞ be the

Hilbert transform of xðtÞ defined by

~xðtÞ ¼ 1

p
p � v �

Z 1

�x

xðsÞ
t � s

ds ð1Þ

where p � v denotes that the transform is defined using the

Cauchy principal value. Then both the instantaneous

amplitude AðtÞ and the instantaneous phase uðtÞ can be

computed by:

Table 1 Patients Information of CHB-MIT EEG Database

Subject Gender Age (years) Total seizure number

chb01 F 11 6

chb02 M 11 3

chb03 F 14 7

chb04 M 22 4

chb05 F 7 4

chb06 F 1.5 9

chb07 F 14.5 3

chb08 M 3.5 4

chb09 F 10 4

chb10 M 3 6

chb11 F 12 3

chb12 F 2 26

chb13 F 3 12

chb14 F 9 8

chb16 F 7 10

chb17 F 12 3

chb18 F 18 6

chb19 F 19 3

chb20 F 6 8

chb21 F 13 4

chb22 F 9 3

chb23 F 6 7
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AðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðtÞ½ �2þ ~xðtÞ½ �2

q

uðtÞ ¼ arctan
~xðtÞ
xðtÞ

8><
>: ð2Þ

The phase difference between the two signals is defined

as:

Duðfm; fn; tÞ ¼ muðfm; tÞ � nuðfn; tÞ ð3Þ

where fm and fn are the center frequencies of two signals.

Besides,m and n are integers that should satisfy the condition

m � fn ¼ n � fm. In the WFC case with fm and fn, the phase

difference is calculated by settingm ¼ n ¼ 1. The PSI can be

defined as

PSIðfm; fnÞ ¼ ej�ðDuðfm;fn;tÞÞ
D E���

��� ð4Þ

Graph theoretical analysis

Previous researches have shown that the functional brain

networks in epilepsy patients are obviously different from

healthy controls (Jeong et al. 2014; Wang and Meng

2016). PSI was required for the construction of adjacency

matrix and functional network. Each row (column) of the

matrix represented a channel of EEG, and each entry of

the matrix was defined by the connectivity between two

different nodes. To transform the PSI matrix into the

adjacency matrix, a certain percentage of the strongest

connections will be retained, and we define the preserved

connection between node A and node B as 1, where A

and B belong to the 23 bipolar EEG signals as mentioned

above. Besides, the selection of the threshold value needs

to ensure that there is no isolated node in constructed

network. Note that the coupling strength shows great

differences between WFC and CFC, therefore we apply

the transformation to each 23 9 23 PSI matrix.

The human brain is divided into different brain

regions, and each is responsible for processing specific

information. Such mechanisms make sure that the brain

can process complex information and multiple instruc-

tions at the same time. Local efficiency can directly

reflect the segregation index of a network. Local effi-

ciency of node i is defined as

Fig. 1 Cross frequency synchronization before and after seizure

onset. a Diagram of electrode placement; b 120 seconds time series

raw EEG signals while the seizure onset (60 seconds) is marked with

red line; c–d the (logarithmic) synchronization matrices for 10s-20s

(c) and 70s-80s (d) section
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locEðiÞ ¼ 1

NGi
ðNGi

� 1Þ �
X

j6¼k2Gi

1

lj;k
ð5Þ

where Gi is the subgraph constituted by the neighbor nodes

of node i; j and k are the numbers of nodes which are

different with each other in Gi, lj, k is the shortest path

length between node j and k. Local efficiency of the whole

network is defined as

locE ¼ 1

N
�
X
i

locEðiÞ ð6Þ

Considering that single brain regions perform only basic

functions while advanced functions require multiple brain

regions to cooperate, integration of information from dif-

ferent brain regions is essential. Global efficiency is calcu-

lated to measure the integration properties, which is defined

as

gE ¼ 1

NðN � 1Þ �
X

i;j2V ;i 6¼j

1

li;j
ð7Þ

It has been shown that regular networks have both

higher clustering coefficient and longer shortest path length

(Ponten et al. 2007; Liao et al. 2010). In contrast, random

networks have a lower clustering coefficient and a shorter

shortest path length. Networks with both high clustering

coefficient and short shortest path length are called ‘‘small-

world network’’ (Srinivas et al. 2007). The small-world

property suggests that brain network is a complex system

with both integration and separation functions, and can be

measured by combining the local and global efficiency.

Multivariate analysis

The mean PSI of every 23 9 23 matrix arranged in

chronological window is calculated and further averaged

separately in two sections: before seizure onset (BSO) and

after seizure onset (ASO). One-way Analysis of Variance

(ANOVA), as a the analysis method of variance and

covariance, is utilized to assess the level of distinguishing

different in PSI features, and each sample is obtained by

averaging the mean PSI value, which is acquired by

averaging the PSI matrix, of all-time windows of once

onset in each state (before or after seizure onset) of a single

subject. P is a scalar value returned by ANOVA analysis,

which describes the degree of difference for all the subject.

In this work, we assume there is a great difference between

two states (before and after seizure onset) when P\ 0.01.

Results

The brain activity of epileptic is recorded through multiple-

channel bipolar lead system, and Fig. 1b clearly shows

60 s-length EEG signal before and after seizure onset. We

use a sliding time window of 3 s length. After frequency

division of each EEG segment, we calculate the PSI for

each pair-wise channel between and within frequency

bands to investigate the change of synchronization in

epileptic brain. One PSI value is obtained for each time

window. Typical matrixes for one epileptic before and after

seizure onset are shown in Fig. 1c, d, respectively. The PSI

matrix includes 4 WFC sub-matrixes (the 23 9 23 con-

nectivity matrices on the diagonal) and 12 CFC sub-ma-

trixes (the 23 9 23 connectivity matrices on the off-

diagonals). Obviously, the strength of WFC is much higher

than that of CFC. Moreover, it is observed that WFC is

increased during seizure, and also in partial CFC sub-ma-

trixes. We further perform statistical analysis for both WFC

and CFC to get the differences before and after seizure

onset. The mean of each 23 9 23 matrix is computed and

further respectively averaged over all windows before and

after seizure onset. The obtained results are shown in the

Table 2. For the CFC, the synchronization level between

d–b and d–a couplings are significantly increased during

seizure, while that between h–a coupling is decreased. For

the WFC, the synchronization levels in d, h and a bands are

increased obviously. It is demonstrated that the phase

synchronization between leads of most different frequency

bands changes significantly in epileptic seizure.

We further explore the distribution of PSI values to

investigate the variation trend of synchronization level

between different brain areas in epileptic seizure. We

consider CFC and WFC respectively, and the results of a

typical subject are shown in Fig. 2. Before seizure onset,

CFC is mainly within the range [0.06, 0.21] and shows a

unimodal distribution with single peak at around 0.1

(Fig. 2a). However, during seizure, CFC is within the range

[0.05 0.25] and shows a multimodal distribution, which has

three peaks at around 0.08, 0.11 and 0.19 (Fig. 2b). The

Table 2 The statistical analysis and the one-way ANOVA results

(P values) for the mean synchronization strength, which is obtained

by averaging the mean PSI value of PSI matrix of all-time windows

respectively before seizure onset (BSO) and after seizure onset (ASO)

PSI value (BSO) PSI value (ASO) P values

d–b 0.081 ± 4.7e - 05 0.073 ± 1.1e - 04 0.0022 (*)

h–b 0.099 ± 9.1e - 05 0.097 ± 2.6e - 05 0.3961

a–b 0.107 ± 8.9e - 05 0.105 ± 1.1e - 05 0.5941

d–a 0.122 ± 2.4e - 04 0.110 ± 2.2e - 04 0.0065 (*)

h–a 0.188 ± 1.4e - 04 0.208 ± 2.8e - 04 1.1e - 05 (*)

d–h 0.177 ± 2.3e - 04 0.172 ± 2.4e - 04 0.22

b 0.234 ± 0.0010 0.250 ± 6.9e - 04 0.0443

a 0.328 ± 7.3e - 04 0.356 ± 9.8e - 04 0.0011 (*)

h 0.360 ± 4.4e - 04 0.424 ± 0.0012 8.9e - 11 (*)

d 0.398 ± 8.6e - 04 0.429 ± 0.0013 0.0013 (*)

*P\ 0.01 denotes a significant difference
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small values of CFC mainly locate in d–b, h–b, a–b and d–
a coupling, and the high CFC values mainly locate in h–a,
and d–h coupling. According to Table 2, the variation of

CFC distribution may be due to the increase of high syn-

chronization level in h–a coupling and the decrease of low

synchronization level in d–b and d–a couplings. For the

WFC, its value is generally higher and more widely dis-

tributed than CFC, as shown in Fig. 2c, d. The distributions

of WFC are both bimodal before and after seizure onset,

while the range changes from [0.08 0.56] to [0.12 0.56].

The peaks are at 0.12 and 0.28 before seizure onset and at

0.17 and 0.34 after seizure onset. We extend the statistical

analysis of WFC and CFC to all subjects and obtained

similar distribution.

To get insight into the evolution of synchronization

between brain areas, we investigate the overall process

CFC and WFC change during seizure. 60 s-length EEG

signals are selected respectively in both cases: before and

after seizure onset. A sliding window is applied to EEG

signals and a series of PSI matrixes as Fig. 1c, d are

obtained. We calculate the mean of each selected band

(23 9 23 matrix) in Fig. 3. We mainly consider the fre-

quency bands with significant differences before and after

seizure onset (P\ 0.01). Once seizure occurs, the mean

value of CFC decreases abruptly in d–b and d–a bands, but

largely increases in h–a bands. After about 10 s, CFC in

these bands reaches its extremes quickly, and then recov-

ers. For WFC, the synchronization level shows great

increases in a, h and d bands, which achieves maximal

values at nearly 10 s after seizure onsets. Interestingly, the

change of CFC and WFC occurs earlier than seizure onset.

In conclusion, the variation of PSI feature is earlier than the

appearance of clinical symptoms in epileptic.

Functional brain network can directly describe the

interactive integration of dynamic activities between dif-

ferent brain areas. The brain network of epileptic is

reconstructed from PSI matrixes (Fig. 1), in which the

strongest 20% links are preserved for each sub-matrix

(23 9 23) in each frequency band. The selection of this

threshold value can ensure the absence of isolated nodes

and make sure that the difference of network before and

after seizure onset is more significant. Graph theory metrics

Fig. 2 Distribution analysis of

within and cross frequency PSI.

Distribution histogram of PSI in

CFC cases respectively before

(a) and after (b) seizure onset;

distribution histogram of PSI in

WFC cases respectively before

(c) and after (d) seizure onset
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is applied to gain further insight into the CFC and WFC

network properties and how it may change among different

states. Several network parameters, including local effi-

ciency and globe efficiency, are calculated in each time

window of one seizure to investigate the variations of

network structure before and after seizure onset. Fig-

ure 4a–h show the variations of WFC network parameters

in one epileptic (same as epileptic in Fig. 2). It is obvious

that when seizure occurs, the global efficiency of d, h and a
bands declines, while there is a decline in h band for local

efficiency. We further extend statistical analysis to all

subjects to explore the regular change of brain network

after seizure occur. Figure 4i–l show global efficiency

versus local efficiency of all subjects in WFC networks.

The level of significant difference of network parameters

between two states is further calculated as shown in

Fig. 4i–l. The result indicates that the local network con-

struction of epileptic brains shows no obvious change

during seizure. Whereas, there is a significant decline in

global network efficiency, especially in h and a band. And

the distribution of sample becomes more dispersed after

seizure onset.

For CFC networks, it is observed that global efficiencies

of d–b, h–a and d–h bands show descent trends once sei-

zure occurred, and local efficiencies of d–b, d–a and d–h
bands increase at the same time (Fig. 5a–l). We also extend

statistical analysis to all subjects, and find a significant

difference for both local and global efficiency in d–b, d–a,
h–a and d–h bands. Figure 5m–r show structure difference

of CFC networks between two states: before and after

seizure onset. Compared with WFC networks (as shown in

Fig. 4), the distribution of CFC samples in two cases has

less overlap, indicating that CFC network may be more

effective in detecting seizure onset, which is also earlier

than clinical symptoms. It can be included that variation of

the brain function may be due to damage in functional

brain connectivity caused by seizure, which influences the

integration and segregation of neural information.

Having shown significant difference of functional net-

work for CFC and WFC case separately, we further con-

struct two-layer network by combing the within and cross

frequency PSI matrixes. For example, the 23 9 23 WFC

matrixes of d and h bands and the 23 9 23 CFC matrixes

of d–h and h–d bands are selected to combine into a

46 9 46 multi-layer PSI matrix. There is a great difference

between CFC values and WFC values, hence the multi-

layer network is constructed with the strongest 20% links

preserved for each submatrix (23 9 23) separately (as

shown in Fig. 6). Through a two-layer network, we can

explore the alterations of network properties caused by the

changes of both within and cross frequency coupling. Then

the same analysis and network parameters are utilized to

Fig. 3 Variation of mean PSI cross (a–c) and within (d–f) frequency bands during 120 s and the seizure onset (60 s) is marked with the red line.

(Color figure online)
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investigate the variations of functional network, as shown

in Fig. 7. We can observe that the global efficiency of h–b,
a–b, d–a, h–a, d–h bands all changed significant when

seizure occurs. For local efficiency, there are obvious

variations in a–b, d–a, h–a bands at the time of seizure

onset. From an overall analysis perspective, both the local

and global efficiency have obvious differences in h–a, d–h
bands between two sections (before and after seizure

onset).

The density of reserved edges will affect the construc-

tion of network. In order to ensure that there is no isolated

node in constructed network, at least 20% connections need

to be preserved for each connectivity matrix. We also

consider other proportional thresholds such as 30%, 40%,

50% and 60%, and further extract network parameters from

the corresponding networks, the results are shown in

Fig. 8. It can be observed that the difference, between

global efficiency and local efficiency respectively before

and after seizure onset, increases with the ascension of

threshold value. It suggests that in a range between

20–60%, the fewer the number of reserved edges, the more

significant difference of constructed network before and

after seizure onset.

Discussion

The phase synchronization is considered to be associated

with active internal processing and advanced brain function

(Benedek et al. 2011; Szymanski et al. 2017), and the

alternation of synchronization may represent emergence

and process of neuropsychiatric disorders. Ortega et al.

Fig. 4 a–h Variation of global and local efficiency of single-layered

network consist of the connections within bands during 120 s and the

seizure onset (60 s) is marked with the red line. i–l Statistical analysis
of network properties variation on all subjects, where the samples

before seizure onset (BSO) are represented by red squares and the

samples after seizure onset (ASO) are represented by blue triangles.

Red * indicates a significant difference (p\0:05 corrected for

multiple comparisons) in global efficiency while blue * represents the

difference in local efficiency. (Color figure online)
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Fig. 5 a–l Variation of global and local efficiency of double-layered

network consist of the connections between bands during 120 s and

the seizure onset (60 s) is marked with the red line. m–r Statistical

analysis of network properties variation on all subjects, where the

samples BSO are represented by red squares and the samples ASO are

represented by blue triangles. Red * indicates a significant difference

(p\0:05 corrected for multiple comparisons) in global efficiency

while blue * represents the difference in local efficiency. (Color

figure online)
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(2008) studied the synchronous activity emerges from lat-

eral intracortical regions and proved that phase synchro-

nization could be utilized to locate the specific cortical sites

that were closely related to epilepsy seizure. In addition,

researchers generally concentrated on the coupling

between neurons of different brain regions while ignored

the fact that electrical signals of different frequencies

correspond to different consciousness states of brain in

earlier studies (Amiri et al. 2016; Palva and Palva 2018).

Another study demonstrated that cross-frequency phase

synchrony, existed in cortical oscillations and could serve

to integrate, coordinate and regulate neuronal processing

distributed into neuronal assemblies concurrently in mul-

tiple frequency bands (Palva and Palva 2018). There were a

Fig. 5 continued

Fig. 6 Schematic presentation

of the multi-layer network

constructed by CFC and WFC

between h and a bands. The red

lines indicate the preserved

connectivity within specific

bands, while the yellow lines

represent the connectivity

between different bands. (Color

figure online)

cFig. 7 a–l Variation of global and local efficiency of one subject’s

global brain network constructed by all the connections within and

between bands during 120 s and the seizure onset (60 s) is marked

with red line. m–r Statistical analysis of network properties variation

on all subjects, where the samples BSO are represented by red squares

and the samples ASO are represented by blue triangles. Red *
indicates a significant difference (p\0:05 corrected for multiple

comparisons) of global efficiency while blue * represents the

difference of local efficiency. (Color figure online)
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number of metrics for functional across coupling, like

phase-amplitude coupling (PAC), phase–phase coupling

(PPC), and amplitude–amplitude coupling (AAC). Amiri

et al. reported that the PAC between high and low fre-

quency bands in patients with focal epilepsy was signifi-

cantly stronger in the seizure-onset zone (SOZ) compared

to normal regions (Amiri et al. 2016; Kim et al. 2018).

Another study also used the PAC method and found that

coupling was more regularly inside than outside the SOZ

(Weiss et al. 2016). Moreover, a recent study has explored

the amplitude–amplitude modulation and revealed that

variations of d–h and d–b coupling were both related to the

severity of Alzheimer (Fraga et al. 2013). This seemed

feasible to apply the cross-frequency coupling in differ-

entiation and detection of neurological diseases. However,

PAC shows low confidence of the results especially under

the influence of noises. Besides, PAC analysis on the

modulation relationship between different frequency bands

is mainly limited to one channel. Thus, problems may

come out when considering between frequency band

interactions. Hence, we apply PSI to detect and quantify

the statistical coupling both within and between different

frequency bands in EEG data. The PSI matrix may offer

unique insights into how the brain employs different

regions to communicate and collaborate for information

processing, especially in different frequency bands (Englot

et al. 2018).

Previous research has shown large-scale neuronal syn-

chronization is the potential mechanism underlying seizure

generation and the properties of phase synchronization

change radically depending on the connectivity structure of

the network (Fraga et al. 2013; Ponten et al. 2007; Reijn-

eveld et al. 2007). In addition, the functional segregation

and integration of brain networks, which can be repre-

sented by local and global efficiency, is deemed to be less

balanced in epileptics. Hence, we further construct the

global brain network through PSI matrix, and extract the

graph theory metrics to explore the properties of brain

networks constructed by the coupling within and cross

frequency bands. We have found that the epileptic net-

works show a decrease of global efficiency within h band

when seizure occurs. Previous studies showed that mean

clustering coefficient and global efficiency in the patients

with epilepsy had strong tendency to decrease, compared to

those in healthy subjects (Song et al. 2015). Several other

studies have found the similar decreases of global effi-

ciency of epileptic brain in the b band (Jacobs et al. 2018),

which is also in accordance with our results in view of the

change of network properties. The disruption of global

efficiency in epilepsy patients suggest a decline of effi-

ciency for global information transmission after seizure

onset, which may be the cause of sensory disturbances and

loss of consciousness in patients. On the other side, con-

sidering the cross frequency interactions, we found that it

showed elevated local efficiency properties and decreased

global efficiency properties in d–b, d–a, d–h and h–a
networks. The changed cross functional network might be

due to the loss of long-range connectivity between different

sub-networks with excessive synchronization within them.

We further constructed a two-layer network, which may

help to mediate simultaneous formation of multiple brain

networks, to observe the alteration of network properties

caused by the change of both within and cross frequency

coupling. The results are broadly consistent with those of

CFC network, indicating that the altered functional con-

nectivity between bands in epileptic brain may play an

important role in emergence of the disease.

Phase synchronization between different bands we

observed may change drastically when seizure occurs, with

the structure of reconstructed multi-layer network altered.

The findings support previous evidence that cross-fre-

quency coupling might be the key element in detection and

diagnosis of epilepsy. In addition, we have found the

alterations of cross frequency connectivity strength and

network structure are both earlier than the appearance of

clinical symptoms in seizure. It suggests that epilepsy

might be predicted through monitoring the phase syn-

chronization between and within frequency bands.

Fig. 7 continued
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Fig. 8 Mean and standard deviation of global efficiency (a–f) and

mean local efficiency (g–l) of one subject’s multi-layer network under

different threshold values for different frequency bands. Black *

indicates a significant difference (p\0:05 corrected for multiple

comparisons) in global or local efficiency at a certain connection

density
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However, it needs to be noted that we make an exploratory

analysis in a small group at a total of 22 subjects. Besides,

the EEG data derived from pediatric subjects suffering

from intractable seizures without a specific classification

on the types of epilepsy. Future research will replicate the

results with another bigger patient cohort and investigate

whether other neurologic diseases can show similar phe-

nomena considering the cross-frequency interaction.

Conclusions

In this work, we have considered the cross-frequency

coupling and functional brain networks of epileptic.

Through PSI, a measure quantifying the synchronization

strength within and between separate frequency bands of

EEG, significant differences between interictal and ictal

states can be observed in both WFC and CFC cases.

Specifically, the synchronization strength is significantly

increased within d, h and a bands from interictal to ictal

state. For the CFC case, a significant increase is found for

the h–a and d–a couplings together with a decline for d–b
couplings. Through the synchronization index calculated

every 3 s with an overlap of 2 s, we can also find that the

variations of connectivity may precede the appearance of

clinical symptoms in epileptic. Furthermore, we recon-

struct the brain network by the connections within and

cross frequencies by PSI matrixes, and calculate local

efficiency and globe efficiency to investigate the properties

of brain network. There is no obvious changes in global

efficiency, whereas local efficiency shows a significant

decline in h band. For CFC networks, we have found a

significant decrease for local efficiency and a significant

increase for global efficiency in d–b, d–a, h–a and d–h
networks.
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