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Abstract
Driver fatigue is attracting more and more attention, as it is the main cause of traffic accidents, which bring great harm to

society and families. This paper proposes to use deep convolutional neural networks, and deep residual learning, to predict

the mental states of drivers from electroencephalography (EEG) signals. Accordingly we have developed two mental state

classification models called EEG-Conv and EEG-Conv-R. Tested on intra- and inter-subject, our results show that both

models outperform the traditional LSTM- and SVM-based classifiers. Our major findings include (1) Both EEG-Conv and

EEG-Conv-R yield very good classification performance for mental state prediction; (2) EEG-Conv-R is more suitable for

inter-subject mental state prediction; (3) EEG-Conv-R converges more quickly than EEG-Conv. In summary, our proposed

classifiers have better predictive power and are promising for application in practical brain-computer interaction .
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Introduction

Fatigue is a complex mental state, often accompanied by

drowsiness (Kar et al. 2010) and usually manifesting as

lack of vigilance and reduced attention. It becomes one of

the major causes of motor vehicle accidents (Sahayadhas

et al. 2012; Khushaba et al. 2010), which bring serious

physiological injuries, psychological distress, and signifi-

cant economic loss to drivers and their families. Driver

fatigue is reported to account for 35–45% of all vehicle

accidents (Idogawa 2006). Therefore, detecting drivers’

cognitive ability in driving process, specially fatigue state,

has great potential in reducing vehicle accidents.

Many methods for driver fatigue detection are based on

physiological signals, such as electroencephalography

(EEG), electrooculogram (EOG), Electromyogram (EMG),

and Electrocardiogram (ECG) (Khushaba et al. 2010;

Kong et al. 2017; Hu and Zheng 2009; Fu and Wang 2014;

Ahn et al. 2016; Lin et al. 2014), or their combination.

Most studies report that there is strong correlation between

these signals and drivers’ cognitive state and they can be

used to detect driver fatigue accurately. For instance, some

studies (Khushaba et al. 2010; Brookhuis and De 1993;

Jap et al. 2009) report that the change in the cognitive state

is usually accompanied with the significant changes of

EEG frequency bands, such as delta (0.5–3.5 Hz), theta

(4–7 Hz), alpha (8–12 Hz), and beta (13–30 Hz). Eye

movement and closure are also considered two important

indictors of driver fatigue (Kar et al. 2010). When a person

is in fatigue statue, his eye movement decreases and blink

rate increases (Lal and Craig 2001). In addition, it is

reported that the variability of heart rate can be used to

distinguish fatigue from other cognitive states by ECG

power spectrum (Tsuchida et al. 2009). The variability of

heart rate (Jeong et al. 2007) deceases when a person is in

fatigue or drowsiness state.

EEG records the electrical potentials generated by

cerebral cortex’s nerve cells (Liang et al. 2010), has rich

sample data with high temporal resolution (Zeng et al.

2017; Stein et al. 2013), and contains abundant physio-

logical or psychological information. EEG-based methods

are considered to be the most convenient and effective

among these physiology-based methods. In general, most

EEG-based methods for driver fatigue detection utilize

waveform information, power spectrum, nonlinear analysis

and some modeling techniques (Kong et al. 2017; Chen

et al. 2017). For example, Correa et al. (2014) developed

an automatic method to detect the drowsiness stage in EEG
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records using time, spectral and wavelet analysis, and

obtained 87.4 and 83.6% accuracy in detecting alertness

and drowsiness, respectively. Khushaba et al. (2010) pro-

posed a fuzzy mutual-information(MI)-based wavelet

packet transform feature-extraction method to predict

drowsiness levels. Pal et al. (2008) found out that the

power spectrum of alpha band in the EEG is related to the

loss of alertness. Similar work is also reported in Jap et al.

(2009), Lin et al. (2010). Mu et al. (2017) used four types

of entropy, including spectrum entropy, approximation

entropy, sample entropy and fuzzy entropy, to extract EEG

features for driver fatigue detection. In addition, some

modeling techniques are used to detect driver state. Hu

(2017) developed an AdaBoost classifier for automated

detection of driver fatigue with EEG signals. Wali et al.

(2013) fused discrete wavelet packet transformation

(DWPT) and fast Fourier transformation (FFT) to classify

the driver distraction level, and achieved up to 85% clas-

sification accuracy. In Zhao et al. (2010), KPCA-SVM

classifier was employed to differentiate the normal and

mental fatigue state, and got a higher accuracy 98.7%. Fu

et al. (2016) presented a HMM (Hidden Markov Model)-

based dynamic fatigue detection model to estimate the

driver fatigue, and obtained 92.5% accuracy.

Despite those advancement, robust and accurate detec-

tion of driver cognitive performance by EEG still remains

challenge. First, it is well known that EEG manifests highly

non-stationary, and varies over time within a single subject

(intra-subject) and between two different subjects (inter-

subject) (Thodoroff et al. 2016). It is challenging to iden-

tify general patterns from non-stationary EEG signals.

Second, the above-mentioned methods generally separate

the detection process into two steps: feature exaction and

classification. The process of feature extraction usually

needs hand-crafted operation, which may cause the loss of

useful information in EEG (Tang et al. 2017). Third, the

low signal-to-noise ratio (SNR) of EEG also impacts the

detection accuracy.

Deep learning (DL) (LeCun et al. 2015) has been

applied in various domains, such as computer vision,

speech recognition and natural language processing. Con-

volutional neural networks (CNN) represents one of the

most significant advances in DL due to its success in many

challenging classification tasks (He et al. 2016; Abdel-

Hamid et al. 2014; Domhan et al. 2015). CNN are feed-

forward neural networks, usually including feature

extraction layer and feature mapping layer, and can learn

local patterns in data by convolution. A distinctive property

of CNN is that it is suitable for end-to-end learning without

any a priori feature selection (Schirrmeister et al. 2017),

which avoids information loss, and is specially fit for low

SNR, task-irrelevant EEG raw data. Hence, lots of EEG-

based researches and applications have emerged these

years such as P300 feature detection (Cecotti and Graser

2011; Puanhvuan et al. 2017), motor imagery classifica-

tion (Sakhavi et al. 2015), seizure detection (Page et al.

2016; Raghu et al. 2017), cognitive therapy in depressive

disorder (Bornas et al. 2015; Schoenberg and Speckens

2015), drowsy and alert states prediction (Hajinoroozi

et al. 2016), momentary mental workload recognition and

classification (Zhang et al. 2017, 2017), emergent visual

attention model for identifying the possible cause of

autism (Gravier et al. 2016) and brain-computer interface

communication (Lawhern et al. 2016; Manor and Geva

2015), etc.

In this work, we construct two novel classifiers: EEG-

Conv and EEG-Conv-R, where EEG-Conv is based on the

traditional CNN and EEG-Conv-R combines CNN with

recent deep residual learning. We study the prediction

performance of our proposed classifiers on both intra- and

inter-subject with raw EEG data. We also compare our

EEG-Conv and EEG-Conv-R with support vector machine

(SVM) and an existing deep learning method LSTM (long

short term memory).

The rest of the paper is organized as follows: ‘‘Materi-

als’’ section introduces the experiment design, EEG data

acquisition, as well as data preprocessing, respectively.

‘‘Methods’’ section provides a detailed description of our

proposed classifiers, including the design of EEG-Conv

and EEG-Conv-R. The results and discussion of experi-

ment are shown in ‘‘Results and discussion’’ section. Fi-

nally, conclusion is presented in ‘‘Conclusion’’ section.

Fig. 1 Driving simulation experiment platform
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Materials

Driving simulation platform

We construct a driving simulation platform, as shown in

Fig. 1. The platform is made up of 1) stimulation driving

operation devices, including racing seat, steering wheel,

liquid crystal display (LCD), loudspeaker, and projector; 2)

the physiological signal collection instruments, including

Neuroscan with 64 electrodes for EEG collection, a camera

for eye-blink detection, and a heart-rate sensor for counting

the heart rate. The physiological signals are acquired

simultaneously. ( Herein, eye-blink and heart-rate detection

is to determine the rank of mental states. For instance, if

the number of eye-blink per minute is less than 20 times

and heart-rate is greater than 70 times per minute, we

define it as sober state which we call ‘TAV’. Corre-

spondingly, if the number of eye-blink exceeds 30 times,

and heart rate is less than 60 times, we define it as fatigue

statue which we call ‘DROWS’ ); 3) one computer for data

recording, which has installed a driving simulation soft-

ware - Need For Speed-Shift 2 Unleashed (NFS-S2U), and

‘WorldRecord’ software for recording all the parameters

during driving; 4) another computer for collecting alert

tasks like image and sound stimuli, and processing physi-

ological signals.

Experiment protocol

Ten healthy subjects aged 23–25 participate in the exper-

iment for driving data collection. All of them possess C1

(Manual Transmission, MT) driving licenses, and know the

whole experiment procedure in advance. They are asked to

ensure adequate sleep the day before the experiment, and

are told not to drink excitant or inhibitory drinks like

coffee, alcohol, tea, and to avoid strenuous exercises during

the experiment day. The study is approved by a local Ethics

committee, and all participants voluntarily sign the written

consent form before experiment. The experiment is per-

formed in a quiet and isolated room between 18:00 and

21:00. In addition, the face expression is recorded by the

camera in front of the driver, and the heart rate is collected

by the corresponding electrode attached on the subject’s

right wrist.

Experiment setup

The experiment consists of two stages: the practice stage

and experimental stage (Kong et al. 2017). They are per-

formed in two successive days, respectively. The aim of

practice is to make sure all subjects become familiar with

the stimulation driving environment, and are able to

respond correctly to various stimuli. After training, every

subject is asked to drive at the specified track for two laps,

and should not deviate from the track to ensure safety

drive.

When collecting EEG data, we simultaneously record

the number of eye blinks per minute of the subject. Com-

bined with the heart rate collected by EKG, we divide the

mental states into 8 phases: WUP, PERFO, TAV3, TAV1,

TAV5, TAV2, TAV4, and DROWS (Kong et al. 2017), as

shown in Table 1. The schematic diagram of experimental

procedure is shown in Fig. 2. WUP corresponds to the

incipient stage of the experiment, which needs the subject

drives as practice dirving for about 10 min without any

stimuli. PERFO is similar with WUP, only requires the

subject to finish the tracks reducing 2% of the baseline time

of the WUP state. From TAV1 to TAV5, the subject is

exerted the tasks of video and audition (we call them as

alert and vigilance stimuli, respectively) to enhance the

subject’s workload, and respond to these stimuli by

pressing the ‘RIGHT’ or ‘LEFT’ button on the steering

wheel. The ‘RIGHT’ button is for video task with alert

stimuli, and the ‘LEFT’ button for auditory task with

vigilance stimuli. That is, in the condition of alert stimuli,

the traffic jam is simulated, and the subject should press the

‘RIGHT’ button by right index finger when an ‘X’ appears

on the screen 1m ahead of the subject. In the condition of

vigilance state, the subject should press the ‘LEFT’ button

by left index finger when two consecutive ‘‘beep’’s come.

Thus, it ensures the subjects to be alert or vigilant, and can

collect EEG signals of the wake condition. The difference

among these TAV states is the stimuli frequency. From

TAV1 to TAV5, the stimuli intervals are 9800–10,200,

7700–8100, 5900–6300, 4100–4500 and 2300–2700 ms,

respectively (Kong et al. 2017). DROWS is a boring drive

condition at the speed of about 60 km/h without any extra

video or audition stimuli, and the subject is apt to be

immersed in drowsiness.

In the present experiment, TAV3 is the first stage when

video and sound stimuli appear, and the subject will pay

higher attention to these tasks, and be in the most sober

state. DROWS is the last stage of the experiment. After

nearly 2 h of driving, the subject is prone to fatigue.

Moreover, the drive process at a constant speed of 60km/h

is monotonous, and easier to be fatigue. Also, as shown in

Table 1, the obvious difference of eye-blinks and heart rate

between TAV3 and DROWS confirms our experiment

design. Therefore, in this paper, the collected EEG data of

TAV3 and DROWS is selected for the prediction of drive

fatigue.
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EEG data acquisition

EEG is collected by gUSBamp amplifier with 16 channels

(g.Tec Medical Engineering GmbH), and is continuously

sampled with frequency at 256 Hz and impedance below

5KX. The electrodes are deployed in accordance with the

international 10/20 standard. Fifteen channels, Fz, Pz, Oz,

Fp1, Fp2, F7, F3, F4, F8, C3, C4, P7, P3, P4, and P8, are

used to record EEG signals. EKG electrode is placed on the

fore-breast for recording the heart rate, and an additional

electrode is attached on the left ear lobe as the reference.

EEG data preprocessing

First, by independent component analysis (ICA) (Jung

et al. 2000), all trials that contain ocular artifacts are dis-

carded. Then, EEG data between 1 and 40 Hz is retained

by band-pass filter. Second, we convert EEG data of 15

channels into the format {SP*CH*TR}, except for EKG

channel. Herein, SP refers to the sample rate which is

256 Hz in the experiment, CH is the corresponding sample

channel, and TR is the event. EKG is used to record ECG

data. Current EEG data format does not fit well with the

DL structure, so we segment EEG data into 0.5-second

(0.5s) epochs. Because the sample rate is 256 Hz, and there

are 15 channels, each epoch can be represented as a 15�
128 matrix. Also, we label ‘0’ for DROWS state, and ‘1’

for TAV3. Thus, in total 28,176 epochs are obtained,

including 18,672 DROWS epochs and 9504 TAV3 epochs,

as shown in Table 2. Our purpose is to train a classifier

using these epochs to better predict the cognitive perfor-

mance. The last step in the preprocessing is the normal-

ization of EEG data to eliminate the otherness effect of

inter-subject EEG data. We adopt z-score function for

normalization, which can be denoted by:

X� ¼ X � l
d

ð1Þ

Table 1 Blink and heart rate times of eight mental states

Mental state Eye-blinks(avg) Eye-blinks(max) Eye-blinks(min) Heart rate (avg) Heart rate (max) Heart rate (min)

(Times/min) (Times/min) (Times/min) (Times/min) (Times/min) (Times/min)

WUP 24 13 36 86 78 92

PERFO 20 11 27 89 79 100

TAV3 12 7 15 85 76 94

TAV1 18 15 24 83 75 91

TAV5 16 13 24 82 75 90

TAV2 20 13 30 78 73 85

TAV4 16 12 24 79 73 88

DROWS 22 12 33 73 70 78

Fig. 2 Schematic diagram of

experiment procedure

Table 2 DROWS and TAV3 epochs of subjects

Subject Samples of DROWS Samples of TAV3 Total

s1 2136 974 3110

s2 1970 784 2754

s3 1824 994 2818

s4 1648 1102 2750

s5 1798 894 2692

s6 2136 908 3044

s7 1906 1078 2984

s8 1822 1004 2826

s9 1930 976 2906

s10 1502 790 2292

Total 18672 9504 28176

600 Cognitive Neurodynamics (2018) 12:597–606

123



where X is the amplitude of raw EEG data and X� is the

value after normalization. l and d are called the mean and

standard deviation of all EEG data, respectively.

Methods

Construction of EEG-Conv classifier

The architecture of our CNN-based EEG classifier

(Hereinafter referred to as EEG-Conv) is illustrated in

Fig. 3. It contains eight layers: the input layer, three con-

volutional layers, a pooling layer, a LRN (Local Response

Normalization) layer, a fully connected layer and the out-

put layer.

Conv1 The input data is a matrix of 15� 128. The first

convolutional layer convolves the input with a kernel of

5� 5. The stride is 1, and the bias is set to 0. After con-

volution, 32 feature maps of size 11� 124 are generated.

LRN2 A local response normalization layer after Conv1

applies local normalization to the previous dataflow. This

type of normalization implements a kind of lateral inhibi-

tion inspired by biological phenomenon observed in real

neurons, providing competition for big activities among

neuron outputs calculated using different kernels. In EEG-

Conv classifier, we employ the local response normaliza-

tion layer to inhibit outputs from activation functions and

highlight the peak value of the corresponding local region.

In EEG brain signal domain, the highlighted high fre-

quency features are more important for detecting driver

cognitive states.

Conv3 The second convolutional layer convolves data

generated by the previous layer with kernel of 3� 3. The

stride is 1 and the initial bias is set to 0. After this con-

volution, 64 feature maps of size 9� 122 are generated.

Conv4 The third convolutional layer convolves data

generated by the previous layer with kernel of 3� 3. The

stride is 1 and the initial bias is set to 0. After this con-

volution, 32 feature maps of size 7� 120 are generated.

Pool5 A max pooling layer is placed after the third

convolutional layer. The kernel size in Pool5 is 2� 2 and

the stride is 2. The pooling layer lowers the computational

burden by reducing the number of connections between the

hidden layers in EEG-Conv. By stacking three convolu-

tional layers and a pooling layer, a relative concise EEG

signal feature representation is extracted.

FC6 The fully connected layer aims to perform high

level reasoning on EEG signal feature representation. FC6

takes all neurons in Pool5 and connects them to every

single neuron of current layer to generate global semantics

of EEG signals. FC6 is composed of 2048 neurons. The

dropout strategy is applied to prevent overfitting. The

output of each hidden neuron in FC6 is set to 0 with

probability 0.5. The dropout strategy forces EEG-Conv to

learn more robust EEG signal features.

Out7 Logistic regression is put on top of the previous

hidden layers as the output layer of the EEG-Conv classi-

fier. A single logistic regression layer itself is a linear,

probabilistic classifier. Detecting driver cognitive states is

done by projecting data points onto a set of hyperplanes,

the distances to which reflect a class membership proba-

bility. Out7 is parameterized by a weight matrix WO and a

bias vector bO. The logistic regression layer can be cal-

culated by:

PðYpred ¼ijOHL;WO; bOÞ ¼ softmax
i
ðWOOHL þ bOÞ

¼ eWOiOHLþbOi

Re
WOjOHLþbOj

j

ð2Þ

where OHL is the output of layer Out7. The output of the

EEG-Conv classifier is then generated by taking the arg-

max of the vector whose i-th element is

PðYpred ¼ ijOHL;WO; bOÞ. It can be calculated by Eq. 3,

where the output result is denoted by Y 2 f0; 1g.
Y ¼ argmax

i
PðYpred ¼ ijOHL;WO; bOÞ ð3Þ

Activation function Each neuron in the deep CNNs has

nonlinearity (activation function) and linearity (affine

transformation unit). The proper activation functions

selected according to EEG signal domain knowledge are

very important for the performance of the networks. An

activation function shall satisfy the following require-

ments: nonlinearity, saturability, continuity, smoothness

and monotonicity. The nonlinear activation function uð�Þ
are generally chosen to be sigmoid function, tanh function,

or ReLU (Rectified Linear Unit) function. We chose ReLU

as activation function in the convolutional layers and the

Fig. 3 The overall architecture of EEG-Conv classifier
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fully connected layer due to its following advantages: 1) it

is more efficient than sigmoid or tanh functions; 2) it

induces the sparsity in the hidden units and allows the EEG

classifier to easily obtain sparse brain signal feature rep-

resentations. The ReLU function used in EEG-Conv is

defined as:

ui;j;k ¼ maxðai;j;k; 0Þ ð4Þ

where ai;j;k is the input of the activation at location (i, j) on

the k-th channel. ReLU works better than logistic sigmod

and tanh functions in our experiments.

Training of the EEG-Conv classifier

Training the EEG-Conv classifier can be regarded as

solving a non convex optimization problem, because the

loss function is not a convex function of the network

parameters. Hence applying combined strategies to the

training phase is necessary. We describe some practical

strategies which we used during training in this subsec-

tion. Choosing proper learning rates makes learned weights

approximates the global optimal solution as far as possible;

the dropout method is used to prevent over fitting.

Learning rate The BP (back propagation) algorithm

provides an approximation of the trajectory calculated by

using the steepest descent in the weight parameter space.

The learning rate is initialized to 0.01 at the beginning, and

changed throughout the training phase. Step strategy is

adopted so that the learning rate is adjusted after a fixed

number of iterations in the training phase to prevent the

network from oscillating. The learning rate is adjusted

according to the below formula:

g ¼ baseg � afloorðiter=stepsizeÞ ð5Þ

where baseg is the current learning rate, a is a fixed hyper

parameter which is set to 0.1 in the experiments, iter is the

current number of iterations, stepsize indicates the number

of iterations when the learning rate will be changed (it has

been set to 20000 in our experiments), floorð�Þ is the

rounding down operation.

Dropout In order to prevent over fitting, we apply the

dropout strategy to the fully connected layer FC6. That is,

we drop the neurons of FC6 with probability 0.5. The

dropout strategy prevent the neurons in FC6 from coop-

erating with other nodes at the training phase, hence the

other hidden nodes maybe discarded. Each time an input is

presented, the EEG-Conv classifier samples a different

architecture. This training strategy reduces sophisticated

co-adaptations of neurons, since a neuron cannot rely on

the presence of particular other neurons.

Improved EEG classifier with residual learning

Our EEG-Conv classifier has good prediction accuracy on

the test set. To further improve accuracy, we develop an

EEG-Conv-R classifier by combining EEG-Conv with

residual learning.

Residual learning explicitly reformulates the layers as

learning residual functions with reference to the layer

inputs, instead of learning unreferenced functions (He

et al. 2016; Qin et al. 2018). In other words, the residual

layer learns the change of perturbations. As shown in

Fig. 4, we add a shortcut after the input X, and the output of

the block is superimposed upon the input, hence the output

of the block becomes FðXÞ þ X, and the network weight

parameters needs to learn is F(X). In EEG-Conv-R classi-

fier, the residual block is defined as:

Y ¼ FðX; fWigÞ þ X ð6Þ

where X and Y are the input and output vectors of the layers

considered. The function FðX; fWigÞ describes the residual
mapping to be learned.

Currently we add two residual blocks to EEG-Conv

classifier to improve its performance. The architecture of

EEG-Conv-R classifier is shown in Fig. 5.

Results and discussion

Here we evaluate the predictive performance of EEG-Conv

and EEG-Conv-R on both intra-subject and inter-subject.

Intra-subject prediction means the training and test data

comes from the same subject, whereas inter-subject pre-

diction means that the training and test data comes from

different subjects.

Intra-subject classification performance

We randomly take 80% of the TAV3 and DROWS samples

of each subject to form a training set, named Train i, the

remaining 20% of each subject as the test set, named

Test i, i ¼ 1; 2; � � � ; 10. Here, Train i and Test i are the

training and test sets of the ith subject, respectively. In

order to avoid loss of generality, the TAV3 and DROWS

samples are randomly taken from each Train i. During the

training step, each subject’s EEG data is used to train

individual classification models. Thus, each Train i is used

5x5 3x3

Fig. 4 The residual block
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as input to train EEG-Conv and EEG-Conv-R, and each

Test i is used to test both classifiers. Furthermore, we

randomly extract 10% samples as the validation set from

each Train i for cross validation, named Veri i,

i ¼ 1; 2; . . .; 10.
The experimental results are shown in Fig. 6. For mental

state detection of intra-subject, EEG-Conv and EEG-Conv-

R have similar performance, their average accuracy

reaches 91.788 and 92.682%, respectively.

As a control, the common LSTM (Long-short-term-

memory) neural network model and SVM classifier are

used for performance comparison with our proposed

models. For SVM, A Gaussian kernel function is used, the

penalty factor is set to 9.6, and probability estimation is not

enabled. For LSTM, stacked layer is 2, the time step is set

to 128, the learning rate is 0.01, and the stochastic gradient

descent is used for dimension reduction. In addition, we

refer to the literatures (Chang and Lin 2011) and

(Hochreiter and Schmidhuber 1997) for the training of

SVM and LSTM, respectively.

LSTM yields an average accuracy 85.132%, lower than

our EEG-Conv and EEG-Conv-R. SVM has an average

accuracy 88.070% with CSP (Common spatial pattern)

feature extraction. Among the 10 subjects, SVM outper-

forms our EEG-Conv and EEG-Conv-R on only two of

them, i.e., s2 and s4. The average classification accuracy of

four models is shown in Table 3.

The above results show that although the significant

variances of EEG signal among different subjects, our

proposed models, especially EEG-Conv-R, could learn

better the features of EEG data, and yield excellent clas-

sification result for intra-subject.

We also perform variance analysis of SVM, LSTM,

EEG-Conv, and EEG-Conv-R in intra-subject, as shown in

Table 4. The stability of EEG-Conv and EEG-Conv-R is

close to or slightly lower than SVM, but much higher than

LSTM.

Furthermore, we also use cross validation to compare

EEG-Conv and EEG-Conv-R, as shown in Fig. 7. EEG-

Conv-R can quickly approach 100%, although its valida-

tion accuracy fluctuate slightly. The main reason of

Fig. 5 The architecture of EEG-Conv-R classifier with residual learning

88.26

92.2

82.62

95.27

85.16

93.92

90.79

85.66 85.37

81.44

96.94

75.27
73.71

67.76

88.1
89.97

95.47

78.37

94.48

91.25
92.44

90.2 90.43 90.55

87.76

96.22
98.66

80.35

96.73
94.54

91.8

78.94

86.88

91.64

97.59 98.03 98.49

86.72

98.11 98.62

60

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

SVM LSTM EEG-Conv EEG-Conv-R

Accuracy(%)

subject

Fig. 6 Accuracy of EEG-Conv, EEG-Conv-R, LSTM and SVM in intra-subject test
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fluctuations is the insufficient number of samples of each

subject (the number of samples per subject is between 2000

and 3200, as shown in Table 2). But the application of

residual blocks in EEG-Conv-R classifier makes the

training much faster than EEG-Conv. Overall, EEG-Conv-

R exhibits significant improvement in training speed over

EEG-Conv.

Inter-subject classification performance

To test the classification performance of EEG-Conv and

EEG-Conv-R, we mix the TAV3 and DROWS samples of

all the subjects together. Similarly, 80% of the samples are

extracted as the training set, and the remaining as the test

set. Also we randomly choose 10% of the training set for

cross validation.

As shown in Fig. 8, our EEG-Conv and EEG-Conv-R

classifiers achieve higher classification accuracy than SVM

and LSTM for inter-subject mental state recognition. The

average accuracy of our EEG-Conv and EEG-Conv-R is

82.95 and 84.38%, respectively, while those of SVM and

LSTM are 81.85 and 75.55%, respectively. This result

suggests that our methods generalize better to the mental

state detection among different subjects.

The convergence of EEG-Conv-R versus EEG-Conv

Figure 9 depicts the loss descending of EEG-Conv and

EEG-Conv-R during the training process. The loss of EEG-

Conv decreases slowly, and shows larger fluctuations. It

Table 3 Average classification accuracy of EEG-Conv, EEG-Conv-R, LSTM and SVM in intra-subject

Model EEG-Conv EEG-Conv-R SVM LSTM

Average accuracy (%) 91.788 92.682 88.070 85.132

Table 4 Variance analysis of EEG-Conv, EEG-Conv-R, SVM and

LSTM in intra-subject

Model EEG-Conv EEG-Conv-R SVM LSTM

Variance 0.0028 0.0046 0.0023 0.0109

Fig. 7 The accuracy increase process of EEG-Conv-R versus EEG-

Conv during training process

Fig. 8 Accuracy of SVM, LSTM, EEG-Conv and EEG-Conv-R on

inter-subject

Fig. 9 The convergence comparison between EEG-Conv and EEG-

Conv-R
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needs nearly 250 batches to reach convergence for EEG-

Conv. EEG-Conv-R converges quickly, achieving better

convergence effect than EEG-Conv within 70 batches. That

is, it takes less time to train EEG-Conv-R. The underlying

reason is that EEG-Conv-R adds two convolution layers

with a 5� 5 and a 3� 3 convolution kernel, respectively,

to the depth of the model, and introduces the idea of

residual learning into the model design. The 5� 5 con-

volution kernel results in a greater receptive field, and

process more parameters, which reduce the number of

convolution layers. For residual learning of non-linear EEG

signals, it has a good learning effect and can capture the

difference between the output of the basic map and the

real-world Gaussian response, so that the output of EEG-

Conv-R is closer to the true value, and more easily to detect

the disturbances of the signals. According to the experi-

ment, the residual function we learned usually has a small

response and fits faster.

Conclusion

In this paper, we have described two deep learning-based

models EEG-Conv and EEG-Conv-R to predict the mental

state of driver, respectively. A 5-layer convolution neural

network is built to classify the mental states of drive fati-

gue, and both classifiers are tested by raw EEG data. The

classification performances of these two models are com-

pared to the classical SVM classifier and LSTM deep

learning model with the same EEG data.

Our experimental results suggest the following findings:

1) for mental state detection of intra-subject , both EEG-

Conv and EEG-Conv-R achieve better classification per-

formances than the traditional classifiers like SVM and

LSTM; 2) for mental state detection of inter-subject, EEG-

Conv-R performs better than EEG-Conv, LSTM and SVM-

based classifier; 3) EEG-Conv-R converges faster than

EEG-Conv, and takes less time for feature extraction at the

training stage.

However, insufficient sample of each intra-subject limits

the performance improvement of EEG-Conv-R. We will

collect more EEG data to further validation of EEG-Conv-

R. Currently, we just study a binary classification. In our

future work, we will apply the proposed deep learning

methods to study multi-label classification of EEG signals.
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