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Abstract
It is well known that neuronal networks are capable of transmitting complex spatiotemporal information in the form of

precise sequences of neuronal discharges characterized by recurrent patterns. At the same time, the synchronized activity of

large ensembles produces local field potentials that propagate through highly dynamic oscillatory waves, such that, at the

whole brain scale, complex spatiotemporal dynamics of electroencephalographic (EEG) signals may be associated to

sensorimotor decision making processes. Despite these experimental evidences, the link between highly temporally

organized input patterns and EEG waves has not been studied in detail. Here, we use a neural mass model to investigate to

what extent precise temporal information, carried by deterministic nonlinear attractor mappings, is filtered and transformed

into fluctuations in phase, frequency and amplitude of oscillatory brain activity. The phase shift that we observe, when we

drive the neural mass model with specific chaotic inputs, shows that the local field potential amplitude peak appears in less

than one full cycle, thus allowing traveling waves to encode temporal information. After converting phase and amplitude

changes obtained into point processes, we quantify input–output similarity following a threshold-filtering algorithm onto

the amplitude wave peaks. Our analysis shows that the neural mass model has the capacity for gating the input signal and

propagate selected temporal features of that signal. Finally, we discuss the effect of local excitatory/inhibitory balance on

these results and how excitability in cortical columns, controlled by neuromodulatory innervation of the cerebral cortex,

may contribute to set a fine tuning and gating of the information fed to the cortex.

Keywords Nonlinear time series analysis � Deterministic nonlinear dynamics � Information processing � Neural mass

model � Brain dynamics

Introduction

The analysis of many brain signals ranging from the

microscopic scale of single neurons (Celletti et al. 1999;

Segundo 2003) to the mesoscale of large neuronal popu-

lations within, e.g., cortical columns (Stam 2005; Myers

and Kozma 2018) has reinforced the hypothesis of a non-

linear source of complexity in brain dynamics (Korn and

Faure 2003). Single neuron experimental recordings show

that precise neuronal discharges can be arranged in

sequences of spikes that appear much more often than

expected by chance (Abeles and Gerstein 1988; Tetko and

Villa 2001; Reinoso et al. 2016). The relationship between

subsequent action potentials forms complex patterns typi-

cally associated with nontrivial dynamics and fractal

dimensionality (Longtin 1993; Iglesias et al. 2007;

Fukushima et al. 2007; Iglesias and Villa 2010). At the

scale of neuronal dynamics, it has been hypothesized that

complex information can be transmitted through neural

networks (Asai et al. 2008), even in the presence of noise

(Asai and Villa 2008), thanks to their sensitivity to the

temporal precision in sequences of spikes.
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Following the general encoding principle that neurons

that are more strongly depolarized are going to fire earlier

than the neurons that are less optimally stimulated (von der

Malsburg and Schneider 1986; Singer 1993; Fries et al.

2008), synchronized inputs received by selected cell

assemblies are able to generate waves of depolarization

following the complex dynamics (Makarenko and Llinás

1998; Gollo et al. 2010; Qu et al. 2014) introduced by the

input. Thus, subcortical inputs may ignite the activity

producing oscillatory activity in a wide range of frequen-

cies that may propagate throughout the cerebral cortex

(Nunez 1995; Buzsáki et al. 2012). Neuronal oscillations

suggest that the synchronization relationships between

brain signals may be a sign for computation and commu-

nication (Singer 1999; Brette 2012; Malagarriga et al.

2015a, b). Experimental observations in electroen-

cephalography (EEG) and magnetoencephalography

(MEG) have revealed that event-related oscillations can be

robust to perturbations and fluctuations in wave amplitude

becoming markers of cognitive processing (Rubino et al.

2006; Gross et al. 2013; Tal and Abeles 2018; Tewarie

et al. 2018). These studies suggest that amplitude and

latency modulation of oscillations may be coupled to

functional connectivity because increased amplitude would

necessarily mean increased synchrony in the depolarization

of the cell assemblies. In this way, functional brain net-

works should be able to reorganize and coordinate cortical

activity at a high temporal resolution (Tal and Abeles

2018).

We analyze here the phase-amplitude responses of a

cortical column, simulated by a neural mass model

(Jansen et al. 1993), receiving a discrete time series of

pulsed inputs. Using a mean-field approach, we investi-

gate to what extent precise temporal information, carried

by deterministic nonlinear attractor mappings, is filtered

and transformed into fluctuations in phase, frequency and

amplitude of oscillatory brain activity. We explore the

hypotheses that different classes of amplitude output

wave peaks may form multiple point processes capable

of transmitting dynamical features of the input time

series and that amplitude threshold-filtering alone may

also produce relevant point processes associated with the

input dynamics. We show that the output activity pro-

duced by the neuronal mass model is highly dependent

on the internal dynamics of the input point process and

no same threshold or same amplitude criteria can be

applied to the input dynamics. On the basis of our

results, we suggest that local excitatory/inhibitory bal-

ance and excitability of cortical columns may contribute

to set a fine tuning and gating of the ascending infor-

mation in the cerebral cortex.

Methods

Neural mass model

We consider here the Jansen-Rit model, a neural mass

model (NMM) corresponding to a cortical column (Jansen

et al. 1993; Jansen and Rit 1995). This model considers

three interconnected neural populations formed by long

projecting pyramidal neurons (population P), and two

classes of local projecting neurons (interneurons) charac-

terized by their excitatory (population E) and inhibitory

(population I) feedback loops within the column. The

E population projects to the P population, the I population

projects to the P population, and in turn the P population

sends projections to both E and I populations (Fig. 1). All

values of the parameters chosen for the dynamical

Fig. 1 Representation of a cortical column (modeled as a NMM)

receiving an input I(t) formed by a pulsed background input �p and an

external train of pulsed stimuli pT ðtÞ carrying temporal information.

The integration of these inputs with the intra-columnar dynamics

produces an output signal y(t), representing a mean Local Field

Potential
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equations of this study are based on previous analyses

(Malagarriga et al. 2014, 2015b).

The dynamics of a single NMM is based on a mean field

approximation (Malagarriga et al. 2015b). Each excitatory

coupling is described by a second-order differential oper-

ator LðynðtÞ; aÞ transforming the mean input firing rate,

pjmðtÞ from all j afferences, to a mean membrane potential

ynðtÞ:

LðynðtÞ; aÞ ¼
d2yn

dt2
þ 2a

dyn

dt
þ a2yn ¼ Aa

X

j

pjmðtÞ
( )

;

ð1Þ

where the subscript n refers to either excitatory populations

P and E. Constant terms A and a are referred to excitatory

couplings, with A ¼ 3:25 mV corresponding to the maxi-

mum value of the excitatory postsynaptic potential and

constant term a ¼ 100 s�1 associated with the membrane

time constants and dendritic delays. The mean input firing

rate pjmðtÞ is computed by a sigmoidal transfer function S of

the net average membrane potential mjðtÞ of all j affer-

ences, that is pjmðtÞ ¼ Ci¼1...4S½mjðtÞ�. Coefficients

C1 ¼ 133:5, C2 ¼ 0:8C1, C3 ¼ 0:25C1 and C4 ¼ 0:25C1)

weight the synaptic efficiency. The sigmoidal transforma-

tion is such that

S½mjðtÞ� ¼ 2e0

1þ erðm0�mjðtÞÞ ; ð2Þ

where e0 ¼ 2:5 s�1 is a value corresponding to the maxi-

mum firing rate of the neural population, m0 ¼ 6 mV is a

voltage reference associated with 50% of the firing rate,

and r ¼ 0:56mV�1 is the steepness of this sigmoidal

transformation.

We can similarly define LðynðtÞ; bÞ, with subscript n

referred to the population I of local inhibitory cells, and

constant terms B ¼ 22mV and b ¼ 50 s�1 referred to in-

hibitory couplings transforming the mean input firing rate

pkmðtÞ to a mean membrane potential ynðtÞ:

LðynðtÞ; bÞ ¼
d2yn

dt2
þ 2b

dyn

dt
þ b2yn ¼ Bb

X

k

pkmðtÞ
( )

;

ð3Þ

with pkmðtÞ ¼ Ci¼1...4S½mkðtÞ� and mkðtÞ the net average

membrane potential of all k afferences to I.

In the absence of external inputs we consider that each

column receives an excitatory input �p ¼ 155 s�1 produced

by a constant background mean firing rate. With all these

elements, the equations of the model read:

d2yP

dt2
þ 2a

dyP

dt
þ a2yP ¼AafS½yE � yI �g; ð4Þ

d2yE

dt2
þ 2a

dyE

dt
þ a2yE ¼AafC2S½C1yP� þ �pg; ð5Þ

d2yI

dt2
þ 2b

dyI

dt
þ b2yI ¼BbfC4S½C3yP�g ð6Þ

This model produces an internal oscillatory activity in the

NMM centered on 10.8 Hz, which is a frequency that fits

the alpha range of the EEG and LFP.

External inputs

In order to test the capacity of transmitting precise complex

temporal information through cortical columns modeled by

NMM, we have considered time series xn of external pulses

generated by the Chen and Ueta, Hénon, and Zaslavsky

dynamical systems calculated in addition to the constant

background frequency input. These dynamical systems

were chosen on the basis of our previous studies at the

neuronal scale dynamics (Asai and Villa 2008).

The Chen and Ueta (referred to as ChenUeta) system

equations (Chen and Ueta 1999) can be writen as:

dx

dt
¼ aCUðy� xÞ

dy

dt
¼ðcCU � aCUÞx� xzþ cCUy

dz

dt
¼ xy� bCUz;

ð7Þ

where aCU ¼ 35:0, bCU ¼ 3:0 and cCU ¼ 28:0 and with

initial conditions xð0Þ ¼ 3:0 and yð0Þ ¼ 3:0. We consid-

ered the Poincaré map defined by dz=dt ¼ 0, with a

tracking of x(t), whose discrete form provides the time

series xn.

The Hénon mapping (Hénon 1976) is defined by:

xnþ1 ¼ 1� aHx
2
n þ yn

ynþ1 ¼ bHxn;
ð8Þ

where aH ¼ 1:15 and bH ¼ 0:3. Iterations of the map allow

to obtain the values of the point processes, corresponding

to discrete time series xn.

The equations for the Zaslavsky map (Zaslavsky 1978)

are:

xnþ1 ¼ xn þ vð1þ lynÞ þ �vl cosðxnÞ ðmod:2pÞ;
ynþ1 ¼ e�cðyn þ � cosðxnÞ � nÞ;

ð9Þ

where x; y 2 R, l ¼ 1�e�c

c , v ¼ 400=3, c ¼ 3:0 and � ¼ 0:1.

The initial conditions are x0 ¼ 0:3 and y0 ¼ 0:3. Iterations

of the map allow to obtain the values of the discrete time

series xn.

For each dynamical system, we transform the informa-

tion contained in the Poincaré sections (Parker and Chua

1989) defined by the 2D projection of the points xn, xnþ1 of
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the dynamical systems into a new time series xn derived to

avoid negative values, as follows:

xn ¼ xnþ1 � xn þ K; ð10Þ

where K is a constant to make all values positive, i.e.,

K ¼ minðxnþ1 � xnÞ þ 0:1. The time series xn corresponds

to the Inter-Pulse Interval (IPI) of the external input.

Hence, from xn we derive the time series tk, corresponding

to the absolute times of occurrence of the external pulses.

The time series tk is used to transform the external input

into the series of Gaussian-shaped pulses, Each cortical

column receives a time dependent excitatory input

IðtÞ ¼ �pþ pTðtÞ, where �p is the mean background activity

and pTðtÞ is a mean spike density of Gaussian-shaped

pulses described by

pTðtÞ ¼
X

k

n e
t�tk
2dð Þ2 ; ð11Þ

where n ¼ 2 Hz is a constant frequency, d ¼ 500 ms is a

time constant, and tk corresponding to the timing of a

specific train of external input pulses. The LFP generated

by the NMM is y ¼ yEðtÞ � yIðtÞ, which is the signal that is

analyzed further throughout this study (Fig. 1).

Computational analysis

The external input time series were generated with a time

step resolution of 0.1 ms. All events falling within the

interval 0–1 ms were ignored. The simulation of the model

had an integration time step of 1 ms. We used Heun’s

method to integrate the NMM model equations (Garcı́a-

Ojalvo and Sancho 1999) and a general purpose tool, called

XPPAUT, for numerically solving and analyzing dynami-

cal systems (Ermentrout 2002, 2012) to extract the Poin-

caré maps. Delay embeddings were constructed with a time

delay of s ¼ 10 ms. Different initial conditions were ran-

domly set when performing multiple runs of the simulation.

An initial period of 60 s was omitted, unless stated other-

wise, to obtain stationary data and avoid any transient

effect appearing at the begining of the simulation. Coding-

related material and scripts may be requested via email to

to ‘‘daniel.malagarriga@gmail.com’’. The version used

here uses several libraries publicly available and it is

necessary to set carefully the operating system dependent

environment.

Results

We consider the hypothesis that the LFP generated by the

NMM filters external contributions and the output activity

has wiped out much of the temporal information carried by

the external inputs. Firstly, we examine some features of

the external input pulse trains and the dependence on the

phase delay with respect to intrinsic NMM dynamics.

Secondly, we analyze the features of the distribution of the

amplitudes of LFP peaks and the dynamics of the corre-

sponding point processes. Thirdly, we analyze the

dynamics of the output point processes generated by the

sequences of LFP peaks filtered according to an amplitude

thresholding operation.

Frequency and phase-related filtering

The three different dynamical systems were tuned in order

to generate pulse trains with approximately the same pulse

density. Input frequencies were computed over all inter-

pulse intervals lasting at least 40 ms (i.e., corresponding to

an instantaneous input frequency of 25 pulses/s) as shown

in Fig. 2. The actual average (median) external input fre-

quencies were equal to 4.09 (4.24), 4.74 (3.32), and 4.03

(2.53) pulses/s for ChenUeta, Hénon, and Zaslavsky maps,

respectively.

The dynamics of the external Zaslavsky (Z.inp), Hénon

(H.inp), and ChenUeta (C.inp) pulsed inputs are illustrated

by the return maps in the interval 0–800 ms in Fig. 3a, c, e.

These signals are processed and integrated with the internal

dynamics of the NMM. The dynamics of the corresponding

output signals, analog to LFPs, is shown by the delay

embedding trajectories and selected Poincaré sections

using a time delay of s ¼ 10 ms (Fig. 3b, d, f). Notice the

similarities in the Poincaré sections that suggest a strong

a

b

c

Fig. 2 Histograms of the input frequencies calculated over inter-pulse

intervals lasting at least 40 ms for a Zaslavsky, n ¼ 14319 intervals;

b Hénon, n ¼ 15680; and c ChenUeta, n ¼ 16835, mappings
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filtering effect played by the intrinsic activity of the NMM,

that is characterized by an oscillation at a frequency of

10.8 Hz.

We investigate the effect of applying external pulses

with respect to specific phase delays of the NMM oscilla-

tory period (Fig. 4a). Two consecutive pulses were applied

at characteristic phase delays (p=2, p, 3p=2, 2p, e.g.

Fig. 4b, c). The output response was characterized by

peaks with latencies translated into phase delays. Figure 4d

shows the input–output phase difference for all combina-

tions of first (IP1) and second (IP2) inter-pulse intervals.

We observed that high amplitude peaks in the output sig-

nals were associated with pulsed inputs, whereas low

amplitude peaks followed the internal dynamics of NMM.

These results suggest that the output signals may peak at

times that reliably follow the input dynamics, despite a

filtering effect produced by the NMM internal dynamics.

Distribution of LFP peak amplitudes

We analyzed the peak amplitudes of the LFP signals gen-

erated by NMM and their distributions for the three

dynamical system inputs and a control distribution repre-

sented by a Poissonian pulsed input train with a similar

intensity of the other time series. Figure 5 shows that in all

cases the internal dynamics of NMM generates a

multimodal distribution of the LFP peaks. No LFP with

amplitudes comprised between 4.75 and 7.25 mV were

observed, irrespective of the external input time series. The

three highest modes for each kind of pulse inputs, and their

labels, are indicated on the probability density curves in

Fig. 5, by Z1, Z2, Z3 for Zaslavky, and H1, H2 H3 for

Hénon, and so on for ChenUeta and Poisson. All modes

characterized by density higher than 0.07 in the probability

density curves are presented in Table 1. In this Table it is

interesting to notice that all most relevant modes (i.e. Z1,

H1, C1 and P1) correspond to an LFP amplitude near

12.12 mV, irrespective of the dynamics of the external

pulses. Notice that both modes Z2 and H2 correspond to

the same amplitude near 11.12 mV (Fig. 5a, b). Modes C2

and C3 in ChenUeta and mode P2 in Poisson correspond to

very low amplitudes of LFP, below 4 mV, in a range that is

likely dominated by the background inputs rather than by

external pulsed time series (Fig. 5c).

The finding that pulsed inputs from different time series

were characterized by similar LFP amplitude modes raised

the question whether those LFP waves were also charac-

terized by a similar time distribution. Then, we have gen-

erated discrete point processes corresponding to the

timings of all LFP waves having a peak amplitude falling

within the interval ½mode� 0:15;modeþ 0:15�, which

means three time series for the processes corresponding to

modes Z1, Z2, Z3 and so on for the other input pulsed

distributions. Figure 6 shows the superimposed autocor-

relograms for such point processes. Processes Z1 and Z3
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relations. (Color figure online)
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(Fig. 6a) show curves peaking at regularly spaced intervals

corresponding to the average frequency of the input pulses

(period � 250 ms, i.e. � 4 pulses/s, see Fig. 2). This pat-

tern is very similar to the control condition represented by

the Poissonian input pulse train (Fig. 6d) with all three P1,

P2, and P3 point processes showing autocorrelogram peaks

associated with the mean intensity of the process. Modes

H1 and C1 were characterized by the same LFP amplitude

of the other principal modes Z1 and P1. On the contrary to

the expectations, their autocorrelogram showed limited (in

case of H1) or almost no sign of period � 250 ms, but

periods of 374 and 380 ms in H1 (Fig. 6b) and � 385 ms

in C1 (Fig. 6c) were observed. It is also interesting to

notice that modes Z2 and H2, although characterized by the

same amplitude (Table 1), show a very different pattern of

their autocorrelogram.

The differences among the various LFP modes is further

illustrated by the return maps of the corresponding point

processes in Fig. 7. The regular pattern observed for

Poissonian inputs shows, in this case, that NMM filters out

any time related information and retains only the mean

intensity of the process. In the cases of Zaslavsky and
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Fig. 5 Amplitudes of the output LFP generated by a NMM after

receiving an external input from temporally organized discrete time

series generated from a Zaslavsky, b Hénon, and c ChenUeta attractor
maps. Panel d shows the output of the NMM after receiving a Poisson

generated time series with the same intensity. Each panel shows the

peak amplitudes of the LFPs, between 600 and 4100 s from the begin

of the simulation, and the corresponding probability density curves.

The three highest peaks corresponding to the most representative

amplitudes are marked by arrows in each panel

Table 1 Most relevant modes of

the LFP amplitudes and

corresponding density,

computed on the probability

density curves (Fig. 5)

Zaslavsky Hénon ChenUeta Poisson

Mode Density Mode Density Mode Density Mode Density

Z1 12.12 0.67 H1 12.11 0.58 C1 12.12 0.35 P1 12.12 0.45

Z2 11.12 0.55 H2 11.13 0.14 C2 3.34 0.24 P2 1.42 0.42

Z3 10.34 0.32 H3 10.04 0.13 C3 2.55 0.13 P3 20.12 0.07

9.73 0.10 3.95 0.12 1.52 0.09

9.95 0.09 9.66 0.12 20.23 0.08

2.22 0.09 10.58 0.10 13.54 0.07

3.66 0.08 13.47 0.07

3.83 0.08

10.67 0.07
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ChenUeta pulsed inputs, the regular patterns appear to

some extent in the return maps, in agreement with the

observation made with the autocorrelograms. In case of

Hénon input, even the point process derived from the

principal mode of LFP shows less regularity. To this

respect, it is interesting to compare the panels of the return

maps corresponding to modes P1, Z1, H1, and C1 (Fig. 7

upper row) and observe the differences, despite the fact

that these point processes correspond to LFPs characterized

by the same amplitude. This analysis shows that selected

LFPs according to the amplitudes carry different temporal

information. The principal mode retains always an infor-

mation associated with the mean intensity of the input

process and additional information which is related to the

time-dependent organization of the specific input pulsed

train.

LFP peak thresholding

Figure 5 has shown that the distributions of the LFP

amplitudes show multimodal curves with commonalities

and characteristic features for each input time series. We

consider that an hypothetical threshold T may be set at the

output channel of a NMM in order to filter the overall

activity and transmit only selected output activity else-

where in the brain. The thresholding operation is illustrated

by Fig. 8. The outcome of this operation is a threshold-

filtered point process (oft), labeled Z.oft, H.oft, C.oft and

P.oft for Zaslavsky, Hénon, ChenUeta, and Poisson input

pulsed trains. In order to determine whether the oft point

processes retained temporal information of the corre-

sponding input time series inp we generated a surrogate

time series, as a control, by shuffling randomly the inter-

pulse intervals of oft and producing a point process labeled

sft, with the same first-order time statistics and totally

scrambled higher-order timing relations.

We analyzed the return maps of oft and sft output point

processes as a function of increasing threshold values. In

addition, we considered the output activity following the

external input driven by the Poisson pulse train—i.e.,

P.oft—as a control point process for the nonlinear deter-

ministic mappings. Each row of Fig. 9 shows the return

maps, in the interval between 0 and 800 ms, of the point

processes corresponding to the peaks of the output signals
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Notice that the scaling is different for each point process in order to
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(big dots in red) filtered by the threshold value indicated on

the left of the legend, for selected values of

T 2 ½9:0; 11:0; 12:0; 12:5; 13:0; 15:0�. The small black

points for each panel of Fig. 9 correspond to the input point

process, as indicated in the heading of the columns. If an

output point process follows the dynamics of the input

point process, the red dots should overlap, to a large extent,

the black points. Notice that for threshold values up to

T ¼ 12:0 there is a majority of return intervals less than

400 ms for all time series, with little, if any, correspon-

dence between input and output point processes. Threshold

values from 12.0 to 13.0 show an increase in the overlap of

the return maps between Z.inp versus Z.oft, H.inp versus

H.oft, and C.inp versus C.oft.

Figure 9 shows also that the surrogate point processes

Z.sft, H.sft, and C.sft show very limited with the corre-

sponding input time series Z.inp, H.inp, and C.inp, but the

overlap of several points suggest that 0-order time domain

statistics might retain some information carried by the

external pulses. The general picture offered by the return

maps of the surrogate filtered point processes rather

emphasizes the bias introduced by the internal dynamics of

the NMM. The comparison between the Poisson output

filtered point process P.oft and the nonlinear dynamical

mappings Z.inp, H.inp, and C.inp shows that the overlap is

almost null. On the contrary, Fig. 9 shows similarities

between Z.sft, H.sft, C.sft with P.oft for threshold values

T � 12:5, as a consequence of the drive due to the internal

dynamics of the NMM.

We introduce an index to measure the distance, within a

delimited area in the return map space, between an output

activity filtered point process and a reference input point

process. Let us consider an input point process including

N þ 1 events and si denotes the time interval between the

ith event and the ðiþ 1Þth one. In a 2-dimensional Eucli-

dean space we consider the return map formed by points Si
defined by coordinates si and siþ1, Si ¼ ðsi; siþ1Þ. Let us
consider the output activity point process X(T), filtered by

threshold T and including K þ 1 events. Let us denote

xðTÞj the time interval between the jth event and the

ðjþ 1Þth one. The return map of the threshold-filtered

output activity point process is formed by points
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Fig. 9 Return maps of the the inter-pulse intervals (IPI) in the interval

0–800 ms. For each panel, the black dots show the return map of the

external input pulse train (P.inp, Z.inp, H.inp, C.inp) for Poisson,

Zaslavsky, Hénon, and ChenUeta inputs, respectively. The red dots

show the return map of the output generated point processes, labeled

P.x, Z.x, H.x, and C.x with reference to Poisson, Zaslavsky, Hénon,

and ChenUeta point processes, respectively. Labels x.oft, x.sft refer to

output threshold-filtered (oft) and shuffled-filtered (sft) point pro-

cesses (see Fig. 8). Each row shows the return maps for a specific

value of the threshold T, from T ¼ 9:0 (uppermost row) to T ¼ 15:0
(lowermost row). For Zaslavsky, Hénon, and ChenUeta we show also

a panel superimposing the return map of the inp IPIs and the

corresponding Poisson triggered output threshold-filtered (P.oft) point

process
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XðTÞj ¼ ðxðTÞj; xðTÞjþ1Þ. We compute the distance d
XðTÞ
j

for any point j of the output activity map XðTÞj as its

Euclidian distance to the closest point of the reference map

Si, that is

d
XðTÞ
j ¼ min

N

i¼1
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðTÞj � siÞ2 þ ðxðTÞjþ1 � siþ1Þ22

q
Þ: ð12Þ

Then, we compute the distance

DT
X ¼

XK

j¼1

d
XðTÞ
j : ð13Þ

The distance of the threshold-filtered point process (oft)

from the input point process should always be smaller than

the distance computed for the corresponding shuffled-fil-

tered point process (sft), if temporal information is retained

in the interpulse intervals. Hence, for any threshold T a

normalized index for the ChenUeta input point process is

defined as hDT
Ci ¼ DT

C:sft=D
T
C:oft and, in a similar way, the

indexes hDT
Hi, hDT

Zi for Hénon and Zaslavsky input point

processes, respectively. In addition, the distance computed

for oft should also be smaller than the output activity if the

input were triggered by a Poissonian process given the

same threshold T, i.e. compared to P.oft. On this basis, we

defined another distance index h ~DT

Ci ¼ DT
P:oft=D

T
C:oft for the

ChenUeta input point process, and indexes h ~DT

Hi, h ~D
T

Zi for
Hénon and Zaslavsky input point processes, respectively.

We have run the simulations in order to get 10 real-

izations of each output threshold-filtered point process (oft)

and for each one we have produced 10 independent shuf-

fled point processes (sft). For each value of T, between

T ¼ 7 and T ¼ 19, by steps of 0.5, we have rerun the

simulations and computed the average normalized dis-

tances hDT
Xi and h ~D

T

Xi. Then, we computed the distances for

any point XðTÞj with coordinates xðTÞj � 700ms and

xðTÞjþ1 � 700ms. For each value of T we computed the

confidence intervals of the mean distance and estimated

independently whether hDT
Xi\1 and h ~DT

Xi\1. The ratio-

nale is that both normalized distance indexes should be

significantly lower than 1 if the oft point process retains

some initial time information and is closer to the input

nonlinear dynamic mapping than the sft and Poissonian

P.oft point processes, given the same value of threshold.

Figure 10 shows the curves of the normalized distance

indexes for all input dynamics as a function of threshold T.

It is interesting to notice that in case of Zaslavsky Z.oft

tended to retain some temporal structure for values

10� T � 17:5 (Fig. 10a). We considered three levels of

significance for these curves. The highest level, labeled

(***), is reached if probðhDT
Xi\1Þ� 0:99 and

probðh ~DT

Xi\1Þ� 0:99. The second level, labeled (**), is

reached if probðhDT
Xi\1 or h ~DT

Xi\1Þ� 0:99 and

probðhDT
Xi\1 or h ~DT

Xi\1Þ� 0:95. The third level of sig-

nificance is lower than the previous two and is labeled (*):

this level is reached if probðhDT
Xi\1Þ� 0:95 and

probðh ~DT

Xi\1Þ� 0:95. According to the above criterion

we considered as critical threshold levels only those values

of T with both normalized distance indexes being signifi-

cantly below 1. In case of Hénon mapping the critical

values of T were observed in the interval 15.5–17.5 mV

(Fig. 10b) and only from 18 to 19 mV for ChenUeta

(Fig. 10c). These results show that NMM internal

dynamics filtered the temporal structure of the input point

process in a selective way, such that different thresholds

should be applied to different input point processes in order

to recover the temporal structure of interpulse intervals

(IPIs).
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Fig. 10 Normalized distance indexes as a function of threshold values

for output point processes generated by a Zaslavsky, b Hénon, and c
ChenUeta attractor maps (see Fig. 8). An index between 1 and 0

means that the output threshold-filtered point process X.oft is

characterized by a return map closer to the X input point process of

stimulation pulses than the corresponding shuffled-filtered point

process X.sft, for index hDT
Xi (continuos lines), and closer than the

control Poisson threshold-filtered point process P.oft, for index h ~DT

Xi
(dashed lines). Indexes greater than 1 (shaded area) mean that

surrogate provide better results than actual time series. See text for the

definition of the normalized indexes and for the explanation regarding

the levels of significance represented by (***), (**), (*)
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Discussion

In this study we show, for the first time, that time-coded

information, in the form of input pulses associated with

nonlinear deterministic time series generated by chaotic

mappings, can be reliably transmitted through LFP

dynamics despite a complex gating and filtering operated

by a NMM of cortical column (Jansen and Rit 1995;

Wennekers 2008). This NMM is characterized by rhythmic

activity when there is a constant input onto the system and

may exhibit quasi-periodic or low dimensional chaotic

behavior in the presence of oscillatory (Malagarriga et al.

2015a, b) or pulse-like periodic inputs (Spiegler et al.

2010). The frequency of oscillations is determined by the

kinetics of the ensuing population dynamics and it was

shown that the whole spectrum of EEG/MEG signals can

be reproduced within the oscillatory regime of the NMM

by simply changing the population kinetics (David and

Friston 2003). We purposely avoided gamma-band fre-

quencies after observing that the studied NMM filtered

high frequency bands and no information could be

retrieved from its output. The intrinsic dynamics of the

NMM influences its capacity to transmit time-coded

information because of a resolution limit due to the internal

oscillatory dynamics and the resonant interaction with the

input. The response of the system becomes highly irregular

and highly dependent on the input pulse frequency

(Spiegler et al. 2010). Time scales, in the range of the

millisecond, imply pulse frequencies of about 10 pulses/s,

which is in the range of the NMM dynamics (� 10Hz).

It has been shown that stochasticity or chaos in oscil-

latory elements may play an important role in helping the

systems explore small basins of attractor in the vicinity of

their local dynamics (Rabinovich and Varona 2011). EEG

recordings of healthy volunteers also have shown evi-

dences of chaotic dynamics (Theiler and Rapp 1996;

Andrzejak et al. 2001; Gao et al. 2011) with larger com-

plexity than patients with brain dysfunction, such as Alz-

heimer’s disease (Deng et al. 2017; Nobukawa et al. 2019)

or individuals with altered states of consciousness (Mateos

et al. 2018). Mean-field approaches to NMM dynamics

allow to find conditions for the emergence of deterministic

chaos, and relate it to the properties of lumped parameters

(Malagarriga et al. 2015b; Montbrió et al. 2015). Never-

theless, the role of irregular, chaotic-like dynamics in the

brain is not yet clarified. We raise the hypothesis that such

dynamics may be ignited by a nonlinear deterministic

series of subcortical inputs fed to cortical columns. Com-

plex spatiotemporal firing patterns have been described

experimentally (Abeles 1982a; Villa and Abeles 1990;

Villa and Fuster 1992; Abeles et al. 1993; Tetko and Villa

2001; Tal and Abeles 2016) and it was demonstrated that

they can propagate with high accuracy in feed-forward

networks (Asai et al. 2008; Asai and Villa 2012). Here, we

have shown that pulsed inputs associated with Chen and

Ueta (Chen and Ueta 1999), Hénon, (Hénon 1976) and

Zaslavsky (Zaslavsky 1978) dynamical systems can be

processed by a Jansen and Rit oscillator (Jansen and Rit

1995) generating a LFP whose phase pattern and wave

amplitude—i.e., the dynamic oscillation signature—carry

information contained in the original time series of input

pulses.

In some cases, we have observed that point processes

associated with selected wave amplitudes could be mainly

determined by the internal dynamics of the NMM. For

instance, we observed that the most frequent wave ampli-

tudes produced by the Zaslavsky input followed a time

distribution very similar to a stochastic (Poissonian) input

with the same frequency (see Z1 and P1 in Fig. 6a, d). This

finding indicates that the process operated by the NMM

may be dominated by the internal dynamics and the NMM

acts as an active filter of the temporal information

embedded in the sequence of pulsed inputs. However,

despite being characterized by the same amplitude (see

Table 1), the most frequent wave amplitudes produced by

ChenUeta and Hénon inputs displayed a much more

complex temporal pattern of distribution (Fig. 6b, c). The

physiological interpretation of this finding could be asso-

ciated with the effect of synaptic plasticity, given the

assumption that wave amplitudes scale with the intensity of

the depolarization of selected targeted cell assemblies.

Studies on memory formation and synaptic plasticity have

demonstrated the importance of precise timing relations

between the firings of interconnected neurons for use

dependent synaptic modifications (Markram et al. 1997;

Vogt and Hofmann 2012). Then, the most frequent wave

amplitudes would be the best candidate to reinforce

synaptic links through spike-timing dependent plasticity

mechanisms (Guyonneau et al. 2005; Feldman 2012).

Virtual microcircuits with asynchronous communication

protocols can be encoded into symbolic expressions that

may give rise to cognitive processes (Bonzon 2017).

Accurate selective transmission of population-coded

information can be achieved after switching from an

asynchronous to an oscillatory state (Akam and Kullmann

2010; Qu et al. 2014). The information can be extracted by

means of band-pass filtering implemented with sparsely

synchronized network oscillations and temporal filtering by

feed-forward inhibition. It is interesting that the facilitation

by homeostatic mechanisms that can dynamically regulate

the Excitatory/Inhibitory (E/I) balance of brain networks

on the basis of inhibitory synaptic plasticity has recently

been proposed as a possible explanation of robust infor-

mation extraction over long timescales (Abeysuriya et al.
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2018). This view is also in agreement with the gating

hypothesis of multiple signals in cortical networks, where

locally evoked inhibition would cancel incoming excitatory

signals as a function of fine tuning of the E/I balance by

modulating excitatory and inhibitory gains (Vogels and

Abbott 2009; Vogt and Hofmann 2012). Indeed, several

studies suggest that regulation of the activity and firing

dynamics of inhibitory neurons expressing Calcium bind-

ing proteins—e.g., parvalbumin (PV), calretinin, cal-

bindin—by monaminergic and cholinergic inputs, from the

brainstem and basal forebrain, is likely to be the main

source of regulation of the E/I balance (Parnavelas and

Papadopoulos 1989; Benes et al. 2000; Caillard et al. 2000;

Reynolds et al. 2004; Schwaller et al. 2004; Manseau et al.

2010; Cutsuridis 2012; Furth et al. 2013). In particular, the

GABAergic (PV)-positive neurons play a key role in reg-

ulating synchronous activity observed in the thalamocor-

tical circuit (Carlén et al. 2012; Albéri et al. 2013; Lintas

et al. 2013; Gruart et al. 2016). Long-range projecting

GABAergic PV-expressing neurons in the neocortex (Lee

et al. 2014) and hypothalamus (Lintas 2014) further

emphasize inhibitory synaptic plasticity as an attractive

candidate mechanism for controlling the dynamic state of

cortical networks involved in gating transitions of aware-

ness and non-conscious perception.

These evidences can be reconciled with an another

finding presented in this study, that is the gating obtained

by band-pass threshold-filtering. The state of local net-

works could be changed by neuromodulatory inputs with

sufficient spatial and cellular selectivity to operate a fine

tuning of the E/I balance. Such gain modulation can be

achieved by flexible routing of neural signals and network

oscillations (Akam and Kullmann 2010; Zylberberg et al.

2010). We observed that Zaslavsky inputs processed by the

NMM produced output waves with any amplitude roughly

between 10 and 17 mV with a dynamics sufficiently close

to the original input time series (Fig. 10a). Conversely, the

output activity after the Hénon input could be reliably

retrieved for wave amplitudes falling into a narrower range,

i.e. 15.5–17.5 mV (Fig. 10b), and above 18 mV after

ChenUeta input (Fig. 10c). A parallel channel for infor-

mation transmission that is minimally affected by asyn-

chronous distracting inputs occur if the pattern of firing

rates is reproduced in the pattern of oscillation amplitudes

(Akam and Kullmann 2010). We have already reported that

the internal dynamics of the NMM produces a resonance

phenomenon that does not wipe out the entire temporal

information of the pulsed input dynamical system time

series. This phenomenon, akin of spontaneous oscillations

generated by interneuron networks (Brunel and Hakim

1999; Whittington and Traub 2003), may convey sensi-

tivity to modulated input patterns such to switch to an

asynchronous state following the level of noise or

heterogeneity in the temporal pattern of the input signal

(Brunel and Hansel 2006). Modulated threshold-filtering

gating may offer as a form of multiplexing for neural

codes, when multiple inputs are oscillating in different

amplitude bands and filtering at the appropriate amplitude

can be used to extract selected information from the input

pattern.

The gating mechanism we have suggested might also be

interpreted as a kind of temporal multiplexing because it

can be used to encode and transmit multiple attributes of

the input pattern at different timescales. In this way it

appears conceptually similar to the multiplexing encoding

mechanism described for frequency band filtering, where

stimuli that vary relatively slowly relative to the oscillation

frequency can route signals with high accuracy (Akam and

Kullmann 2010). Temporal multiplexing was also sug-

gested to play a key role to enable disambiguation of

stimuli that cannot be discriminated at a single response

timescale and to allow the transmission of information in a

stable and reliable way in presence of noise and variability

(Myers and Kozma 2018; Panzeri et al. 2010). An inter-

relation between EEG signals and neural firing beyond

simple amplitude covariations in both signals provided

evidence for a neural basis for stimulus selective and

entrained EEG phase patterns (Ng et al. 2013). Motor

output and behavioral expression would come up with a

state-dependency of temporal multiplexing determined by

local interactions and regulatory mechanisms driven by

neuromodulatory pathways (Abeles 2014; Vogt and Hof-

mann 2012).

A further important question posed by our results is how

a network of cortical columns, with externally fed driving

pulses associated to precise temporal features, can shape

complex oscillatory activity in the brain. Oscillations in

brain dynamics can travel along brain networks at multiple

scales, transiently modulating spiking and excitability as

they pass (Schroeder and Lakatos 2009; Ozaki et al. 2012;

Muller et al. 2018). Traveling waves may save processing

time via distributed information processing through net-

works of interconnected NMMs and serve a variety of

other functions ranging from memory consolidation to

binding activity across distributed brain areas (Brama et al.

2015; Tal and Abeles 2016). This feature may result into a

mechanism of dynamic network formation in mesoscopic

neural populations, where extracted complex spatiotem-

poral patterns may be a sign for an oscillation based coding

paradigm. The next step will consist to study how accurate

can be the transmission of dynamical system generated

point processes fed to a NMM and transmitted to various

topologies of interconnected cortical columns.
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