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Abstract
Epilepsy is a chronic disorder, which causes strange perceptions, muscle spasms, sometimes seizures, and loss of

awareness, associated with abnormal neuronal activity in the brain. The goal of this study is to investigate how effective

connectivity (EC) changes effect on unexpected seizures prediction, as this will authorize the patients to play it safe and

avoid risk. We approve the hypothesis that EC variables near seizure change significantly so seizure can be predicted in

accordance with this variation. We introduce two time-variant coefficients based on standard deviation of EC on Freiburg

EEG dataset by using directed transfer function and Granger causality methods and compare index changes over the course

of time in five different frequency bands. Comparison of the multivariate and bivariate analysis of factors is implemented

in this investigation. The performance based on the suggested methods shows the seizure occurrence period is approxi-

mately 50 min that is expected onset stated in, the maximum value of sensitivity approaching * 80%, and 0.33 FP/h is the

false prediction rate. The findings revealed that greater accuracy and sensitivity are obtained by the designed system in

comparison with the results of other works in the same condition. Even though these results still are not sufficient for

clinical applications. Based on the conclusions, it can generally be observed that the greater results by DTF method are in

the gamma and beta frequency bands.

Keywords Effective connectivity � Standard deviation � Granger causality � Directed transfer function � Epilepsy seizure

prediction � EEG

Introduction

Epilepsy is the fourth most common neurological disorder

around the world in which one-fourth of the patients suffer

from drug-resistant epilepsy. Accordance with the scien-

tific research seizures last a few minutes to hours prior to

the clinical evidence, so transmission from the Interictal

state (the period between seizures) to the ictal state (sei-

zure) is not abrupt (Lehnertz et al. 2007). EEG is used to

analyze the epileptic problems, which is a method to record

the electrical activity in the brain (Iasemidis et al. 2005;

D’Alessandro et al. 2003). The primary purpose of this

investigation is to design a system based on EC changes,

which sends a warning signal to increase the patient’s

security. Effective Connectivity is defined as the effect one

neural system exerts on another, which is assumed in

neurophysiology as the analysis of spike trains obtained

from multi-electrode recordings (Aertsen and Preissl

1991).

Investigations in brain relationship are not limited to

Effective or Functional connectivity. Some of them assess

brain functions both based on entropy and particle trajec-

tories and the relationship between brain time series (Déli

et al. 2017). In terms of GC, this method is applied not only

in the area of fMRI (Parhizi et al. 2018) but also in EEG

dataset analysis such as applying spectral measures of
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linear Granger causality to study the causal connectivity

between time series data (He et al. 2014), measuring con-

nectivity across brain regions (Coben and Mohammad-

Rezazadeh 2015) and studying in causality flow during

Motor Imagery (MI) using scalp electroencephalograms

(Hu et al. 2015). In addition in a study, phase resampling is

introduced to make statistical inferences of Granger

causality in frequency domain time series analysis (multi-

variate EEG and skin conductance data) (Liu and Molenaar

2016), then, Staljanssens et al. (2017) show that it is pos-

sible to estimate the Seizure Onset Zone (SOZ) from

clinical or low-density scalp EEG with high accuracy using

Electrical Source Imaging (ESI) and subsequent functional

connectivity analysis based on Granger causality, further-

more, in a paper McBride et al. (2015), scalp EEG based

causality measurements have different distributions for

different cognitive groups and hence the causality mea-

surements can be used to distinguish between Normal

Control (NC), Mild Cognitive Impairment (MCI), and

Alzheimer’s Disease (AD) participants.

Additionally, conditional Granger causality (cGC) and

partitioned Granger causality (pGC) are applied to an EEG

dataset to analyze neural information (Malekpour and

Sethares 2015). In addition, a novel method of measuring

directed connectivity by applying the framework of Granger

causality to phase shift events is introduced, which is able to

identify connectivity patterns in situations similar to EEG

recordings (Marshall et al. 2014). Moreover, in a paper

Georgiou and Nicolaou (2014), an introduced system

extracts features from the patients’ electrical brain activity

(EEG) to discriminate between ‘‘anesthesia’’ and ‘‘aware-

ness’’ using of a neural network classifier and Granger

causality (GC) features. What’s more, the aim of another

study is to analyze drivers’ different mental states, such as

alertness and drowsiness, and find out a neurometric indi-

cator able to detect drivers’ fatigue level in terms of brain

networks. The EEG signals are analyzed by using Granger-

Causality-based brain effective networks (Kong et al. 2015).

Also, in an investigation Siggiridou et al. (2015), a large

number ofGranger causalitymeasures used to form causality

networks from multivariate time series are assessed and the

application to epilepsy is considered. On top of that GC

analysis has the potential to help localize ictal networks from

interictal iEEG (Park and Madsen 2018).

As well, GC is applied to electrocorticogram (ECoG)

and stereotactic EEG (SEEG) to study temporal lobe

epileptic seizures (Franaszczuk and Bergey 1998). It is also

used to disclose directional connections between multi-

channel Local Field Potential (LFP) (Cadotte et al. 2010),

and to determine connectivity between brain regions in

ictal periods (Coben and Mohammad-Rezazadeh 2015). In

addition, GC proposed an idea about the propagation of

epileptic spikes, which are measured by MEG, and also

measured path changes in the temporal and frequency areas

(Lin et al. 2009). DTF is applied to assess seizure flow

patterns in comparison with different origin sites (Fra-

naszczuk and Bergey 1998) and to locate the dynamic flow

patterns. The usefulness of this method as a measure of

information flow in multivariate systems has been

demonstrated in many articles (Kaminski et al. 2001;

Kaminski 2005). This method is applied to epileptic loci

localization (Franaszczuk and Bergey 1998) and to study

epileptogenesis (Medvedev and Willoughby 1999). Deter-

mining the direction and strength of high-frequency

dynamic propagation (70–175 Hz) during Ictal and Inter-

ictal recordings, the short-time direct directed transfer

function (SdDTF) is used based on the idea of Granger

causality (Korzeniewska et al. 2014).

In addition, GC is applied in several investigations in

regards to epileptic patients, such as identifying patterns of

distinct spatiotemporal causal connectivity (CC) in a group

of children suffering from epilepsy and control group

during the process of working memory task (Protopapa

et al. 2016). Investigations in brain connectivity are not

focused on the mentioned area, functional connectivity, in

fact, is employed as measurements to investigate the brain

networks during positive or negative emotions (Dasdemir

et al. 2017). Additionally, the causal relationship can be

modeled by a multi-layer perceptron artificial neural net-

work to generate an input–output mapping (Talebi et al.

2018). It can be noted that in different researches not only

different methods used to predict the epileptic seizures but

detecting them is practical in research, such as using robust

machine learning classification method to detect the sei-

zures (Hussain 2018), and using wavelet packet based log

and norm entropies with a recurrent Elman neural network

(REN) for the automated detection of epileptic seizures

(Raghu et al. 2017). Furthermore, the transition of brain

activity from interictal to preictal states preceding a seizure

by combining EEG network and clustering analyses toge-

ther in different frequency bands is investigated (Li et al.

2019). In addition, a study showed that brain connectivity

during emotional processes is different among females and

men (Guntekin et al. 2017).

The organization of this research is as follows: first

section is the introduction. Second section presents the

methods used for Effective Connectivity estimation, while

the results and discussion are provided in third and fourth

sections, respectively.

Materials and methods

Since the early 1960s Adey et al. (1961), investigation

concentrating on brain connectivity has been expanding.

All over this period, expanding methods to determine brain
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connectivity precisely has been a challenging problem. In

this section, an overview of the most widely used tech-

niques is provided and some of the ideal measures in

effective connectivity are depicted.

Database

The proposed methods are applied to the Freiburg EEG

database to evaluate the efficiency of defined approaches

(http://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-

project/eeg-database). The database contains electrocor-

ticogram (ECoG) or iEEG from twenty-one patients with

intractable focal epilepsy. The database is acquired using a

digital video-EEG system in the Epilepsy Center of the

University Hospital of Freiburg, Germany. The system is

equipped with a 256 Hz sampling rate and a 16-bit analog-

to-digital converter. A total of 83 seizures, 504 h of

interictal, and 73 h of preictal or ictal data are available in

the database. We evaluated the methods on 21 patients’

data of Freiburg database, which is a publicly available

intracranial EEG database containing signals from six

electrodes [three near the seizure focus (focal) and the

other three distal to the focus (afocal)] ECoG recordings.

The database is analyzed with regard to Pre-ictal (a period

immediately before a seizure) and Interictal periods. The

database is divided into different phases included Pre-ictal,

Interictal, post-ictal and Ictal, and all of them are labeled

by the University of Freiburg. In fact, seizure onset times

and artifacts were identified by a certified epileptologist, as

it can be seen in Fig. 1. For all 21 patients at least 24 h of

EEG-recordings Interictal without seizure activity, 2–5

seizures for each patient, and Pre-ictal recordings including

at least 50 min before each seizure are available.

Granger Causality

Granger causality has the basic idea that can be returned to

Wiener (1956), who introduced a test to evaluate whether a

time series is useful in predicting another, so the second

one is assumed to have a causal effect on the first one. The

basic principle of Granger (1969, 1980) following Wien-

er’s idea is based on linear regression models. The basic

calculation of parametric Granger Causality methods can

be acquired based on autoregressive (AR) modeling

(Chatfield 2003).

Directed Transfer Function

DTF as a multivariate method based on a multivariate auto-

regressive model (MVAR) is able to determine the causal

relations between the signals and identify the directed

propagation of EEG activity (Kaminski and Blinowska

1991). Indeed, DTF is a frequency domain characterization

of connectivity that can be considered as a factorization of

the coherence between pairs of time series. Also, DTF

represents the existence of directional signal propagation

even if it is only indirect.

Methods

To start, by separating the Ictal dataset from pre-ictal and

interictal, checking for being stationary is not indispens-

able. To be clear, being stationary should be checked in

EEG dataset included Ictal phase. Indeed, in this project,

Effective Connectivity changes over the course of time are

considered as an index to forecast the epileptic seizures. It

can be clear that Pre-ictal and Interictal databases are under

consideration. We proposed a data preparation framework

for accurate determination so the database is divided into

separate training and test dataset. As mentioned before, the

databases are labeled, in fact, the first hour of Interictal

recordings individually is used as the training dataset.

Thus, the rest of the Interictal and Pre-ictal databases are

supposed to be used as the testing dataset.

In this section, Fig. 2 shows a flowchart contained an

overview of the proposed method in this study. The anal-

ysis of data is carried out using MATLAB (version

R2013a, http://www.mathworks.com) and EEGLAB-SIFT

toolbox (version 0.1. Alpha, https://sccn.ucsd.edu/wiki/

SIFT).

Sliding-window technique

Step (1) Sliding-window technique is implemented in most

of the prediction methods published up to now to employ

some (linear or non-linear) characterizing measures to

calculate from a window of EEG data with a pre-defined

length, then the following window is analyzed, and so

forth. The analysis windows’ length usually ranges

between 10 and 40 s, depending on whether the applied

measure is used to describe the characters of a single EEG

channel or relations between multichannel EEG, referring

to as a univariate, bivariate or multivariate measure,

respectively. According to the previous studies, in this

study 5-s windows are considered (Cadotte et al. 2010;

Niknazar 2013; Bandarabadi et al. 2015). 50% overlap

(step size = 2.5 s) is applied in order to increase the data

size and fitting the model more accurately to the data.

Pre-processing

Step (2) Pre-processing as an important step in data pro-

cessing (normalization) is performed on the data. The

variable measured the deviation from the mean in units of
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standard deviation is called a Standardized variable, is a

quantity without any dimensions, as per given formula:

z ¼ X � �X

S
ð1Þ

where z is a standard score. �X is the mean of the data. S is

the standard deviation of the data.

If the deviations from the mean are given in units of the

standard deviation, there are said to be expressed in stan-

dard scores. These values are practical in comparing dis-

tributions (Spiegel and Stephens 1999). The rational reason

for using this method is that the effects of the altitudes in

different channels should be eliminated. In this stage, as a

result of similar altitudes, the only impact on calculations is

dynamic effects.

Fitting model

Step (3) In the next step, an applicable model is fitted to the

data (MVAR and AR model for DTF and GC method,

respectively). An approach on the basis of a segmentation-

based AMVAR is adopted rather similar to the concept

behind short-time Fourier transforms or other windowing

techniques. That is to say, a sliding window of length W is

Fig. 1 A short period of the Invasive EEG of an epileptic seizure is

annotated. All four states of ictal, pre-ictal, ictal, post-ictal and inter-

ictal are coded with different colors. EEG signals belong to patient 2

from the Freiburg EEG Database and were formed a picture using the

EEGLAB software (EEGLAB 2011)
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extracted from the multivariate dataset, and VAR[p] model

is fitted to the data (similar to the dataset, 6 channels are

included in the MVAR model). Then the window by a

(small) quantity Q is increased and the procedure until the

start of the window is greater than T-W is repeated. Thus

floor ((T - W)/Q ? 1) VAR coefficient matrices are pro-

duced and the evolution of the VAR[p] over the course of

time is described. The rational idea here is that by using an

adequately small window, the data within the window will

be locally stationary and appropriate for VAR modeling.

By using overlapping windows (small Q) coefficients can

be obtained that change steadily in a particular degree with

time. Figure 3 illustrates a schematic of the sliding-window

AMVAR approach.

As a matter of fact, an appropriate model is fitted to the

dataset in each 5-s window. It will be clarified in the Result

section that a fixed window size equaled to 5 s is used

while databases are separated into different lengths (300,

600 and 900 s) in order to a precise comparison. To check

the Akaike Information Criterion (AIC), some parts of data

are selected randomly and the criterion by SIFT toolbox is

implemented in them to clarify the acceptability of selected

model order. The window length, step size, and model

order are considered 5, 2.5 and 5 s, respectively, then the

validity of model order is proven in accordance with the

Akaike Information Criterion (AIC), which is shown in the

Fig. 4.

Extracting EC matrices

Step (4) To accelerate calculations, in each 5-s window a

matrix in accordance with six employed channels is

obtained. To have an accurate comparison, in fact, all the

calculations are performed in five frequency bands (Delta:

1–4 Hz, Theta: 4–8 Hz, Alpha: 8–13 Hz, Beta: 13–32 Hz,

and Gamma: 32–127 Hz). Using two methods calculating

the divided data to some intervals is considered as a way to

eliminate any disruptions in the calculation speed, which is

probably to occured. It should be noted that the results in

accordance with EC changes over the course of time are

not functional, and in the next stage, the basis of the work

is based on standard deviation of EC variables.

Calculating standard deviation of EC matrices

Step (5) As it is mentioned, EC as a changeable variable

over the course of time is not compatible with the methods,

while Standard Deviation of EC is introduced as an accu-

rate variable. In fact, at this stage, the SD variations of EC

matrices for two methods (DTF and GC) as variable

Interictal 
/Preictal data

Sliding-window analysis 
(Overlap=2.5s)

Pre-processing
(Normalization)

Extracting EC matrices
Calculating Standard 

Deviation on EC matrices

Extracting Thresholds and 
Binary matrices

If ToC is more than 
the Binary Threshold

Go to the next window

YESNO

BT

Fitting model
(Model order=5)

(1) (2)

(3)

(4)(5)

(6)

(7)

Fig. 2 Given is a flowchart illustrating the information about the

process of signal analysis. Sliding-window technique is applied to the

data by overlapping 2.5 s. In the next stage, normalization as a

method of pre-processing is utilized to neutralize the effects of

database’s amplitudes on calculation. After fitting a model (order = 5)

on the dataset, EC matrices are extracted, then standard deviation of

EC matrices are calculated. In accordance with the formula (2)

thresholds are obtained, after that, they are compared to the SD

matrices. In this level, Binary Thresholds are defined. Total of

components (ToC) of Binary matrices is compared with Binary

Thresholds. In that case, ToC is more than BT, it means that the

epileptic seizure is diagnosed by the Binary Threshold and the alarm

is sounded. Otherwise, the processor goes to the next window to

continue the process
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indicators over the course of time are defined. Indeed,

based on changing these features passing time and by

approaching the seizures in the Pre-ictal dataset, epileptic

seizures can be predicted.

Extracting thresholds and binary matrices

In the next step, the thresholds are calculated. To use the

Thresholding technique, the first hour of the Interictal

dataset is required for each patient. Indeed, in this work,

this part of individual data is considered as Training

dataset. It should be noted that the applied method is

defined individually, and the Thresholding technique is

used based on a variation over the course of time. In this

way, by comparing the conditions and variations of the

defined variable by approaching the seizures, they can be

forecasted.

Two time-variant coefficients are defined; GCECI1 and

DTFECI2 referred to the Effective Connectivity Standard

Deviation (SD) changes obtained by GC and DTF methods

passing time. The indexes are compared with EC Thresh-

olds, which are achieved by the training dataset (Interictal).

To acquire information over the course of time, matrices

included the average index changes passing time, related to

the Interictal and Pre-ictal dataset in each of the divided

intervals are compared together.

Step (6) Thresholds are defined individually for each

patient according to formula 2. In this formula, Average

means the mean of EC and Standard Deviation is the EC

standard deviation of the first hour of each patient’s

Interictal dataset. Threshold Index is considered 300 to

achieve a higher-resolution image. Then, the changes in

thresholds are determined by this number, in case any other

number could be selected, the image resolution would be

changed in accordance with this number. Accordingly, the

obtained maximum and minimum thresholds (threshold

distances) for each patient are applied to all achieved time-

variant indexes over the course of time. Changing of the

indicators passing time, in fact, are placed among the

threshold distances, as can be seen in Fig. 5. The numerical

value of the components inside or outside the threshold

distance is stored as 0 and 1 for each of the frequency

bands. In this way, we have a binary matrix for each of the

divided intervals.

EC thresholds ¼ Average� The distance factor ofð
the next or previous threshold

�threshold index� standard deviationÞ
ð2Þ

The distance factor is considered 0.01. Matrices with

regard to the defined indexes are obtained and compared to

the threshold distances.

Step (7) By comparing the connectivity matrices with

Thresholding method, the binary matrices which consist of

36 components are obtained. Each of the connectivity

components was replaced with numbers 0 or 1, then binary

matrices are formed. Each of which represents passing the

threshold distance and the pattern changes of the signal is

Fig. 3 Sliding-window

AMVAR modeling schematic.

T is the length of each trial in

samples, W is the window

length and N is the number of

trials

1 Granger Causality Effective Connectivity Index.
2 Directed Transfer Function Effective Connectivity Index.
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suspicious of the proximity to the epileptic seizure. Con-

sequently, for each of the intervals, we consider the sum of

the numbers in the binary matrices. Here a criterion called

Binary Threshold (BT) is defined, which is numbered 5, 10,

15, 20, 25, and 30 (the maximum BT is lower than 30,

which is the number of components in binary matrices). In

this way, if the total of components (ones) in a binary

matrix is greater than BT, it means that the epileptic seizure

is compatible with the Binary Threshold and the proximity

of the seizure is diagnosed correctly. Otherwise, the pro-

cess will go to the next window to perform the calculations

again. This means that no proximate seizure has been

recognized in the current window.

Results

In this section, first the obtained results based on the pro-

posed approach are compared with random and periodic

predictors and the process of calculating Sensitivity and

False Prediction Rate are explained. Then the effect of

divided dataset separated to 300, 600 and 900 s on the

method’s performance is illustrated in the following

section.

As previously described, numbering more than the

defined BT is considered as an alarm. Regards to two

groups of the dataset (Pre-ictal and Interictal), the numbers

should be saved in two different groups. As it is obvious,

computations in a diagnosis group used to calculate False

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
17

18

19

20

21

22

model order    

In
fo

rm
at

io
n 

cr
ite

ria
 (b

its
)  

  

Mean IC across sampled windows (DL=300s)     

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
17

18

19

20

21

22

model order    

model order    

In
fo

rm
at

io
n 

cr
ite

ria
 (b

its
)  

  
Mean IC across sampled windows (DL=600s)     

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
17

18

19

20

21

22

In
fo

rm
at

io
n 

cr
ite

ria
 (b

its
)  

  

Mean IC across sampled windows (DL=900s)     

Fig. 4 Results of model order

selection included the

information about criteria

versus model order and marks

the average optimal model order

for the Akaike information

criterion for data lengths (DL)

equal to 300, 600 and 900 s
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Prediction Rate (FPR) and Sensitivity, on the condition that

they are in the Interictal and Pre-ictal dataset, respectively.

In other words, Sensitivity was estimated on the preictal

data segments from the relative number of correct predic-

tions, while the FPR was determined on interictal seg-

ments. We, in fact, want to evaluate our method’s

performance in the case of two statistical criteria ‘‘Sensi-

tivity’’ and ‘‘False Prediction Rate’’, on the basis of the

following definitions (3) and (4):

Sensitivity ¼ TP

TP þ FN
ð3Þ

FPR ¼ FP

All data in hour
ð4Þ

The purpose of an ideal prediction algorithm is the start

warning before the seizure and also to specify the exact

time of onset. The uncertainty in determining the exact

time of onset by defining the interval that is expected onset

stated in, it is called seizure occurrence period (SOP), and

seizure prediction horizon (SPH) which is the interval

between the alarm and the beginning of the window of the

SOP, can be seen in Fig. 6. A false alarm occurs when

there is no component, while the true alarm is the existence

of a component of EC matrices between the threshold

distances in the dataset. To be clear, TP (True Positive) is

accounted the right alarms in SOP and FN (False Negative)

is assigned as the missed seizures in SOP, which are not

considered by the system.

To illustrate the effectiveness and performance attri-

butes of our proposed method, the Sensitivity in terms of

FPR graphs in GC and DTF methods compared with the

random and periodic predictors shown in Fig. 7. These

figures obviously show that our submitted method’s per-

formance is considerably better. The periodic predictors

provided seizure alarms with a constant time distance while

the random predictors are based on a homogeneous Poisson

distribution for the false prediction.

To be clear, the results base on BT in lower numbers are

not considered in the last results. However, in calculating

FPR and Sensitivity, all BTs are employed to achieve

accurate results. For this reason, the graphs provided a

precise comparison between the proposed approach and the

others. Therefore, for the rest of the paper, we just present

the results of divided dataset influenced the method’s

performance.

For comparing the results, we clarify a hypothesis that

changing the lengths of the database has affected calcula-

tions significantly. As it was mentioned in the previous

sections, a fixed window size equaled to 5 s is used while

for the sake of simplicity, in this study databases are bro-

ken to different lengths (300, 600 and 900 s) to compare

the results precisely. The results of Table 1 clearly reveals

that the hypothesis is affirmed. Accordingly, the findings

confirm the impact on forecasting horizon, indeed, SPH

and SOP are considered 10 and 50 min for 300 and 600 s

Data Length (DL) while SPH and SOP for DL = 900 s are

clarified as 15 and 45 min, respectively. We investigate the

ability of our method in various circumstances such as DL

and forecasting horizons. Also noteworthy is the fact that in

case DL was greater than 900 s, it would complicate cal-

culations and procrastinate the alarm warnings.
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Fig. 5 This figure shows a view of the time-variant coefficients

changes in a length of data. As indicated in the corner of the image,

for each of the variables characterized variations between channels,

threshold distance (included maximum and minimum threshold) is

defined. As a result, if the change rate is out of the defined threshold

distance, the seizure detection with the number 1 in the binary matrix

is recorded. In this way, binary matrices are the basis for detecting or

not detecting seizures passing time
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As shown in Table 1, the maximum sensitivity in GC

and DTF methods are mentioned. As reported by this

table for constant SPH (SPH = 10 min) shrinking dataset

enhanced the sensitivity of the system equal to 66.27% and

79.76%, respectively in 300 s and 600 s data length.

Assuming that DL is halved, the next DL is much acces-

sible in a short period of time. Consequently, so long as

postponing of alarming become negligible, the proposed

method’s sensitivity enhances significantly. To evaluate

our proposed method, we performed DL equals 900 s,

while SPH is changed to 15 min. It is interesting to note

that an extended period of time for SPH is much useful

clinically. Simply put, it helps to improve the practical

capabilities of the designed system. Because of a safe

period of time for the patients to hesitate hazardous tasks or

dangerous zones or taking some medications, whereas

there are no probable seizures in this period. In addition, it

is clear that accessibility of the next data length in similar

SPH, despite the well-established role of SPH length, is

influenced in the sensitivity noticeably.

Discussion

There are some reasons to use electrophysiological signals

as the most appropriate means to study effective connec-

tivity. First and foremost is because of measuring neuronal

activity at an aggregated level. The second reason is the

temporal resolution, which is compatible with the pro-

cessing time at the neuronal level in the order of

milliseconds (Schoffelen and Gross 2009). These signals

can be measured with invasive or non-invasive methods.

Data acquisition by invasive methods through implanting

electrodes on the brain shows high quality and spatially

accuracy. On the other side, non-invasive techniques are

broadly used due to the high sampling frequency, and

increased signal-to-noise ratio and spatial resolution are

provided by means of source reconstruction techniques

(Brookes et al. 2012).

We have trained and tested our algorithm on the Frei-

burg dataset because we assumed that the intracranial EEG

recordings have much accuracy compared with the scalp

EEG recordings. A study Zhang and Parhi (2016) evi-

denced that the scalp EEG recordings as the MIT (sEEG)

database has a lower sensitivity and a higher FP rate than

the Freiburg (iEEG) database. This is caused by the fact

that intracranial EEG recordings usually have a greater

spatial resolution and signal-to-noise ratio because of

proximity to neural activity. For that reason, sEEG is a

much noisier evaluation of the neural activity and the outer

environment is suspected to interfere in the results more

than the iEEG, which leads to the decrease of sensitivity

and the increase of FP rate. Nevertheless, since iEEG is an

invasive signal, the risk of infections has been brought by

the process of acquiring iEEG recordings. Furthermore, the

patient’s surgery to implant these electrodes can be costly.

Additionally, the sEEG has a larger coverage of the brain

than iEEG. As a result, in accordance to the time, cost and

accuracy each of the datasets can be practical, while the

results of our study on iEEG can be much accurate to

Fig. 6 Given is a figure containing a base of the performance of a

prediction method during an interictal and a preictal period. Vertical

lines are considered as a symbol of seizure onset. a Illustrations of

EEG recordings and b examples of a period of time included an

extracted feature by a seizure prediction algorithm. The threshold for

raising alarms is indicated by the horizontal line. A prediction is

characterized by alarm events and two sequential time intervals, the

seizure prediction horizon SPH and seizure occurrence period SOP

are illustrated in c. It is notable that the timescales for the EEG data

and the feature time series are different
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consider as one of the most precise approaches to predict

epileptic seizures.

The set of technical features extracted from the dataset

including 21 patients shall be sufficient to achieve the

technical result indicated in the description of the new

approach while carrying out the method for the stated

purpose. In accordance with some researches, the Freiburg

dataset has been feasible to achieve the scientific outcomes,

which are practical in clinical and research aspects in

epileptic seizure prediction (Yildirim and Ozdemir 2014;

Ghaderyana et al. 2014; Zhang and Parhi 2014; Mirowski

et al. 2009; Donos et al. 2018; Wang and Lyu 2015;

Schulze-Bonhage et al. 2011; Truong et al. 2018; Sharif

and Jafari 2017; Zhang et al. 2014).

We have argued at the beginning of this article that

epilepsy is one of the important neural disorders that

patients suffer from. For this reason, in recent years, new

methods have been proposed to predict seizures. In this

research, interactions between brain regions using Granger

Causality and Directed Transfer Function methods have

been studied. The theory of the changeable variable nearby

epileptic seizure has been evaluated by accurate calcula-

tions. Although EC is an inaccurate variable to provide

significant results, the Standard Deviation of EC is taken

into account as a particular fluctuating variable over the

course of time. For this purpose, we introduced two

changeable indexes (GCECI and DTFECI) in the course of

Table 1 Result of changing

data length in Granger and DTF

methods

Data length FPR = 0. 33 300 s 600 s 900 s

Granger method

Binary threshold 20 25 30 20 25 30 20 25 30

Alpha 57.83 60.24 – 55.42 54.22 – 45.24 52.38 –

Beta 60.24 56.63 – 61.45 57.83 – 44.05 58.33 –

Delta 49.40 57.83 – 54.22 44.58 – 33.33 33.33 –

Gamma 66.27 66.27 – 54.22 54.22 – 52.38 46.43 –

Theta 63.86 62.65 – 60.24 57.83 – 48.81 51.19 –

DTF method

Alpha 66.27 66.86 66.27 48.19 51.81 54.22 66.67 70.24 69.05

Beta 73.49 72.29 77.11 56.63 59.04 54.22 75 73.81 66.67

Delta 55.42 53.01 49.4 38.55 42.17 39.76 58.33 57.14 54.76

Gamma 71.08 73.49 71.08 57.83 56.63 59.67 75 79.76 78.57

Theta 56.63 57.83 55.42 43.37 46.99 54.22 60.71 50 57.14
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Fig. 7 A comparison between designed predictor and other predictors. Sensitivity changes based on FPR for 300 EC thresholds; a GC method

(BT = 20, beta frequency band), b DTF method (BT = 30, gamma frequency band)
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time to consider as variations in the Thresholding

technique.

Note that, binary matrices are defined base on the

alternation in each channel over the course of time. At this

point, we should note that the obtained results can be

measured by the probability of seizure occurrence by a

survey in each channel in different five frequency bands.

These findings support the theory that by considering the

alternation of variable the seizures can be predicted accu-

rately. It is known that expanding SPH have the better

results and this period of time is useful for patients to take

precautions, additionally help them psychologically to feel

safe, while the bigger data length would be affected our

forecast horizon negatively. To be clear, selecting shorter

data length is more convenient because the accessibility to

the next part of the data in a short time is possible.

Our findings confirm the importance of the existence of

variations altered tremendously nearby the seizure, which

can be practical in predicting the seizures. Besides, our

results agree with the literature in terms of the importance

of multivariate models in comparison with bivariate ones.

It is not strange that multivariate models can bring us

perfect results, as it can be obvious in the results belonging

to the DTF method which are better than GC. As a matter

of fact, the AR model is adequate for a time series, in that

case, MVAR should be used to model multiple time series.

It is accepted that indirect connectivity can be eliminated

by multivariate models and might be practical than

bivariate models. In fact, the mentioned theory can be

proved by defining matrices including two indexes (GCECI

and DTFECI) over the course of time and using the

Thresholding technique. Therefore, in accordance with the

results, we are convinced that this approach is accept-

able and flourishing.

The results show that great sensitivity, especially in the

Gamma and Beta frequency bands is obtained. Significant

and strong values are observed in the DTF method related

to fitting a multivariate model to the data.

There are some studies in the field of epileptic seizure

prediction, which Freiburg dataset and the Thresholding

approach have been used in, while in accordance with a

comparison between them and our study there are some

differences in the number of patients and the length of SPH

and SOP and so on. It can be seen that the fewer number of

patients in the investigation, the greater sensitivity is

obtained. Take some researches Bedeeuzzaman et al.

(2014) and Zhang and Parhi (2016) as an example, which

100% sensitivity is achieved by the proposed techniques. It

can be noticed that in some studies Winterhalder et al.

(2003), Maiwald et al. (2004), Mamaghanian et al. (2008)

and Niknazar (2013) used 21 patients’ dataset, sensitivity is

acquired 42%, 13–42%, 42%, and 67.94%, respectively.

Despite the fact that the employed methods are various, the

maximum sensitivity in our study is obtained at 79.76%,

which is substantially greater than the previous results in a

relatively similar situation.

Limitations of the study

There are some limitations in this study, for instance, off-

line processing can be considered as a drawback. It would

be productive to pursue further researches to accelerate

calculations to achieve simultaneous prediction in order to

obtain clinical applications. In addition, in the future study,

we are planning to compare the results of the proposed

method between invasive and non-invasive dataset. As it

can be obvious, our results build up and support hypotheses

of previous studies highlighting the distinctive role of

Effective Connectivity changes in EEG concluded epileptic

seizures.
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