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Abstract

In this paper, the real-valued memristive neural networks (MNNs) are extended to quaternion field, a new class of neural
networks named quaternion-valued memristive neural networks (QVMNNS) is then established. The problem of master-
slave synchronization of this type of networks is investigated in this paper. Two types of controllers are designed: the
traditional feedback controller and the event-triggered controller. Corresponding synchronization criteria are then derived
based on Lyapunov method. Moreover, it is demonstrated that Zeno behavior can be avoided in case of the event-triggered
strategy proposed in this work. Finally, corresponding simulation examples are proposed to demonstrate the correctness of

the proposed results derived in this work.
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Introduction

Memristor is regarded as the fourth basic circuit element,
which was firstly proposed by Chua (1971). However it
failed to receive much attention from research area until
2008, the first practical memristor device was invented by
HP company (Strukov et al. 2008). Due to its function to
depict the relationship between magnetic flux and electric
charge, much potential applications of memrister has
appeared recently.

One of these application is the memristive neural net-
works (MNNs), which is formulated by introducing
memristor into the connection weights. Based on the ability
to memorize the passed quantity of electronics, MNNs has
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significant potential to be utilized in synapsis and simulate
the human brain. Recently, its dynamical behavior has
attracted much research attention and a great many
important results have been published (Liu et al. xxx; Chen
et al. 2014; Bao and Cao 2014; Wu and Zeng 2014; Zhang
and Shen 2014; Chen et al. 2015). However, the investi-
gation of MNNs are mainly restricted to the real- or
complex-valued fields, the corresponding research in
quaternion field are still very few till now. Thus, it gives us
the motivation to investigate the quaternion-valued mem-
ristive neural networks (QVMNNS5).

In 1843, the British mathematician W. R. Hamilton has
invented a special type of Clifford algebra named quater-
nion (Simmons 1992). Different from real value and
complex value, an important feature of quaternion is that
the commutativity law of multiplication is not applicable
for it. Due to this reason, the development of quaternion
has been delayed for a long period of time. In recent years,
the research for quaternion-valued systems has become a
hot topic due to its widespread applications in various
fields, including attitude control (Adler 1995), computer
graphics (Took and Mandic 2009), image processing (Zou
et al. 2016), and prediction of 3-D wind processing (Xia
et al. 2015).

Recently, some researchers have introduced quaternion
value into traditional NNs (Yang et al. 2018), thus leading
to the formulation of quaternion-valued neural networks
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(QVNNSs). The QVNN s can be seen as the generalization of
complex-valued NNs (CVNNs), in which the states, con-
nection weights, and activation functions are all quaternion
numbers. Compared with RVNNs and CVNNs, the
QVNNs shows significant advantage in dealing with mul-
tidimensional data. For instance, in image compression
(Isokawa et al. 2003), QVNNs can result in a significant
reduction in the size of system compared with RVNNs and
CVNNgs, thus bring about an improvement in calculation
efficiency. Moreover, some optimization and estimation
problem can be operated by QVNNs with better perfor-
mance than RVNNs and CVNNs (Qin et al. 2018; Sahoo
et al. 2016). Recently, with the rapid development of
QVNNs, some remarkable results have been presented (Liu
et al. 2017b; Song and Chen 2018; Chen et al. 2017; Liu
et al. 2016; Tu et al. 2017; Chen and Song 2017; Liu et al.
2018; Chen et al. 2018), such as global stability (Liu et al.
2017b), multi-stability (Song and Chen 2018), robust sta-
bility (Chen et al. 2017), u-stability (Liu et al. 2016),
passivity analysis (Tu et al. 2017), state estimation (Chen
and Song 2017). For instance, with the decomposition of
the state space, the multi-stability issue for delayed
QVNNs were studied in Song and Chen (2018), some
dynamical features of the QVNNs are analyzed. In Liu
et al. (2018), by applying the approach of decomposition
and quaternion-valued LMI, criterion of global u-stability
is derived for the QVINNs. Chen and Song (2017) addresses
the state estimation for QVNNs with multiple time delay.
Via the quaternion-valued LMI method, some criteria are
established. Up to now, the investigation of QVNNs are
mainly focus on stability issue, the relative results on
synchronization is still few.

Synchronization is an important dynamical behavior in
network systems, which has been applied in many different
areas, such as associative memory, combinational opti-
mization, and pattern recognition (Ding et al. 2017; Rav-
ishankar 2018; Wei et al. 2018; Bao et al. 2016; Nakamura
and Tateno 2019; Dharani et al. 2017). In recent decades,
literature for the synchronization of NNs have been widely
published. The fixed-time synchronization for uncertain
complex-valued neural networks with discontinuous acti-
vation functions is investigated in Ding et al. (2017). In
Bao et al. (2016), exponential synchronization criteria for
coupled stochastic MNNs with probabilistic delay coupling
is proposed.

For the purpose to reduce the energy consumption and
computation burden in communication networks, a novel
sampled control scheme named event-triggered control is
proposed. Other than conventional control method, the
event-triggered controller only updated at the instants that
the measured error exceeds some prescribed threshold.
Thus, this control strategy can effectively reduce the con-
trol execution times and save the communication resource.
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Recently, much results on event-triggered control of net-
works systems have been published (Liu et al. 2017a;
Wang et al. 2018; Guo et al. 2018; Li et al. 2016). In Liu
et al. (2017a), the state estimation for delayed stochastic
MNNs with missing measure is investigated by applying
event-triggered method. Finite-time state estimation for
recurrent delayed neural networks is discussed in Wang
et al. (2018) via component-based event-triggered proto-
col. In Guo et al. (2018), the synchronization problem of
real-valued MNNSs has been discussed via a novel event-
triggered strategy for the first time. However, the corre-
sponding results for event-triggered synchronization of
MNNSs has not been extended to quaternion field yet, which
gives motivation to this work.

An unavoidable phenomenon in various engineering
systems is time delay, which is generated by infinite
switching ratio of amplifiers or data processing. Unfortu-
nately, it may lead to instability, oscillation, and other poor
performance to the system (Ding et al. 2017; Ravishankar
2018; Wei et al. 2018; Bao et al. 2016; Cao 2019; Cao
et al. 2019; Huang et al. 2014, 2019; Huang and Zhang
2019; Huang and Liu 2019; Nakamura and Tateno 2019).
Thus, it is necessary to take time delays into the study of
dynamical behavior of QVMNNS.

Based on the above discussion, the main purpose of this
work is to investigate the synchronization problem of
QVMNNSs with or without event-triggered strategy. The
main contributions of this thesis are presented as below.

(1) In this paper, the model of QVMNN:Ss is formulated,
which combines the features of both MNNs and
QVNNSs. Thus, our study is the generalization and
extension for existing research on NNs, more
challenging dynamical characteristics of network
systems are dealt with in our work.

(2) It is the first time that synchronization problem for
QVMNN s are investigated by event-triggered control.
Two criteria for the master-slave synchronization of
QVMNNs are derived, which are convenient to verify.

(3) The theoretical results in this work may provide new
ideas for other quaternion-valued networks in the
future.

The structure of this work is presented as below. In part 2,
the model is established and some basic preliminaries are
given. Main results are achieved in Part 3. In Sect. 5, a
numerical example is provided to verity the effectiveness
of our theorem. Lastly, conclusion is obtained in Part 5.
Notations. In this work, let R, C and Q stand for the real
field, complex field and quaternion field, respectively.
R",C" and Q" represent the space of n dimensional vectors,
Riscny Cuxn and Qy«,, denotes the space of n x n dimen-
sional matrices. C(!)([—1,0],R") represents the class of
continuous functions from [—z, 0] to R". co{F, F,} stands



Cognitive Neurodynamics (2019) 13:489-502

491

for closure of the convex hull of Q produced by quaternion

numbers F, F>. The notation T denotes the transpose of a

matrix. For any vector y € R”", the vector norm is defined as

lxlly = >=4=1 lx4]- For any matrix A € R™", the matrix
. n

norm is defined as [|A[[; = maxi<q<a{>_,_; |apl}, the

. . . I+hA]| —1
matrix measure is defined as y;(A) = lim_ % =

max,{az, + ZZ:],p;éq |apq|}-

Model formulation and preliminaries

The quaternion is a kind of supercomplex number formed
by one real part and three imaginary parts. A quaternion
g € Q can be described in the form
q=4q"+4qi+qj+q"k

where g%, q', q’, g* € R, the imaginary parts i, j, k obey the
Hamilton rule:

P=p=kK=-Lij=—ji=k
Jjk=—kj =i ki=—ik=].
Remark 1 Different from real number and complex

number, the commutativity rule does not hold for quater-
nion multiplication, i.e., for any x,y € Q, it can not be
ensured that xy = yx. Due to this reason, some good
properties in real field and complex field does not hold in
quaternion field. Thus, existing approach dealing with
RVNNSs or CVNNSs can not be directly applied to QVNNSs,
which lead to the need to develop new techniques and
theories to cope with QVNNSs.

The conjugate of g 1is denoted by g¢g* or g,
g = q® — ¢'i — ¢’j — ¢k. The modulus of ¢ is defined as

gl = V3@ = /(¢ + (@) + (@) + ().
x,)" € 0", it is defined that

T
o

For any vector x = (xy, ...,
| = (Il ), ¥ =%=(x},..,x For any
matrix A = (apg),xn € Onxn» it is  defined  that
|A| = (|apg|),x,- For two quaternion h = h® + h'i+ h'j +
Wk and g = ¢® + ¢'i + ¢’j + ¢¥k, the addition between
them is defined as

h+q=hn+q"+ 0" +4)i+H +q)
+ (hK +qK)k.

By Hamilton rule, the product between them is defined as

hg = (RRq® — W' — W g’ — hEgK)
+ (R + W g+ 1 gk — Wi
+(HRg + W R+ o — W gF)j
+ (BRK + W8GR + W g’ — 1 gk

With the introduction of memristive connection weights
into QVNNs, the model of QVMNNSs is constructed as
follows:
dx, (1) =
# = —dpxp(1) + Zapq(xp(t))fq(xq(t))
q=1
n (1)
D bug (D) (xg ¢ = (1)),
q=1

where p = 1,2,...,n; x,(t) € Q denotes the state vector of
the pth neuron at time ¢. d, > 0 is the self-feedback coef-
ficient; f,(x,(-)) denotes the activation function. a,,(x, (1))
and b,,(x,(1)) stand for the quaternion-valued memristive
connection weights. () is the time delay satisfying
() <p<1 and 0<7(¢)<t, where p and t are positive
constants. The initial condition of system (1) is taken as
Xp(s) = ¢,(s), —1 <5 <0, where ¢,(s) € c([~7,0],0).

Taking system (1) as the master system and construct
the following slave system

—dyif I dpyp (1) + Z apg (yp ())f (g (1))
q=1
n (2)
+ D bpg 0p (D) (g (1 = (1)) + (1),
q=1

where u,(z) is the appropriate controller to be determined
later. Define e,(f) = y,(t) — x,(f) as the synchronization
error. Our aim is to design proper controller u,(r) to realize
the synchronization between system (1) and system (2).
The error system of master-slave system is obtained below

dep(t) + Zapq yp

dt
+ Z bpq(p(t

= —dpey(t) ))84(€q(1))

))84(eq(t — (1))

+ Z[aﬁq(}’p(’)) = g (xp (1)) ]y (x4(1))
g=1
D Ton (1)) = b )t = 0) + 150

(3)

According to the current-voltage characteristics and nature
of memristor, the memristive weights can be defined as the
state-dependent switching case:
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. R (0] < Ty, , . | (0] < T, By letting e(r) = (e1(1),. . .,e,,(t))T € 0", the compact
5, (355 (1)) :{ 0| > T, a,, (3,(1)) = {d’ W) > T, form of error system (3) can be achieved
KK d
1 0) :{ S OISTe (i<t )~ De(r) + AG())8(e(0) + BO)glelr — <)
Y o A L O +AG() ~ A ()
pq,I N1 < T, by (D < T, + (B(y(1)) = B(x(1)))f (x(t — 7(1))) + u(2),
bR (1) = ng (1) =
OIE B ()] > T, ®)
Ol B k<, Where S = (G () filn () € Q' glelt) =
by (1)) —{ ; oy (1) = { N FO(0) =f(x(0)).
byg, by (0)] > T, By b (0] > T, .
Assumption 1 Assume that the function f(x(¢)) € 0" can
(4) be decomposed into the following form
where the switching jump 7, > 0, apq, pq,bpq7bl Fx(0)) = fRER ) + if (6 (2) +F (¢ (1))
known constants with respect to memristances, K (K (6)
I=R1,JK. FHTEE0),
Definition 1 For convenience of later analysis, the fol- where functions f*(x (1)), f" (' (1)), (' (1)) f* (=" (1)) €

lowing definition is given:

zlfq _max{apq7 }, dipg max{apq’ ;q}’
a’;q = max{apq, a;q ’

afq _max{apq, afq ,&gq = mln{apqa §q}

&1174 = mln{apq, apq},

&;q —Imn{apq, a,,q}, g = mln{apq’ ,[;(q}a

b;fq = max{ pq,bR 1,

bll)q —max{ v D }’ pa = max{ pq’qu}’

bk, —max{bpq,bK}

I;R :mln{bR bR e qurmn{b’q, pq},

I;j = min{ pq,bj 1

I;K =min{bX g pq},

dﬁq—max{\a [ g} g = max{lay|. Id,lu,\},
dyy =max{|d,|,|d,|}, ap, = max{lay, |, |a, |},

b§q=max{\ by |, 13,1}, B = max {16, |, 57,1},

szw :max{\b;q|, |I§qu\},b§q = max{|b§q|, |l§llfq\}
For n =R,1,J,K, it is noted that
AT = (dy,) i A” =

(b;q)nxn’A = ( pq)nxn’Bn = (B;q)nxn'

(\Zq)nxn’ Bﬂ = (b;q)nxm
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R".

Let  e(t) = eR®(t) +iel (1) + je' (t) + keX(¢).  Then,
according to Hamilton rule, the error system (3) can be
separated into four real part as below
de®(r)

dt
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Remark 2 Note that the elements of matrices Ay, By, Ay, B,
are variables that switching according to the value
x, y. However, each element in these matrices has upper
bound.

For the convenience of later discussion, the following
notations are made

AR AL A AK

PR IV R GO Y
A AK AR A
A A A
ACA A
A A a o w
AAK AR )
AN A A
I A
P S
BB B B
5 BB
BB BB
N S
BB B
By BB
U U (R L
PO R GO
AA A a
FU R (I
BB BB
s |Bo mw
BB BB

Assumption 2 For any x,y € R*, there exists positive

constants Ly and positive scalar M = (My, ..., M4,1)T € R,
such that

[F(x) = FO)lly < Lellx = I,
where |F(x)| = (|[F1(x)], ..., [Fan(x)])" € R

[F(x)| <M, (13)

Definition 2 The quaternion master-slave system (1) and
(2) is said to be synchronized if

lim [lx(z) = y(@)[l, = 0. (14)
It is equivalent to that

lim |£(7)], = 0. (15)

@ Springer

Definition 3 The quaternion master-slave system (1) and
(2) is said to be quasi-synchronized if there exists a positive
constant ¢ such that

lim [[E()]], <e. (16)

It means that the error trajectory can converge to a bounded
set.

Lemma 1 (Halanay inequality Halanay 1966) For con-
tinuous nonnegative function V(t), assume that there exists
positive constants 7, § > 0 such that the following condi-
tions hold

DV() < —BV(t)+7 sup V(s),t € [ty, +00)
t—1<s<t (]7)

p>7>0
then we obtain the conclusion

V()< sup

th—t<s<ty

V(s)e #=0) 1 € [1, +00) (18)

where p* > 0 is the unique positive solution of equation
=+ yett =0.

Lemma 2 (Generalized Halanay Inequality Wen et al.
2008) For any nonnegative function V(t), assume that there
exists positive constant ¢ and continuous function
a(r) >0, B(¢) <0,7(t) >0 such that the following condi-
tions hold

DV (1) <a(r) + B(1)V(2)
+ () sup V(s),t € [tg, +00) (19)

B(1) + (1) < — &t € 19, +00)

then we obtain the conclusion

VIO <+ sup V(s)e ) (20)
f to—t<s<ty
where
o = sup as), 1" = inf {u(t)|u(t) + (1)
—00<s<fy 121

Main results

In this part, we first consider the complete synchronization
of master-slave system (1) and (2) by choosing the fol-
lowing feedback controller

U(r) = —KE(t) — I'sgn(E(1)), (21)
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where K = diag(ky,...,kan), I = diag(y,,...,74,).- Then,
the global synchronization of master-slave system (1) and
(2) can be obtained by using Halanay inequality.

Theorem 1 Under Assumption 2, if there exists control
gains matrices K, I' such that the following condition holds

. 1 ~
~dnin + ALy + = 1By~ K <0, (22)
) . 4n
p=1
where  dmin = min{di, ..., dy}, kmin = min{ki, ..., Kk},

1w = (1,...,1)" € R*. Then the global synchronization
between system (1) and (2) can be achieved under con-
troller (21).

Proof Considering the Lyapunov functional as below
1 ! -

V(e) = IE@], +1—/ IBILIIG(E(s)[l ds — (24)
— P Ji—(1)

Calculating the derivative of V(¢) along the trajectory (11)

yields

WU < onk” (0{~DE() + A,G(EW)

+ByG(E(1 — 1(1)))

+[(Ay = A)F(X(1))
+ (By — Bo)F(X(t — 2(1)))]

— Pogn(E(0)} + 7= 1B, [GCEO)],
SO

~ 1 ~
< (o + WAL + 1 1B ) IEO

+2-17 [(A - A)
+ (B — B)IM — sgnE" (1) I'sgn(E(1))
— sgnE" (t)KE(t)

— KE(1)

— 1Bl IG(E(r ~

~ 1 ~
< (i + WAL+ B ) LB

+2-1L [(A—A) +
4n

*Z/p ka

< (—dmm AL + 1 1Bl

(B—B)M

— kuin) [|E(1)[[4
4n

+2 1 [A-A)+ (B-B)M-> 7,<0
p=1

(25)

Based on above analysis, the synchronization between
system (1) and (2) can be achieved under the controller
(21). O

Remark 3 For the first time, the memistive connection
weights are brought into QVNNs. As the extension of
memristive RVNNs and CVNNs, the Weight connections
af (xp(1)), ab, (x,(1)), a), (x,(t)) and af (x,(1)) are decided
by the corresponding imaginary unit of state vector x,(t).
Thus, the character of both MNNs and QVNNSs are com-
bined in this new model, which lead to more complex
dynamical behavior in nonlinear systems. Hence, our work
serves as the supplement for the previous results and enrich
the theory of QVNNSs.

Remark 4 The sign function in controller (21) plays an
important role to eliminate the parameter mismatch caused
by memristive connection weights. However, this may
cause chattering phenomenon to control system. Moreover,
the complete synchronization is rather rigorous for many
real-life applications Ding et al. (2017), Ravishankar
(2018), Wei et al. (2018), Bao et al. (2016). Usually, let the
error restricted in an prescribed area is enough Nakamura
and Tateno (2019). Thus, another type of synchronization
is considered in the next.

In this part, we focus on the quasi-synchronization of
master-slave system (1) and (2). Choose the controller
below
U(t) = —KE(t), (26)
where K = diag{ki, ..., ksy} is the control gains matrix.

Theorem 2 Under Assumption 2, if there exists positive
constant & and control gains matrix K such that the fol-
lowing condition holds

(=D = K) + ||All, Ly + |B]l Ly < — £<0. (27)

Then the quasi-synchronization between system (1) and (2)
can be achieved under controller (26). The error trajec-
tories will converge to the following set

v = {0 e rlp0] < % (28)

where R; = ||[(A — A + B — B)M||,.
Proof Considering the Lyapunov functional as below
V(o) = E@Il (29)

Computing the derivative along of V(¢) along the trajectory
(11) yields

@ Springer
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avi) . EG+B — ],
dt h—0+ h
i V@ + HEG) + o), — [EO)
h—0+ h

1 _ _
= lim +{|EG) + h{-DE() + A,G(E()

+B,G(E(1 — (1))
+ (4 — AJF(X(1)) + (By

— B)F(X(1 — (1))

—KE( JHE = E@) }

< Jim (H(l hD — hK)E(@0)|l, — [E(1)]])
+ ||Ay||1||G(E(t))||1

+ By L IIG(E( — ()],

+[1(Ay — A)F (X)),

+ 1l (By —Bx)F(X(f—f( M
+IALLAIE@],

+ By L LAIE(E = 2(0))]ly + Ry

< (=D = K)E@, + Al L E@)y
+ Bl LellEe = ()]l + Ry
< A{m (=D = K) + AL LHE®DI,
+1BllLy sup_ [[E(s)Il; + Ry
t—t<s<t

(30)
According to the Lemma 2, we have
Rl —utt
IE@OI, <—+ sup |[E(s)|le (31)
é t—1<s<t

where " = inf,oo{u(t) : p(t) + iy (=D — K)+ IA],L; +
|B|,Lre”™®) = 0}, = p (=D — K) + ||A||,Ls. Therefore,
quasi-synchronization between system (1) and (2) can be
achieved under controller (26). O

Remark 5 Compared with complete synchronization,
quasi-synchronization is more practical and reasonable in
many real applications. Through selecting appropriate
control gains matrix K, the convergence field ¥ can be

@ Springer

constrained to any domain that we needed. Moreover, the
controller for quasi-synchronization does not contain sign
function, thus the chattering phenomenon can be effec-
tively avoided.

In the following part, we focus on the synchronization of
master-slave QVMNNSs via event-triggered control. Con-
sidering the following event-triggered controller

U(t) = —KE(t;) — I'sgn(E(t)),t € [tky trt1), (32)

where the event-triggered instants #,k=1,...,
determined iteratively by the rule below

tepr = nf{r 1> 1 kx| E(0)| 2 2(SIE@)], + O}
(33)

n are

where E(f) = E(t) — E(t) for t € [ty,ti11), 0= —dmint
ANl Ly + 75 1Bl 1Ly = Kmin, = =2 15, [(A— A) + (B— B))]
M+Zp 17p >0, o is a constant satisfying 0<a<l,
14,,:(1,...,1) ERM.

Theorem 3 Under Assumption 2, if the control gains

kp,ypsp = 1,...,4n satisfy the following conditions
y { —0,, sgnEy(t)sgn(E,(t)) <0, (34)
P 0,, sgnE,(t)sgn(E,(tx)) > 0,

N 1
=0 = —dmin + [|All,Ly + = 1Bll\ Ly — kmin <0, (35)

where kyin = miny— _4,{kp}, dmin = min,—; _4.{d,}. 0 =
(61,..., 94n) € RY is an vector satisfying
0>2[(A—A)+ (B—B)M. Then the synchronization
between system (1) and (2) can be achieved under con-
troller (32) and event-triggered strategy (33).

Proof Considering the Lyapunov functional as below
1 ! -
V(o) =E@ + m/ ’ 1B IG(Es))]ds. (36)
t—1(t

For t € [ty, tx+1), computing the derivative of V(¢) along the
trajectory (11) yields
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(1)
~ Isgn(EG: >>}+#||B|| IGEW),
B IGE <),

< (= + WAL + 52 181,27 GO,
+2-17[(A - A) + (B - B)M

— sgnE" () I'sgn(E(t))
— sgnE" ()K[E(ty) — E(t) + E(1)]

~ 1 ~
< (-dmin + ||All, Ly +m||BH1Lf - kmin) IE®)],
— E(1)]
H
1 P kmin | [|E(E)]]

— KE([k)

— { — sgnE" (1)K[E(t)
1B

IN

(—dmm + AL+

= o K LE ()
—OEMI, = {+aE@, + )
= (= DEIED], +¢) <0

IN

(37)

Based on above analysis, the synchronization between
system (1) and (2) can be achieved under the controller
(32) and event-triggered strategy (33). O

Remark 6 1t can be seen that, compared with the control
method proposed in [8], Bao and Cao (2014), Ding et al.
(2017), Ravishankar (2018), Wei et al. (2018), Bao et al.
(2016), Nakamura and Tateno (2019), event-triggered
strategy not only ensure the system performance but also
reduce the sampled times and computation burden. Thus the
network resource is saved and the communication efficiency
can be effectively improved. In fact, the traditional feedback
controller can be regarded as the special case of the event-
triggered controller. Moreover, to ensure the proposed event-
triggered control can be applied in real practise, it is
important to avoid the condition that event be triggered
infinite times during finite time interval, i.e., Zeno behavior.

Later, we prove that the Zeno behavior can be excluded
via the event-triggered strategy (33).

Theorem 4 With the condition of Theorem 3 hold, then
there is no Zeno-behavior for the considered system under
the event-triggered strategy (33).

Proof Considering the Lyapunov functional as below

v(r) = [E@)),- (38)

Computing the derivative of V() along the trajectory (11)
yields

DHE@)l, < [E@), = IE@],
= = DE(1) + AyF(Y (1))
+ B,F(Y(r — (1))
— B F(X(t — (1))
— sgn(E(u)) |,
< IDILIE@I +2(All + 1Bl )Ml

4n

+IKILIE@ + Y7,
p=1

(1Dl + IKIDIE@)
4n

+2(|All + IBIDIMIL +D v,
p=1

=D, IE@)[l, + W, 1 € [tx, trr1),

— AF(X(1))

— KE([k)

=IDILIE®], +

(39)

where W =2(|All, + IBII)IMI, + (D], + 1K1,
E(#)]l JFZ;L 7,- Note that ||E(#)||; = 0, solving the
inequality (39), we have

IE@)||, < —— (elPlhl=1)

1 RASHI ) .
Hl— ”DH] ) [k k+l)

(40)

Utilizing the triggered condition (33), it follows that
2OE(t )l + O

z = 1),
Wmax (41)
< 7_(e|‘m|1(lk+l—tk) _ 1)
DI,
Then, we have
1 ONE(ti1)l; + C)||D||1
the)] — e 2> +—= ln[ (42)
B 1Dl Kinax W
Due to V(¢) <0, it can be obtained
W < (IDIl; + [IK][,)V(0) + 2([lAll, + |B]| ) [1M]],
4n (43)
+D =
p=1
Thus, W is bounded and we can achieve that
1 «f||Dll, ]
Lyl =t 2 +=71n +1[>0 44
ST [kmaxw (44)

Based on above analysis, Zeno behavior can be avoided
under the event-triggered strategy (33). O

Remark 7 1t can be infer from above proof that
if the triggered condition (33) be changed to
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teer = inf{t : t > 1, kmax |E(D)||, > 0| E(2)]|,}, the syn-
chronization objective can also be achieved. However,
Zeno behavior may occur in this case. Hence, the constant
{ in (33) plays an significant role to eliminate Zeno
behavior.

Numerical examples

To show the effectiveness of our theoretical results, some
simulation example is given in this section. The principal
of Theorem 2 is similar to Theorem 1, thus, we mainly
focus on the simulation of Theorems 1 and 3.

Example 1 Consider the QVMNNs with 2 neurons as
below
dx,(t)
Zt =—dpxp(1) + Zapq (26 (1) g (x4 (1))
X (45)
+ prq(xp(t))fq(xq(t —1(1)),r=12,
q=1

where d; = 1.1,d, = 1.1 and the memristive connection
weights are given as below. For convenience, xf,(t) is

simplified to xf,, I=R,1,J,K.

R _O4a |xﬁ§1, R 01’|x113‘§1’
ay (x7) = alsz =
0.1, |x8] > 1, —0.1, x| > 1,
R —0.1, 5[ <1, 0.1, x5 <1,
a2l(x§): 22x§
0.1, % > 1, 0.1, 8| > 1,
01|x’|<1,, 0.1, x| <1,
o) > ~0.1,[x}| > 1,
0.1 |x’|<1 o) — 0.1, x| <1,
| 02, > 1, “2(0) —0.1, || > 1,
0.2, \xf|<1, a, 0.1, x| <1,
= X, ) =
0.1, x| > : —0.1,[x]| > 1,
-0.1 |ﬂ|<1, p 0.1, [l <1,
xé = 22(% =
0.2, > 1, —-0.1, || > 1,
_ 02\x’<|<1 o () 0.1, |xK| <1,
0.1, |xK| > —0.1, |xK| > 1,
—-0.1 |xK|<1, < 0.1, ]xX1 <1,
ay (%) = X ay(xy) = X
0.1, |x5| > 1, 0.2, |xK| > 1,
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W () — 02,\x’fl§1,bR r | OLKFI<T,
1) = 12\x) =

0.1, xf| > 1, —0.1, |xk] > 1,
oy [ OLIEIST 0L,
21 (%) 2 (%)

0~2a |x§| > 17 _O'Ia |x§| > 17

!

bl (x[): Oza‘x1|§17b1 (xj): 01,|X{|§1,
11X 12X

O-1a|xll|>1a *0'1a|x1|>13

! !

P ) = —0.1, |x2|<1,bl s 0.1, x| <1,
21X 2\

0.2, x4 > 1, —0.1,|x5| > 1,
b () = 0.1, x| <1 ) 0.1, x| <1,

e 0.1 >1, > 0.2, |¥/| > 1,

0.1, | <1, 0.1, <1,
by () = P = {0

0.1, x| > 1, 0.2, x| > 1,
LK (K — 0.1, [xK1 <1, KoK 0.1, [xK| <1,
() = X () =

0.4, |x¥| > 1, 0.2, |xX| > 1,

0.1, |x¥| <1, 0.1, ]xX| <1,
gl(xg){ bfz(xf): 02 |xK|>1
bl 2 I

(40)
where the transmission delay is t(¢) = 0.5sin(¢) + 0.5,

thus 7 = 1,7(¢r) <p = 0.5 <1. The activation function is
considered as
1 1 ) 1

ﬁ)(x[)(t)) = | +ex§([) + 1+ eXI[)(,) 1+ 1+ e#(,)]

1
T+ ed®

(47)

which implies that
BR=B=l=l=H==K=0K=1,M
=(L,LLLLLLD

The slave system is

dy, ()
# == apYp

2
(1) + Y apg (p (D) (3 (1))

q=1

2
+ prq(yp(t))fq(yq(t — (1))

q=1

+uy(t), p=1,2,

The corresponding error system can be obtained as

d()

> == DE(t) + A,G(E(1)) + B,G(E(t — (1))

(49)
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Choose U(t) = —KE(t) — I'sgn(E(t)), from the memris-
tive connection weights, it can be obtained that

04 01 01 01 02 01
01 01 02 01 02 0.1

01 01 04 01 02 0.1
~lo2 o1 o1 01 01 02
A=lo2 o1 02 01 04 o1
02 01 01 02 01 0.1

02 01 02 01 01 0.1

01 02 02 01 02 01

02 01 02 01 01 02

02 01 02 01 01 02

02 01 02 01 02 0.1
_lo2 01 02 01 01 02
B=lo1 02 04 02 02 o1
01 02 01 02 02 0.l

04 02 01 02 02 0.l

01 02 01 02 02 01

05 02 02 02 01 02

02 02 03 02 03 02

02 02 05 02 01 02
_a_|03 02 02 02 02 o
01 02 01 02 05 02

03 02 02 01 02 02

01 02 01 02 02 02

02 01 03 02 03 02

01 02 01 02 02 01

03 02 03 02 02 0.1

01 02 01 02 05 0.l

G s |03 02 03 02 02 ol
02 01 05 01 01 02

02 01 02 01 03 02

05 01 02 01 01 02

02 01 02 01 03 02

0.2
0.1
0.2
0.2
0.1
0.2
0.4
0.1
0.4
0.1
0.2
0.2
0.1
0.2
0.2
0.2
0.1
0.2
0.1
0.3
0.2
0.3
0.5
0.2
0.5
0.2
0.2
0.2
0.1
0.3
0.1
0.3

4,7, = 7. Take 20 initial random conditions, Figs. 1 and 2

describes  the  synchronization errors X e ef,
K R I, K :
er,e,;,e,,e,e, between system (45) and (48) with con-

0.1
0.2
0.1
0.1

0.1
0.1
0.1
0.2
0.2
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.1
0.1
0.1
0.1

0.2
0.2
0.2

Thus, ||A||, = 1.5, ||B||, = 1.6. It can be obtained from the
condition of Theorem 1 that kmin > — dmin + ||A||1Lf+
P IBIL L =36, T'>2[(A —A)+ (B - B)IM = (6.4,

6.6,6.4,6.6,6.4,6.6,6.4,6.6). Choose o =0.5,k, =

troller (21), respectively. According to the simulation
results, the drive system (45) and response system (48) can
be synchronized under controller (21), which verify the
correctness of Theorem 1. Choosing 10 initial conditions in
the interval [— 0.3,0.3], the synchronization error between
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025 ; 03 ;
) )

i ey || - - <%

0.2 “‘“ e(2R)(t) 02l . e<2K>(t) |

015} | ,

0.1 4‘,‘

\

e |f

® 01 b/

|

-2}

o2 -0.3f
%% > 4 8 10 04 2 4 6 8 10

t
Fig. 1 Trajectories of system (49) Fig. 4 Trajectories of system (49)

0.3 : system (45) and (48) is shown in Figs. 1, 2, 3 and 4, which

:‘ L verify the effectiveness of Theorem 1.

02}, Oy 1
\ > Next, we consider the event-triggered case.
Example 2 Consider the same master-slave QVMNNs
given in Example 1.
= dE(t _ _ _
) # =—DE(t) + AyG(E(t)) + B,G(E(t — (1))
T q 50
+ (4, ~ A)F(X(1) o)
-0.2 = 5
+ (By = B)F(X(1 — (1)) + U(1)
03 Choose the event-triggered controller as
-04 . - . - U(t) = —KE(t) — I'sgn(E(t)),t € [tx, tk+1) (51)
According to Theorem 3, the event-triggered condition can
Fig. 2 Trajectories of system (49) be calculated as
tepr = inf{t 1> 4, [[E(0)]|, Z0.50-1[E@)], + 1)}
52
03 (52)
-~ It can be obtained from the condition of Theorem 3 that
J s N ’ \
02} O g >38, 0>2[(A—A)+ (B—B)M = (6.4,6.6,6.4,
04 “ 6.6,6.4,6.6,6.4,6.6)T. Choose a=0.5,k,=4,0,=
AH ) .

W\ 7,0= duin = lIAlLLr — 5 Bl ILr + kmin = 0.4, =
= —2 1T[(A-A)+(B-BIM+ Y, 7, =4>0. Thus,
o o :’ the  initial  condition can be  chosen  as

I xll,(s) <0.18,s € [-7,0],p = 1,2, =R,I,J,K. Choosing

-0.2f 10 initial conditions in the interval [—0.18,0.18], the sim-
ulation results are shown in Figs. 5, 6, 7 and 8, which
03 verify the effectiveness of Theorem 3.
04 ‘
0 2 4 8 10

Fig. 3 Trajectories of system (49)

@ Springer



Cognitive Neurodynamics (2019) 13:489-502 501
0.4 05 ;
- -y 0al - - -
0.3 ) : %)
0.2% 1 0'31 1
x“ 0.2 i
0.1 1 |
\ 01 fl 1
N— .
s O FESEe——m e = \!
z ;,"’, ¢ o\ m—
y
v | : 0.1 f
02} | o
: - il 4
02
-0.3} 1 03 k ]
-04F 1 -04} 4
05 s s s s 05 s s s s
0 2 4 6 8 10 2 4 6 8 10
t t
Fig. 5 Trajectories of system (50) Fig. 8 Trajectories of system (50)
05 .
T Conclusion
et
0.4 eg)(t) 1
\ In this paper, we introduced the memristive connection
03} 1 . . L
| weights into QVNNSs to construct the QVMNNS, which is a
02 f‘ i new class of network model with the character of both
= i MNNs and QVNNs. The master-slave synchronization
S T\\\\ 1 problem of QVMNNS are studied by designing traditional
0»/\&;\;3 >, feedback controller and event-triggered controller corre-
e spondingly. Applying the Lyapunov method, several cri-
I . . . . .
-0.1% ] teria guaranteeing the synchronization of drive-response
" 2[ | QVMNNSs are obtained. Besides, the Zeno behavior can be
' avoided in event-triggered control. Finally, simulation
-0.3 . " . . 0 examples are given to verify the correctness of our results.
. Our future research will concentrate on these aspects: 1)
The finite-time synchronization of QVMNNs with pinning
Fig. 6 Trajectories of system (50) control. 2) The dynamical behavior of coupled QVMNNs
with imperfect communication, such as packet dropout and
quantization.
05
- -V
04f e(ZJ)(t) il
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