
RESEARCH ARTICLE

Synchronization control of quaternion-valued memristive neural
networks with and without event-triggered scheme

Ruoyu Wei1 • Jinde Cao1

Received: 16 January 2019 / Revised: 29 May 2019 / Accepted: 19 June 2019 / Published online: 28 June 2019
� Springer Nature B.V. 2019

Abstract
In this paper, the real-valued memristive neural networks (MNNs) are extended to quaternion field, a new class of neural

networks named quaternion-valued memristive neural networks (QVMNNs) is then established. The problem of master-

slave synchronization of this type of networks is investigated in this paper. Two types of controllers are designed: the

traditional feedback controller and the event-triggered controller. Corresponding synchronization criteria are then derived

based on Lyapunov method. Moreover, it is demonstrated that Zeno behavior can be avoided in case of the event-triggered

strategy proposed in this work. Finally, corresponding simulation examples are proposed to demonstrate the correctness of

the proposed results derived in this work.
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Introduction

Memristor is regarded as the fourth basic circuit element,

which was firstly proposed by Chua (1971). However it

failed to receive much attention from research area until

2008, the first practical memristor device was invented by

HP company (Strukov et al. 2008). Due to its function to

depict the relationship between magnetic flux and electric

charge, much potential applications of memrister has

appeared recently.

One of these application is the memristive neural net-

works (MNNs), which is formulated by introducing

memristor into the connection weights. Based on the ability

to memorize the passed quantity of electronics, MNNs has

significant potential to be utilized in synapsis and simulate

the human brain. Recently, its dynamical behavior has

attracted much research attention and a great many

important results have been published (Liu et al. xxx; Chen

et al. 2014; Bao and Cao 2014; Wu and Zeng 2014; Zhang

and Shen 2014; Chen et al. 2015). However, the investi-

gation of MNNs are mainly restricted to the real- or

complex-valued fields, the corresponding research in

quaternion field are still very few till now. Thus, it gives us

the motivation to investigate the quaternion-valued mem-

ristive neural networks (QVMNNs).

In 1843, the British mathematician W. R. Hamilton has

invented a special type of Clifford algebra named quater-

nion (Simmons 1992). Different from real value and

complex value, an important feature of quaternion is that

the commutativity law of multiplication is not applicable

for it. Due to this reason, the development of quaternion

has been delayed for a long period of time. In recent years,

the research for quaternion-valued systems has become a

hot topic due to its widespread applications in various

fields, including attitude control (Adler 1995), computer

graphics (Took and Mandic 2009), image processing (Zou

et al. 2016), and prediction of 3-D wind processing (Xia

et al. 2015).

Recently, some researchers have introduced quaternion

value into traditional NNs (Yang et al. 2018), thus leading

to the formulation of quaternion-valued neural networks
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(QVNNs). The QVNNs can be seen as the generalization of

complex-valued NNs (CVNNs), in which the states, con-

nection weights, and activation functions are all quaternion

numbers. Compared with RVNNs and CVNNs, the

QVNNs shows significant advantage in dealing with mul-

tidimensional data. For instance, in image compression

(Isokawa et al. 2003), QVNNs can result in a significant

reduction in the size of system compared with RVNNs and

CVNNs, thus bring about an improvement in calculation

efficiency. Moreover, some optimization and estimation

problem can be operated by QVNNs with better perfor-

mance than RVNNs and CVNNs (Qin et al. 2018; Sahoo

et al. 2016). Recently, with the rapid development of

QVNNs, some remarkable results have been presented (Liu

et al. 2017b; Song and Chen 2018; Chen et al. 2017; Liu

et al. 2016; Tu et al. 2017; Chen and Song 2017; Liu et al.

2018; Chen et al. 2018), such as global stability (Liu et al.

2017b), multi-stability (Song and Chen 2018), robust sta-

bility (Chen et al. 2017), l-stability (Liu et al. 2016),

passivity analysis (Tu et al. 2017), state estimation (Chen

and Song 2017). For instance, with the decomposition of

the state space, the multi-stability issue for delayed

QVNNs were studied in Song and Chen (2018), some

dynamical features of the QVNNs are analyzed. In Liu

et al. (2018), by applying the approach of decomposition

and quaternion-valued LMI, criterion of global l-stability
is derived for the QVNNs. Chen and Song (2017) addresses

the state estimation for QVNNs with multiple time delay.

Via the quaternion-valued LMI method, some criteria are

established. Up to now, the investigation of QVNNs are

mainly focus on stability issue, the relative results on

synchronization is still few.

Synchronization is an important dynamical behavior in

network systems, which has been applied in many different

areas, such as associative memory, combinational opti-

mization, and pattern recognition (Ding et al. 2017; Rav-

ishankar 2018; Wei et al. 2018; Bao et al. 2016; Nakamura

and Tateno 2019; Dharani et al. 2017). In recent decades,

literature for the synchronization of NNs have been widely

published. The fixed-time synchronization for uncertain

complex-valued neural networks with discontinuous acti-

vation functions is investigated in Ding et al. (2017). In

Bao et al. (2016), exponential synchronization criteria for

coupled stochastic MNNs with probabilistic delay coupling

is proposed.

For the purpose to reduce the energy consumption and

computation burden in communication networks, a novel

sampled control scheme named event-triggered control is

proposed. Other than conventional control method, the

event-triggered controller only updated at the instants that

the measured error exceeds some prescribed threshold.

Thus, this control strategy can effectively reduce the con-

trol execution times and save the communication resource.

Recently, much results on event-triggered control of net-

works systems have been published (Liu et al. 2017a;

Wang et al. 2018; Guo et al. 2018; Li et al. 2016). In Liu

et al. (2017a), the state estimation for delayed stochastic

MNNs with missing measure is investigated by applying

event-triggered method. Finite-time state estimation for

recurrent delayed neural networks is discussed in Wang

et al. (2018) via component-based event-triggered proto-

col. In Guo et al. (2018), the synchronization problem of

real-valued MNNs has been discussed via a novel event-

triggered strategy for the first time. However, the corre-

sponding results for event-triggered synchronization of

MNNs has not been extended to quaternion field yet, which

gives motivation to this work.

An unavoidable phenomenon in various engineering

systems is time delay, which is generated by infinite

switching ratio of amplifiers or data processing. Unfortu-

nately, it may lead to instability, oscillation, and other poor

performance to the system (Ding et al. 2017; Ravishankar

2018; Wei et al. 2018; Bao et al. 2016; Cao 2019; Cao

et al. 2019; Huang et al. 2014, 2019; Huang and Zhang

2019; Huang and Liu 2019; Nakamura and Tateno 2019).

Thus, it is necessary to take time delays into the study of

dynamical behavior of QVMNNs.

Based on the above discussion, the main purpose of this

work is to investigate the synchronization problem of

QVMNNs with or without event-triggered strategy. The

main contributions of this thesis are presented as below.

(1) In this paper, the model of QVMNNs is formulated,

which combines the features of both MNNs and

QVNNs. Thus, our study is the generalization and

extension for existing research on NNs, more

challenging dynamical characteristics of network

systems are dealt with in our work.

(2) It is the first time that synchronization problem for

QVMNNs are investigated by event-triggered control.

Two criteria for the master-slave synchronization of

QVMNNs are derived, which are convenient to verify.

(3) The theoretical results in this work may provide new

ideas for other quaternion-valued networks in the

future.

The structure of this work is presented as below. In part 2,

the model is established and some basic preliminaries are

given. Main results are achieved in Part 3. In Sect. 5, a

numerical example is provided to verity the effectiveness

of our theorem. Lastly, conclusion is obtained in Part 5.

Notations. In this work, let R, C and Q stand for the real

field, complex field and quaternion field, respectively.

Rn;Cn and Qn represent the space of n dimensional vectors,

Rn�n;Cn�n and Qn�n denotes the space of n� n dimen-

sional matrices. Cð1Þð½�s; 0�;RnÞ represents the class of

continuous functions from ½�s; 0� to Rn. cofF1;F2g stands
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for closure of the convex hull of Q produced by quaternion

numbers F1;F2. The notation T denotes the transpose of a

matrix. For any vector v 2 Rn, the vector norm is defined as

kvk1 ¼
Pn

q¼1 jvqj. For any matrix A 2 Rn�n, the matrix

norm is defined as kAk1 ¼ max1� q� nf
Pn

p¼1 japqjg, the

matrix measure is defined as l1ðAÞ ¼ limh!0þ
kIþhAk1�1

h
¼

maxqfaqq þ
Pn

p¼1;p 6¼q japqjg.

Model formulation and preliminaries

The quaternion is a kind of supercomplex number formed

by one real part and three imaginary parts. A quaternion

q 2 Q can be described in the form

q ¼ qR þ qIiþ qJjþ qKk;

where qR; qI ; qJ ; qK 2 R, the imaginary parts i, j, k obey the

Hamilton rule:

i2 ¼ j2 ¼ k2 ¼ �1; ij ¼ �ji ¼ k;

jk ¼ �kj ¼ i; ki ¼ �ik ¼ j:

Remark 1 Different from real number and complex

number, the commutativity rule does not hold for quater-

nion multiplication, i.e., for any x; y 2 Q, it can not be

ensured that xy ¼ yx. Due to this reason, some good

properties in real field and complex field does not hold in

quaternion field. Thus, existing approach dealing with

RVNNs or CVNNs can not be directly applied to QVNNs,

which lead to the need to develop new techniques and

theories to cope with QVNNs.

The conjugate of q is denoted by q� or �q,

�q ¼ qR � qIi� qJj� qKk. The modulus of q is defined as

jqj ¼
ffiffiffiffiffi
�qq

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqRÞ2 þ ðqIÞ2 þ ðqJÞ2 þ ðqKÞ2
q

:

For any vector x ¼ ðx1; . . .; xnÞT 2 Qn, it is defined that

jxj ¼ ðjx1j; . . .; jxnjÞT , x� ¼ �x ¼ ðx�1; . . .; x�nÞ
T
. For any

matrix A ¼ ðapqÞn�n 2 Qn�n, it is defined that

jAj ¼ ðjapqjÞn�n. For two quaternion h ¼ hR þ hIiþ hJjþ
hKk and q ¼ qR þ qIiþ qJjþ qKk, the addition between

them is defined as

hþ q ¼ hR þ qR þ ðhI þ qIÞiþ ðhJ þ qJÞj
þ ðhK þ qKÞk:

By Hamilton rule, the product between them is defined as

hq ¼ðhRqR � hIqI � hJqJ � hKqKÞ
þ ðhRqI þ hIqR þ hJqK � hKqJÞi
þ ðhRqJ þ hJqR þ hKqI � hIqKÞj
þ ðhRqK þ hKqR þ hIqJ � hJqIÞk:

With the introduction of memristive connection weights

into QVNNs, the model of QVMNNs is constructed as

follows:

dxpðtÞ
dt

¼� dpxpðtÞ þ
Xn

q¼1

apqðxpðtÞÞfqðxqðtÞÞ

þ
Xn

q¼1

bpqðxpðtÞÞfqðxqðt � sðtÞÞÞ;
ð1Þ

where p ¼ 1; 2; . . .; n; xpðtÞ 2 Q denotes the state vector of

the pth neuron at time t. dp [ 0 is the self-feedback coef-

ficient; fpðxpð�ÞÞ denotes the activation function. apqðxpðtÞÞ
and bpqðxpðtÞÞ stand for the quaternion-valued memristive

connection weights. sðtÞ is the time delay satisfying

_sðtÞ� l\1 and 0� sðtÞ\s, where l and s are positive

constants. The initial condition of system (1) is taken as

xpðsÞ ¼ /pðsÞ;�s� s� 0, where /pðsÞ 2 Cð1Þð½�s; 0�;QÞ.
Taking system (1) as the master system and construct

the following slave system

dypðtÞ
dt

¼� dpypðtÞ þ
Xn

q¼1

apqðypðtÞÞfqðyqðtÞÞ

þ
Xn

q¼1

bpqðypðtÞÞfqðyqðt � sðtÞÞÞ þ upðtÞ;
ð2Þ

where upðtÞ is the appropriate controller to be determined

later. Define epðtÞ ¼ ypðtÞ � xpðtÞ as the synchronization

error. Our aim is to design proper controller upðtÞ to realize

the synchronization between system (1) and system (2).

The error system of master-slave system is obtained below

depðtÞ
dt

¼� dpepðtÞ þ
Xn

q¼1

apqðypðtÞÞgqðeqðtÞÞ

þ
Xn

q¼1

bpqðypðtÞÞgqðeqðt � sðtÞÞÞ

þ
Xn

q¼1

½apqðypðtÞÞ � apqðxpðtÞÞ�fqðxqðtÞÞ

þ
Xn

q¼1

½bpqðypðtÞÞ � bpqðxpðtÞÞ�fqðxqðt � sðtÞÞÞ þ upðtÞ:

ð3Þ

According to the current-voltage characteristics and nature

of memristor, the memristive weights can be defined as the

state-dependent switching case:
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aRpqðxRp ðtÞÞ ¼
âRpq; jxRp ðtÞj � Tp;

�aRpq; jxRp ðtÞj[ Tp;

(

aIpqðxIpðtÞÞ ¼
âIpq; jxIpðtÞj � Tp;

�aIpq; jxIpðtÞj[Tp;

(

aJpqðxJpðtÞÞ ¼
âJpq; jxJpðtÞj � Tp;

�aJpq; jxJpðtÞj[ Tp;

(

aKpqðxKp ðtÞÞ ¼
âKpq; jxKp ðtÞj � Tp;

�aKpq; jxKp ðtÞj[ Tp;

(

bRpqðxRp ðtÞÞ ¼
b̂Rpq; jxRp ðtÞj � Tp;

�bRpq; jxRp ðtÞj[ Tp;

8
<

:
bIpqðxIpðtÞÞ ¼

b̂Ipq; jxIpðtÞj � Tp;

�bIpq; jxIpðtÞj[ Tp;

8
<

:

bJpqðxJpðtÞÞ ¼
b̂Jpq; jxJpðtÞj � Tp;

�bJpq; jxJpðtÞj[ Tp;

8
<

:
bKpqðxKp ðtÞÞ ¼

b̂Kpq; jxKp ðtÞj � Tp;

�bKpq; jxKp ðtÞj[ Tp;

8
<

:

ð4Þ

where the switching jump Tp [ 0, âlpq; �a
l
pq; b̂

l
pq;

�blpq are

known constants with respect to memristances,

l ¼ R; I; J;K.

Definition 1 For convenience of later analysis, the fol-

lowing definition is given:

�aRpq ¼maxfâRpq; �aRpqg; �aIpq ¼ maxfâIpq; �aIpqg;
�aJpq ¼maxfâJpq; �aJpqg;
�aKpq ¼maxfâKpq; �aKpqg; �aRpq ¼ minfâRpq; �aRpqg;
�aIpq ¼minfâIpq; �aIpqg;
�aJpq ¼minfâJpq; �aJpqg; �aKpq ¼ minfâKpq; �aKpqg;
�bRpq ¼maxfb̂Rpq; �bRpqg;
�bIpq ¼maxfb̂Ipq; �bIpqg; �bJpq ¼ maxfb̂Jpq; �bJpqg;
�bKpq ¼maxfb̂Kpq; �bKpqg;
�bRpq ¼minfb̂Rpq; �bRpqg; �bIpq ¼ minfb̂Ipq; �bIpqg;
�bJpq ¼minfb̂Jpq; �bJpqg;
�bKpq ¼minfb̂Kpq; �bKpqg;
~aRpq ¼maxfjâRpqj; j�aRpqjg; ~aIpq ¼ maxfjâIpqj; j�aIpqjg;
~aJpq ¼maxfjâJpqj; j�aJpqjg; ~aKpq ¼ maxfjâKpqj; j�aKpqjg;
~bRpq ¼maxfjb̂Rpqj; j�bRpqjg; ~bIpq ¼ maxfjb̂Ipqj; j�bIpqjg;
~bJpq ¼maxfjb̂Jpqj; j�bJpqjg; ~bKpq ¼ maxfjb̂Kpqj; j�bKpqjg:

For p ¼ R; I; J;K, it is noted that

�Ap ¼ ð�appqÞn�n;
�Ap ¼ ð�appqÞn�n;

�Bp ¼ ð�bppqÞn�n;

�Bp ¼ ð�bppqÞn�n;
~Ap ¼ ð~appqÞn�n;

~Bp ¼ ð~bppqÞn�n:

By letting eðtÞ ¼ ðe1ðtÞ; . . .; enðtÞÞT 2 Qn, the compact

form of error system (3) can be achieved

deðtÞ
dt

¼� DeðtÞ þ AðyðtÞÞgðeðtÞÞ þ BðyðtÞÞgðeðt � sðtÞÞÞ

þ ðAðyðtÞÞ � AðxðtÞÞÞf ðxðtÞÞ
þ ðBðyðtÞÞ � BðxðtÞÞÞf ðxðt � sðtÞÞÞ þ uðtÞ;

ð5Þ

where f ðxð�ÞÞ ¼ ðf1ðx1ð�ÞÞ; . . .; fnðxnð�ÞÞÞT 2 Qn, gðeðtÞÞ ¼
f ðyðtÞÞ �f ðxðtÞÞ.

Assumption 1 Assume that the function f ðxðtÞÞ 2 Qn can

be decomposed into the following form

f ðxðtÞÞ ¼ f RðxRðtÞÞ þ if IðxIðtÞÞ þ jf JðxJðtÞÞ
þ kf KðxKðtÞÞ;

ð6Þ

where functions f RðxRðtÞÞ; f IðxIðtÞÞ; f JðxJðtÞÞ; f KðxKðtÞÞ 2
Rn.

Let eðtÞ ¼ eRðtÞ þ ieIðtÞ þ jeJðtÞ þ keKðtÞ. Then,

according to Hamilton rule, the error system (3) can be

separated into four real part as below

deRðtÞ
dt

¼� DeRðtÞ þ ARðyÞgRðeRðtÞÞ � AIðyÞgIðeIðtÞÞ

� AJðyÞgJðeJðtÞÞ
� AKðyÞgKðeKðtÞÞ þ BRðyÞgRðeRðt � sðtÞÞÞ
� BIðyÞgIðeIðt � sðtÞÞÞ
� BJðyÞgJðeJðt � sðtÞÞÞ
� BKðyÞgKðeKðt � sðtÞÞÞ
þ ðARðyÞ � ARðxÞÞf RðxRðtÞÞ
� ðAIðyÞ � AIðxÞÞf IðxIðtÞÞ
� ðAJðyÞ � AJðxÞÞf JðxJðtÞÞ
� ðAKðyÞ � AKðxÞÞf KðxKðtÞÞ
þ ðBRðyÞ � BRðxÞÞf RðxRðt � sðtÞÞÞ
� ðBIðyÞ � BIðxÞÞf IðxIðt � sðtÞÞÞ
� ðBJðyÞ � BJðxÞÞf JðxJðt � sðtÞÞÞ
� ðBKðyÞ � BKðxÞÞf KðxKðt � sðtÞÞÞ þ uRðtÞ

ð7Þ
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deIðtÞ
dt

¼� DeIðtÞ þ AIðyÞgRðeRðtÞÞ þ ARðyÞgIðeIðtÞÞ

þ AKðyÞgJðeJðtÞÞ
� AJðyÞgKðeKðtÞÞ þ BIðyÞgRðeRðt � sðtÞÞÞ
þ BRðyÞgIðeIðt � sðtÞÞÞ
þ BKðyÞgJðeJðt � sðtÞÞÞ
� BJðyÞgKðeKðt � sðtÞÞÞ
þ ðAIðyÞ � AIðxÞÞf RðxRðtÞÞ
þ ðARðyÞ � ARðxÞÞf IðxIðtÞÞ
þ ðAKðyÞ � AKðxÞÞf JðxJðtÞÞ
� ðAJðyÞ � AJðxÞÞf KðxKðtÞÞ
þ ðBIðyÞ � BIðxÞÞf RðxRðt � sðtÞÞÞ
þ ðBRðyÞ � BRðxÞÞf IðxIðt � sðtÞÞÞ
þ ðBKðyÞ � BKðxÞÞf JðxJðt � sðtÞÞÞ
� ðBJðyÞ � BJðxÞÞf KðxKðt � sðtÞÞÞ þ uIðtÞ

ð8Þ

deJðtÞ
dt

¼� DeJðtÞ þ AJðyÞgRðeRðtÞÞ þ AKðyÞgIðeIðtÞÞ

þ ARðyÞgJðeJðtÞÞ
� AIðyÞgKðeKðtÞÞ þ BJðyÞgRðeRðt � sðtÞÞÞ
þ BKðyÞgIðeIðt � sðtÞÞÞ
þ BRðyÞgJðeJðt � sðtÞÞÞ
� BIðyÞgKðeKðt � sðtÞÞÞ
þ ðAJðyÞ � AJðxÞÞf RðxRðtÞÞ
þ ðAKðyÞ � AKðxÞÞf IðxIðtÞÞ
þ ðARðyÞ � ARðxÞÞf JðxJðtÞÞ
� ðAIðyÞ � AIðxÞÞf KðxKðtÞÞ
þ ðBJðyÞ � BJðxÞÞf RðxRðt � sðtÞÞÞ
þ ðBKðyÞ � BKðxÞÞf IðxIðt � sðtÞÞÞ
þ ðBRðyÞ � BRðxÞÞf JðxJðt � sðtÞÞÞ
� ðBIðyÞ � BIðxÞÞf KðxKðt � sðtÞÞÞ þ uJðtÞ

ð9Þ

deKðtÞ
dt

¼� DeKðtÞ þ AKðyÞgRðeRðtÞÞ � AJðyÞgIðeIðtÞÞ

þ AIðyÞgJðeJðtÞÞ
þ ARðyÞgKðeKðtÞÞ þ BKðyÞgRðeRðt � sðtÞÞÞ
� BJðyÞgIðeIðt � sðtÞÞÞ
þ BIðyÞgJðeJðt � sðtÞÞÞ
þ BRðyÞgKðeKðt � sðtÞÞÞ
þ ðAKðyÞ � AKðxÞÞf RðxRðtÞÞ
� ðAJðyÞ � AJðxÞÞf IðxIðtÞÞ
þ ðAIðyÞ � AIðxÞÞf JðxJðtÞÞ
þ ðARðyÞ � ARðxÞÞf KðxKðtÞÞ
þ ðBKðyÞ � BKðxÞÞf RðxRðt � sðtÞÞÞ
� ðBJðyÞ � BJðxÞÞ
� f IðxIðt � sðtÞÞÞ þ ðBIðyÞ
� BIðxÞÞf JðxJðt � sðtÞÞÞ
� ðBRðyÞ � BRðxÞÞf KðxKðt � sðtÞÞÞ þ uKðtÞ

ð10Þ

By making the definition that EðtÞ ¼ ðeRðtÞT ; eIðtÞT ;
eJðtÞT ; eKðtÞTÞT 2 R4n and XðtÞ ¼ ðxRðtÞT ; xIðtÞT ; xJðtÞT ;
xKðtÞTÞT 2 R4n, then the compact form of (7) can be derived

dEðtÞ
dt

¼� �DEðtÞ þ �AyGðEðtÞÞ þ �ByGðEðt � sðtÞÞÞ

þ ð�Ay � �AxÞFðXðtÞÞ
þ ð�By � �BxÞFðXðt � sðtÞÞÞ þ UðtÞ;

ð11Þ

where

UðtÞ ¼ ðuRðtÞT ;uIðtÞT ;uJðtÞT ;uKðtÞTÞT 2 R4n;

GðEðtÞÞ ¼ ðgRðeRðtÞÞT ;gIðeIðtÞÞT ;gJðeJðtÞÞT ;gKðeKðtÞÞTÞT 2 R4n;

FðXðtÞÞ ¼ ðf RðxRðtÞÞT ; f IðxIðtÞÞT ; f JðxJðtÞÞT ; f KðxKðtÞÞTÞT 2 R4n;

�D¼ diagfD;D;D;Dg 2 R4n�4n:

�Ay ¼

ARðyÞ �AIðyÞ �AJðyÞ �AKðyÞ
AIðyÞ ARðyÞ AKðyÞ �AJðyÞ
AJðyÞ AKðyÞ ARðyÞ �AIðyÞ
AKðyÞ �AJðyÞ AIðyÞ ARðyÞ

0

B
B
B
@

1

C
C
C
A

2 R4n�4n;

�By ¼

BRðyÞ �BIðyÞ �BJðyÞ �BKðyÞ
BIðyÞ BRðyÞ BKðyÞ �BJðyÞ
BJðyÞ BKðyÞ BRðyÞ �BIðyÞ
BKðyÞ �BJðyÞ BIðyÞ BRðyÞ

0

B
B
B
@

1

C
C
C
A

2 R4n�4n;

�Ax ¼

ARðxÞ �AIðxÞ �AJðxÞ �AKðxÞ
AIðxÞ ARðxÞ AKðxÞ �AJðxÞ
AJðxÞ AKðxÞ ARðxÞ �AIðxÞ
AKðxÞ � JðxÞ AIðxÞ ARðxÞ

0

B
B
B
@

1

C
C
C
A

2 R4n�4n;

�Bx ¼

BRðxÞ � IðxÞ � JðxÞ �KðxÞ
BIðxÞ BRðxÞ BKðxÞ � JðxÞ
BJðxÞ BKðxÞ BRðxÞ � IðxÞ
BKðxÞ � JðxÞ BIðxÞ BRðxÞ

0

B
B
B
@

1

C
C
C
A

2 R4n�4n;

ð12Þ
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Remark 2 Note that the elements of matrices �Ax; �Bx; �Ay; �By

are variables that switching according to the value

x, y. However, each element in these matrices has upper

bound.

For the convenience of later discussion, the following

notations are made

�A ¼

�AR �AI �AJ �AK

�AI �AR �AK �AJ

�AJ �AK �AR �AI

�AK �AJ �AI �AR

0

B
B
B
@

1

C
C
C
A
;

�A ¼

�AR �AI �AJ �AK

�AI �AR �AK �AJ

�AJ �AK �AR �AI

�AK �AJ �AI �AR

0

B
B
B
@

1

C
C
C
A
;

�B ¼

�BR �BI �BJ �BK

�BI �BR �BK �BJ

�BJ �BK �BR �BI

�BK �BJ �BI �BR

0

B
B
B
@

1

C
C
C
A
;

�B ¼

�BR �BI �BJ �BK

�BI �BR �BK �BJ

�BJ �BK �BR �BI

�BK �BJ �BI �BR

0

B
B
B
@

1

C
C
C
A
;

~A ¼

~AR ~AI ~AJ ~AK

~AI ~AR ~AK ~AJ

~AJ ~AK ~AR ~AI

~AK ~AJ ~AI ~AR

0

B
B
B
@

1

C
C
C
A
;

~B ¼

~BR ~BI ~BJ ~BK

~BI ~BR ~BK ~BJ

~BJ ~BK ~BR ~BI

~BK ~BJ ~BI ~BR

0

B
B
B
@

1

C
C
C
A
:

Assumption 2 For any x; y 2 R4n, there exists positive

constants Lf and positive scalarM ¼ ðM1; . . .;M4nÞT 2 R4n,

such that

kFðxÞ � FðyÞk1 � Lf kx� yk1; jFðxÞj�M; ð13Þ

where jFðxÞj ¼ ðjF1ðxÞj; . . .; jF4nðxÞjÞT 2 R4n.

Definition 2 The quaternion master-slave system (1) and

(2) is said to be synchronized if

lim
t!1

kxðtÞ � yðtÞk1 ¼ 0: ð14Þ

It is equivalent to that

lim
t!1

kEðtÞk1 ¼ 0: ð15Þ

Definition 3 The quaternion master-slave system (1) and

(2) is said to be quasi-synchronized if there exists a positive

constant e such that

lim
t!1

kEðtÞk1 � e: ð16Þ

It means that the error trajectory can converge to a bounded

set.

Lemma 1 (Halanay inequality Halanay 1966) For con-

tinuous nonnegative function V(t), assume that there exists

positive constants c; b[ 0 such that the following condi-

tions hold

DþVðtÞ� � bVðtÞ þ c sup
t�s� s� t

VðsÞ; t 2 ½t0;þ1Þ

b[ c[ 0
ð17Þ

then we obtain the conclusion

VðtÞ� sup
t0�s� s� t0

VðsÞe�l�ðt�t0Þ; t 2 ½t0;þ1Þ ð18Þ

where l� [ 0 is the unique positive solution of equation

l� bþ cels ¼ 0.

Lemma 2 (Generalized Halanay Inequality Wen et al.

2008) For any nonnegative function V(t), assume that there

exists positive constant n and continuous function

aðtÞ� 0; bðtÞ� 0; cðtÞ� 0 such that the following condi-

tions hold

DþVðtÞ� aðtÞ þ bðtÞVðtÞ
þ cðtÞ sup

t�s� s� t
VðsÞ; t 2 ½t0;þ1Þ

bðtÞ þ cðtÞ� � n; t 2 ½t0;þ1Þ

ð19Þ

then we obtain the conclusion

VðtÞ� a�

n
þ sup

t0�s� s� t0

VðsÞe�l�ðt�t0Þ ð20Þ

where

a� ¼ sup
�1� s� t0

aðsÞ; l� ¼ inf
t� t0

flðtÞjlðtÞ þ bðtÞ

þ cðtÞelðtÞsðtÞ ¼ 0g:

Main results

In this part, we first consider the complete synchronization

of master-slave system (1) and (2) by choosing the fol-

lowing feedback controller

UðtÞ ¼ �KEðtÞ � CsgnðEðtÞÞ; ð21Þ
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where K ¼ diagðk1; . . .; k4nÞ;C ¼ diagðc1; . . .; c4nÞ. Then,

the global synchronization of master-slave system (1) and

(2) can be obtained by using Halanay inequality.

Theorem 1 Under Assumption 2, if there exists control

gains matrices K;C such that the following condition holds

� dmin þ k~Ak1Lf þ
1

1� q
k~Bk1Lf � kmin � 0; ð22Þ

2 � 1T4n½ð�A� �AÞ þ ð�B� �BÞ�M �
X4n

p¼1

cp � 0; ð23Þ

where dmin ¼ minfd1; . . .; dng; kmin ¼ minfk1; . . .; k4ng;
14n ¼ ð1; . . .; 1ÞT 2 R4n. Then the global synchronization

between system (1) and (2) can be achieved under con-

troller (21).

Proof Considering the Lyapunov functional as below

VðtÞ ¼ kEðtÞk1 þ
1

1� q

Z t

t�sðtÞ
k~Bk1kGðEðsÞÞk1ds ð24Þ

Calculating the derivative of V(t) along the trajectory (11)

yields

dVðtÞ
dt

� sgnETðtÞf� �DEðtÞ þ �AyGðEðtÞÞ

þ �ByGðEðt � sðtÞÞÞ
þ ½ð�Ay � �AxÞFðXðtÞÞ
þ ð�By � �BxÞFðXðt � sðtÞÞÞ� � KEðtÞ

� CsgnðEðtÞÞg þ 1

1� q
k~Bk1kGðEðtÞÞk1

� k~Bk1kGðEðt � sðtÞÞÞk1

� �dmin þ k~Ak1Lf þ
1

1� q
k~Bk1Lf

� �

kEðtÞk1

þ 2 � 1T4n½ð�A� �AÞ
þ ð�B� �BÞ�M � sgnETðtÞCsgnðEðtÞÞ
� sgnETðtÞKEðtÞ

� �dmin þ k~Ak1Lf þ
1

1� q
k~Bk1Lf

� �

kEðtÞk1

þ 2 � 1T4n½ð�A� �AÞ þ ð�B� �BÞ�M

�
X4n

p¼1

cp �
X4n

p¼1

kpjEpðtÞj

� �dmin þ k~Ak1Lf þ
1

1� q
k~Bk1Lf

�

� kminÞkEðtÞk1

þ 2 � 1T4n½ð�A� �AÞ þ ð�B� �BÞ�M �
X4n

p¼1

cp � 0

ð25Þ

Based on above analysis, the synchronization between

system (1) and (2) can be achieved under the controller

(21). h

Remark 3 For the first time, the memistive connection

weights are brought into QVNNs. As the extension of

memristive RVNNs and CVNNs, the weight connections

aRpqðxpðtÞÞ; aIpqðxpðtÞÞ; aJpqðxpðtÞÞ and aKpqðxpðtÞÞ are decided

by the corresponding imaginary unit of state vector xpðtÞ.
Thus, the character of both MNNs and QVNNs are com-

bined in this new model, which lead to more complex

dynamical behavior in nonlinear systems. Hence, our work

serves as the supplement for the previous results and enrich

the theory of QVNNs.

Remark 4 The sign function in controller (21) plays an

important role to eliminate the parameter mismatch caused

by memristive connection weights. However, this may

cause chattering phenomenon to control system. Moreover,

the complete synchronization is rather rigorous for many

real-life applications Ding et al. (2017), Ravishankar

(2018), Wei et al. (2018), Bao et al. (2016). Usually, let the

error restricted in an prescribed area is enough Nakamura

and Tateno (2019). Thus, another type of synchronization

is considered in the next.

In this part, we focus on the quasi-synchronization of

master-slave system (1) and (2). Choose the controller

below

UðtÞ ¼ �KEðtÞ; ð26Þ

where K ¼ diagfk1; . . .; k4ng is the control gains matrix.

Theorem 2 Under Assumption 2, if there exists positive

constant n and control gains matrix K such that the fol-

lowing condition holds

l1ð� �D� KÞ þ k~Ak1Lf þ k~Bk1Lf � � n\0: ð27Þ

Then the quasi-synchronization between system (1) and (2)

can be achieved under controller (26). The error trajec-

tories will converge to the following set

W ¼ EðtÞ 2 R4njkEðtÞk1 �
R1

n

� �

ð28Þ

where R1 ¼ kð�A� �Aþ �B� �BÞMk1.

Proof Considering the Lyapunov functional as below

VðtÞ ¼ kEðtÞk1 ð29Þ

Computing the derivative along of V(t) along the trajectory

(11) yields
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dVðtÞ
dt

¼ lim
h!0þ

kEðt þ hÞk1 � kEðtÞk1
h

¼ lim
h!0þ

kEðtÞ þ h _EðtÞ þ oðtÞk1 � kEðtÞk1
h

¼ lim
h!0þ

1

h
fkEðtÞ þ hf� �DEðtÞ þ �AyGðEðtÞÞ

þ �ByGðEðt � sðtÞÞÞ
þ ð�Ay � �AxÞFðXðtÞÞ þ ð�By � �BxÞFðXðt � sðtÞÞÞ
� KEðtÞgk1 � kEðtÞk1g

� lim
h!0þ

1

h
ðkðI � h �D� hKÞEðtÞk1 � kEðtÞk1Þ

þ k�Ayk1kGðEðtÞÞk1
þ k�Byk1kGðEðt � sðtÞÞÞk1
þ kð�Ay � �AxÞFðXðtÞÞk1
þ kð�By � �BxÞFðXðt � sðtÞÞÞk1

� lim
h!0þ

kðI � hð �Dþ KÞÞk1 � 1

h
kEðtÞk1

þ k�Ayk1Lf kEðtÞk1
þ k�Byk1Lf kEðt � sðtÞÞk1 þ R1

� l1ð� �D� KÞkEðtÞk1 þ k~Ak1Lf kEðtÞk1
þ k~Bk1Lf kEðt � sðtÞÞk1 þ R1

� fl1ð� �D� KÞ þ k~Ak1Lf gkEðtÞk1
þ k~Bk1Lf sup

t�s� s� t
kEðsÞk1 þ R1

ð30Þ

According to the Lemma 2, we have

kEðtÞk1 �
R1

n
þ sup

t�s� s� t
kEðsÞk1e�l�t ð31Þ

where l� ¼ inft� 0flðtÞ : lðtÞ þ l1ð� �D� KÞþ k~Ak1Lf þ
k~Bk1Lf erlðtÞ ¼ 0g; r ¼ l1ð� �D� KÞ þ k~Ak1Lf : Therefore,

quasi-synchronization between system (1) and (2) can be

achieved under controller (26). h

Remark 5 Compared with complete synchronization,

quasi-synchronization is more practical and reasonable in

many real applications. Through selecting appropriate

control gains matrix K, the convergence field W can be

constrained to any domain that we needed. Moreover, the

controller for quasi-synchronization does not contain sign

function, thus the chattering phenomenon can be effec-

tively avoided.

In the following part, we focus on the synchronization of

master-slave QVMNNs via event-triggered control. Con-

sidering the following event-triggered controller

UðtÞ ¼ �KEðtkÞ � CsgnðEðtkÞÞ; t 2 ½tk; tkþ1Þ; ð32Þ

where the event-triggered instants tk; k ¼ 1; . . .; n are

determined iteratively by the rule below

tkþ1 ¼ infft : t[ tk; kmaxkÊðtÞk1 � aðdkEðtÞk1 þ fÞg;
ð33Þ

where ÊðtÞ ¼ EðtÞ � EðtkÞ for t 2 ½tk; tkþ1Þ, d¼�dminþ
k~Ak1Lf þ 1

1�qk~Bk1kLf �kmin;f¼�2 �1T4n½ð�A� �AÞþð�B� �BÞ�
Mþ

P4n
p¼1 cp[0, a is a constant satisfying 0\a\1,

14n¼ð1; . . .;1ÞT 2R4n.

Theorem 3 Under Assumption 2, if the control gains

kp; cp; p ¼ 1; . . .; 4n satisfy the following conditions

cp ¼
�hp; sgnEpðtÞsgnðEpðtkÞÞ� 0;

hp; sgnEpðtÞsgnðEpðtkÞÞ[ 0;

�

ð34Þ

�d ¼ �dmin þ k~Ak1Lf þ
1

1� q
k~Bk1Lf � kmin\0; ð35Þ

where kmin ¼ minp¼1;...;4nfkpg; dmin ¼ minp¼1;...;4nfdpg. h ¼
ðh1; . . .; h4nÞT 2 R4n is an vector satisfying

h� 2½ð�A� �AÞ þ ð�B� �BÞ�M. Then the synchronization

between system (1) and (2) can be achieved under con-

troller (32) and event-triggered strategy (33).

Proof Considering the Lyapunov functional as below

VðtÞ ¼ kEðtÞk1 þ
1

1� q

Z t

t�sðtÞ
k~Bk1kGðEðsÞÞk1ds: ð36Þ

For t 2 ½tk; tkþ1Þ, computing the derivative of V(t) along the

trajectory (11) yields
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dVðtÞ
dt

� sgnETðtÞf� �DEðtÞ þ �AyGðEðtÞÞ

þ �ByGðEðt � sðtÞÞÞ
þ ½ð�Ay � �AxÞFðXðtÞÞ
þ ð�By � �BxÞFðXðt � sðtÞÞÞ� � KEðtkÞ

� CsgnðEðtkÞÞg þ
1

1� q
k~Bk1kGðEðtÞÞk1

� k~Bk1kGðEðt � sðtÞÞÞk1

� �dmin þ k~Ak1Lf þ
1

1� q
k~Bk1Lf

� �

kEðtÞk1

þ 2 � 1T ½ð�A� �AÞ þ ð�B� �BÞ�M
� sgnETðtÞCsgnðEðtkÞÞ
� sgnETðtÞK½EðtkÞ � EðtÞ þ EðtÞ�

� �dmin þ k~Ak1Lf þ
1

1� q
k~Bk1Lf � kmin

� �

kEðtÞk1

� f� sgnETðtÞK½EðtkÞ � EðtÞ�

� �dmin þ k~Ak1Lf þ
k~Bk1
1� q

Lf � kmin

� �

kEðtÞk1

� fþ kmaxkÊðtÞk1
� � dkEðtÞk1 � fþ aðdkEðtÞk1 þ fÞ
¼ ða� 1ÞðdkEðtÞk1 þ fÞ\0

ð37Þ

Based on above analysis, the synchronization between

system (1) and (2) can be achieved under the controller

(32) and event-triggered strategy (33). h

Remark 6 It can be seen that, compared with the control

method proposed in [8], Bao and Cao (2014), Ding et al.

(2017), Ravishankar (2018), Wei et al. (2018), Bao et al.

(2016), Nakamura and Tateno (2019), event-triggered

strategy not only ensure the system performance but also

reduce the sampled times and computation burden. Thus the

network resource is saved and the communication efficiency

can be effectively improved. In fact, the traditional feedback

controller can be regarded as the special case of the event-

triggered controller.Moreover, to ensure the proposed event-

triggered control can be applied in real practise, it is

important to avoid the condition that event be triggered

infinite times during finite time interval, i.e., Zeno behavior.

Later, we prove that the Zeno behavior can be excluded

via the event-triggered strategy (33).

Theorem 4 With the condition of Theorem 3 hold, then

there is no Zeno-behavior for the considered system under

the event-triggered strategy (33).

Proof Considering the Lyapunov functional as below

VðtÞ ¼ kÊðtÞk1: ð38Þ

Computing the derivative of V(t) along the trajectory (11)

yields

DþkÊðtÞk1 � k _̂
EðtÞk1 ¼ k _EðtÞk1

¼k � �DEðtÞ þ �AyFðYðtÞÞ � �AxFðXðtÞÞ
þ �ByFðYðt � sðtÞÞÞ
� �BxFðXðt � sðtÞÞÞ � KEðtkÞ
� CsgnðEðtkÞÞk1

� k �Dk1kEðtÞk1 þ 2ðk~Ak1 þ k~Bk1ÞkMk1

þ kKk1kEðtkÞk1 þ
X4n

p¼1

cp

¼k �Dk1kÊðtÞk1 þ ðk �Dk1 þ kKk1ÞkEðtkÞk1

þ 2ðk~Ak1 þ k~Bk1ÞkMk1 þ
X4n

p¼1

cp

¼k �Dk1kÊðtÞk1 þW ; t 2 ½tk; tkþ1Þ;
ð39Þ

where W ¼ 2ðk~Ak1 þ k~Bk1ÞkMk1 þ ðk �Dk1 þ kKk1Þ
kEðtkÞk1 þ

P4n
p¼1 cp: Note that kÊðtkÞk1 ¼ 0, solving the

inequality (39), we have

kÊðtÞk1 �
W

k �Dk1
ðek �Dk1ðt�tkÞ � 1Þ; t 2 ½tk; tkþ1Þ: ð40Þ

Utilizing the triggered condition (33), it follows that

aðdkEðtkþ1Þk1 þ fÞ
kmax

¼ kÊðtkþ1Þk1

� W

k �Dk1
ðek �Dk1ðtkþ1�tkÞ � 1Þ

ð41Þ

Then, we have

tkþ1 � tk �
1

k �Dk1
ln

aðdkEðtkþ1Þk1 þ fÞk �Dk1
kmaxW

þ 1

� �

ð42Þ

Due to _VðtÞ� 0, it can be obtained

W �ðk �Dk1 þ kKk1ÞVð0Þ þ 2ðk~Ak1 þ k~Bk1ÞkMk1

þ
X4n

p¼1

cp ¼ �W :
ð43Þ

Thus, W is bounded and we can achieve that

tkþ1 � tk �
1

k �Dk1
ln

afk �Dk1
kmax

�W
þ 1

� �

[ 0 ð44Þ

Based on above analysis, Zeno behavior can be avoided

under the event-triggered strategy (33). h

Remark 7 It can be infer from above proof that

if the triggered condition (33) be changed to
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tkþ1 ¼ infft : t[ tk; kmaxkÊðtÞk1 � adkEðtÞk1g, the syn-

chronization objective can also be achieved. However,

Zeno behavior may occur in this case. Hence, the constant

f in (33) plays an significant role to eliminate Zeno

behavior.

Numerical examples

To show the effectiveness of our theoretical results, some

simulation example is given in this section. The principal

of Theorem 2 is similar to Theorem 1, thus, we mainly

focus on the simulation of Theorems 1 and 3.

Example 1 Consider the QVMNNs with 2 neurons as

below

dxpðtÞ
dt

¼� dpxpðtÞ þ
X2

q¼1

apqðxpðtÞÞfqðxqðtÞÞ

þ
X2

q¼1

bpqðxpðtÞÞfqðxqðt � sðtÞÞÞ ; p ¼ 1; 2;

ð45Þ

where d1 ¼ 1:1; d2 ¼ 1:1 and the memristive connection

weights are given as below. For convenience, xlpðtÞ is

simplified to xlp; l ¼ R; I; J;K.

aR11ðxR1 Þ ¼
�0:4; jxR1 j � 1;

0:1; jxR1 j[ 1;

(

aR12ðxR1 Þ ¼
0:1; jxR1 j � 1;

�0:1; jxR1 j[ 1;

(

aR21ðxR2 Þ ¼
�0:1; jxR2 j � 1;

0:1; jxR2 j[ 1;

(

aR22ðxR2 Þ ¼
0:1; jxR2 j � 1;

�0:1; jxR2 j[ 1;

(

aI11ðxI1Þ ¼
�0:1; jxI1j � 1;

0:1; jxI1j[ 1;

(

aI12ðxI1Þ ¼
0:1; jxI1j � 1;

�0:1; jxI1j[ 1;

(

aI21ðxI2Þ ¼
�0:1; jxI2j � 1;

0:2; jxI2j[ 1;

(

aI22ðxI2Þ ¼
0:1; jxI2j � 1;

�0:1; jxI2j[ 1;

(

aJ11ðxJ1Þ ¼
0:2; jxJ1j � 1;

0:1; jxJ1j[ 1;

(

aJ12ðxJ1Þ ¼
0:1; jxJ1j � 1;

�0:1; jxJ1j[ 1;

(

aJ21ðxJ2Þ ¼
�0:1; jxJ2j � 1;

0:2; jxJ2j[ 1;

(

aJ22ðxJ2Þ ¼
0:1; jxJ2j � 1;

�0:1; jxJ2j[ 1;

(

aK11ðxK1 Þ ¼
0:2; jxK1 j � 1;

0:1; jxK1 j[ 1;

(

aK12ðxK1 Þ ¼
0:1; jxK1 j � 1;

�0:1; jxK1 j[ 1;

(

aK21ðxK2 Þ ¼
�0:1; jxK2 j � 1;

0:1; jxK2 j[ 1;

(

aK22ðxK2 Þ ¼
0:1; jxK2 j � 1;

0:2; jxK2 j[ 1;

(

bR11ðxR1 Þ ¼
0:2; jxR1 j � 1;

0:1; jxR1 j[ 1;

(

bR12ðxR1 Þ ¼
0:1; jxR1 j � 1;

�0:1; jxR1 j[ 1;

(

bR21ðxR2 Þ ¼
�0:1; jxR2 j � 1;

0:2; jxR2 j[ 1;

(

bR22ðxR2 Þ ¼
0:1; jxR2 j � 1;

�0:1; jxR2 j[ 1;

(

bI11ðxI1Þ ¼
0:2; jxI1j � 1;

0:1; jxI1j[ 1;

(

bI12ðxI1Þ ¼
0:1; jxI1j � 1;

�0:1; jxI1j[ 1;

(

bI21ðxI2Þ ¼
�0:1; jxI2j � 1;

0:2; jxI2j[ 1;

(

bI22ðxI2Þ ¼
0:1; jxI2j � 1;

�0:1; jxI2j[ 1;

(

bJ11ðxJ1Þ ¼
�0:1; jxJ1j � 1;

0:1; jxJ1j[ 1;

(

bJ12ðxJ1Þ ¼
0:1; jxJ1j � 1;

0:2; jxJ1j[ 1;

(

bJ21ðxJ2Þ ¼
�0:1; jxJ2j � 1;

0:1; jxJ2j[ 1;

(

bJ22ðxJ2Þ ¼
0:1; jxJ2j � 1;

0:2; jxJ2j[ 1;

(

bK11ðxK1 Þ ¼
�0:1; jxK1 j � 1;

0:4; jxK1 j[ 1;

(

bK12ðxK1 Þ ¼
0:1; jxK1 j � 1;

0:2; jxK1 j[ 1;

(

bK21ðxK2 Þ ¼
�0:1; jxK2 j � 1;

0:1; jxK2 j[ 1;

(

bK22ðxK2 Þ ¼
0:1; jxK2 j � 1;

0:2; jxK2 j[ 1;

(

ð46Þ

where the transmission delay is sðtÞ ¼ 0:5 sinðtÞ þ 0:5,

thus s ¼ 1; _sðtÞ� q ¼ 0:5� 1. The activation function is

considered as

fpðxpðtÞÞ ¼
1

1þ ex
R
p ðtÞ

þ 1

1þ ex
I
pðtÞ

iþ 1

1þ ex
J
pðtÞ

j

þ 1

1þ ex
K
p ðtÞ

k;

ð47Þ

which implies that

lR1 ¼ lR2 ¼ lI1 ¼ lI2 ¼ lJ1 ¼ lJ2 ¼ lK1 ¼ lK2 ¼ 1;M

¼ ð1; 1; 1; 1; 1; 1; 1; 1ÞT :

The slave system is

dypðtÞ
dt

¼� dpypðtÞ þ
X2

q¼1

apqðypðtÞÞfqðyqðtÞÞ

þ
X2

q¼1

bpqðypðtÞÞfqðyqðt � sðtÞÞÞ

þ upðtÞ; p ¼ 1; 2;

ð48Þ

The corresponding error system can be obtained as

dEðtÞ
dt

¼� �DEðtÞ þ �AyGðEðtÞÞ þ �ByGðEðt � sðtÞÞÞ

þ ð�Ay � �AxÞFðXðtÞÞ
þ ð�By � �BxÞFðXðt � sðtÞÞÞ þ UðtÞ;

ð49Þ
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Choose UðtÞ ¼ �KEðtÞ � CsgnðEðtÞÞ, from the memris-

tive connection weights, it can be obtained that

Thus, k~Ak1 ¼ 1:5; k~Bk1 ¼ 1:6. It can be obtained from the

condition of Theorem 1 that kmin � � dmin þ k~Ak1Lfþ
1

1�q k~Bk1kLf ¼ 3:6, C� 2½ð�A� �AÞ þ ð�B� �BÞ�M ¼ ð6:4;
6:6; 6:4; 6:6; 6:4; 6:6; 6:4; 6:6ÞT . Choose a ¼ 0:5; kp ¼

4; cp ¼ 7. Take 20 initial random conditions, Figs. 1 and 2

describes the synchronization errors eR1 ; e
I
1; e

J
1;

eK1 ; e
R
2 ; e

I
2; e

J
2; e

K
2 between system (45) and (48) with con-

troller (21), respectively. According to the simulation

results, the drive system (45) and response system (48) can

be synchronized under controller (21), which verify the

correctness of Theorem 1. Choosing 10 initial conditions in

the interval ½� 0:3; 0:3�, the synchronization error between

~A ¼

0:4 0:1 0:1 0:1 0:2 0:1 0:2 0:1

0:1 0:1 0:2 0:1 0:2 0:1 0:1 0:2

0:1 0:1 0:4 0:1 0:2 0:1 0:2 0:1

0:2 0:1 0:1 0:1 0:1 0:2 0:2 0:1

0:2 0:1 0:2 0:1 0:4 0:1 0:1 0:1

0:2 0:1 0:1 0:2 0:1 0:1 0:2 0:1

0:2 0:1 0:2 0:1 0:1 0:1 0:4 0:1

0:1 0:2 0:2 0:1 0:2 0:1 0:1 0:1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

~B ¼

0:2 0:1 0:2 0:1 0:1 0:2 0:4 0:2

0:2 0:1 0:2 0:1 0:1 0:2 0:1 0:2

0:2 0:1 0:2 0:1 0:2 0:1 0:2 0:1

0:2 0:1 0:2 0:1 0:1 0:2 0:2 0:1

0:1 0:2 0:4 0:2 0:2 0:1 0:1 0:1

0:1 0:2 0:1 0:2 0:2 0:1 0:2 0:1

0:4 0:2 0:1 0:2 0:2 0:1 0:2 0:1

0:1 0:2 0:1 0:2 0:2 0:1 0:2 0:1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

�A� �A ¼

0:5 0:2 0:2 0:2 0:1 0:2 0:1 0:2

0:2 0:2 0:3 0:2 0:3 0:2 0:2 0:1

0:2 0:2 0:5 0:2 0:1 0:2 0:1 0:2

0:3 0:2 0:2 0:2 0:2 0:1 0:3 0:2

0:1 0:2 0:1 0:2 0:5 0:2 0:2 0:2

0:3 0:2 0:2 0:1 0:2 0:2 0:3 0:2

0:1 0:2 0:1 0:2 0:2 0:2 0:5 0:2

0:2 0:1 0:3 0:2 0:3 0:2 0:2 0:2

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

�B� �B ¼

0:1 0:2 0:1 0:2 0:2 0:1 0:5 0:1

0:3 0:2 0:3 0:2 0:2 0:1 0:2 0:1

0:1 0:2 0:1 0:2 0:5 0:1 0:2 0:1

0:3 0:2 0:3 0:2 0:2 0:1 0:2 0:1

0:2 0:1 0:5 0:1 0:1 0:2 0:1 0:2

0:2 0:1 0:2 0:1 0:3 0:2 0:3 0:2

0:5 0:1 0:2 0:1 0:1 0:2 0:1 0:2

0:2 0:1 0:2 0:1 0:3 0:2 0:3 0:2

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

;
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system (45) and (48) is shown in Figs. 1, 2, 3 and 4, which

verify the effectiveness of Theorem 1.

Next, we consider the event-triggered case.

Example 2 Consider the same master-slave QVMNNs

given in Example 1.

dEðtÞ
dt

¼� �DEðtÞ þ �AyGðEðtÞÞ þ �ByGðEðt � sðtÞÞÞ

þ ð�Ay � �AxÞFðXðtÞÞ
þ ð�By � �BxÞFðXðt � sðtÞÞÞ þ UðtÞ

ð50Þ

Choose the event-triggered controller as

UðtÞ ¼ �KEðtkÞ � CsgnðEðtkÞÞ; t 2 ½tk; tkþ1Þ ð51Þ

According to Theorem 3, the event-triggered condition can

be calculated as

tkþ1 ¼ inf ft : t[ tk; kÊðtÞk1 � 0:5ð0:1kEðtÞk1 þ 1Þg
ð52Þ

It can be obtained from the condition of Theorem 3 that

kmin � 3:8, h� 2½ð�A� �AÞ þ ð�B� �BÞ�M ¼ ð6:4; 6:6; 6:4;
6:6; 6:4; 6:6; 6:4; 6:6ÞT . Choose a ¼ 0:5; kp ¼ 4; hp ¼
7; d ¼ dmin � k~Ak1Lf � 1

1�q k~Bk1kLf þ kmin ¼ 0:4; f ¼
�2 � 1T ½ð�A� �AÞ þ ð�B� �BÞ�M þ

P4n
p¼1 cp ¼ 4[ 0. Thus,

the initial condition can be chosen as

xlpðsÞ� 0:18; s 2 ½�s; 0�; p ¼ 1; 2; l ¼ R; I; J;K. Choosing

10 initial conditions in the interval ½�0:18; 0:18�, the sim-

ulation results are shown in Figs. 5, 6, 7 and 8, which

verify the effectiveness of Theorem 3.
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Conclusion

In this paper, we introduced the memristive connection

weights into QVNNs to construct the QVMNNs, which is a

new class of network model with the character of both

MNNs and QVNNs. The master-slave synchronization

problem of QVMNNs are studied by designing traditional

feedback controller and event-triggered controller corre-

spondingly. Applying the Lyapunov method, several cri-

teria guaranteeing the synchronization of drive-response

QVMNNs are obtained. Besides, the Zeno behavior can be

avoided in event-triggered control. Finally, simulation

examples are given to verify the correctness of our results.

Our future research will concentrate on these aspects: 1)

The finite-time synchronization of QVMNNs with pinning

control. 2) The dynamical behavior of coupled QVMNNs

with imperfect communication, such as packet dropout and

quantization.
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