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Abstract
Advances in neurobiology suggest that neuronal response of the primary visual cortex to natural stimuli may be attributed

to sparse approximation of images, encoding stimuli to activate specific neurons although the underlying mechanisms are

still unclear. The responses of retinal ganglion cells (RGCs) to natural and random checkerboard stimuli were simulated

using fast independent component analysis. The neuronal response to stimuli was measured using kurtosis and Treves–

Rolls sparseness, and the kurtosis, lifetime and population sparseness were analyzed. RGCs exhibited significant lifetime

sparseness in response to natural stimuli and random checkerboard stimuli. About 65 and 72% of RGCs do not fire all the

time in response to natural and random checkerboard stimuli, respectively. Both kurtosis of single neurons and lifetime

response of single neurons values were larger in the case of natural than in random checkerboard stimuli. The population of

RGCs fire much less in response to random checkerboard stimuli than natural stimuli. However, kurtosis of population

sparseness and population response of the entire neurons were larger with natural than random checkerboard stimuli. RGCs

fire more sparsely in response to natural stimuli. Individual neurons fire at a low rate, while the occasional ‘‘burst’’ of

neuronal population transmits information efficiently.
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Introduction

The sensory system is responsible for processing the sensory

information. The commonly recognized sensory systems

include visual, auditory, olfactory, taste and touch systems

(Field 1994; Kandel and Schwartz 2013). Visual inputs play

a critical role in primates’ response to the external envi-

ronment, and in a normal individual, over 70% information

is derived visually (Treichler 1967). Visual system is one of

the most widely and intensely studied sensory systems, as

well as the most complex sensory nervous system; however

the underlying visual mechanism is yet to be elucidated

(Jessell Thomas et al. 2000; Rieke et al. 1997; Yan et al.

2016; Barranca et al. 2014). The surrounding visual infor-

mation is processed in the retina, lateral geniculate nucleus,

visual cortex, and other regions of the central nervous sys-

tem (Schiller 1986; Gross 1994; Qiu et al. 2016). A large

number of biological experiments are focused on the lateral

geniculate and visual cortex of the visual system. The

anatomical structures and functional properties of the retina

have been studied comprehensively. Stimulation can be

defined and the corresponding neuronal responses recorded

easily. Therefore, in recent years, investigations are

increasingly focused on the study of the retina (Bartsch et al.

2008; Maturana et al. 2014). The retina is the most investi-

gated area in the brain, retinal mechanisms and responses

have been studied with a great accuracy (Khoshbin-e-

Khoshnazar 2014; Maturana et al. 2016; Urakawa et al.

2017). There are manymodels of retina which are accessible

in the literature. They include detailed biophysical mecha-

nisms as well as computationally efficient and abstract

models (Qureshi et al. 2014; Touryan et al. 2005). The most

computationally effective model is a set of models each of
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which represent a single cell (Reich and Bedell 2000). The

reduction of theory would be a good idea to study the dis-

tribution of retinal responses, their properties general across

all cells and dependency between responses of different

retinal cells. Such information may help us to omit obtaining

redundant information of responses by means of numerical

integration and thus improve simulation speed with minor

assumptions induced. So studying general properties such as

response sparseness is of a great importance (Bakouie et al.

2017; Gravier et al. 2016).

A majority of the visual neuroscientists used random

stimuli with simple statistical properties and stimulation pat-

terns (such as light spots or light bars) to study the charac-

teristics and coding mechanism of the neurons (Atick 1992;

Felsen et al. 2005). However, animals and humans live in the

natural aswell as a rather environment. The retina is located in

a complex visual environment and is naturally optimized to

process the natural stimuli (Kandel andSchwartz 2013; Jessell

Thomas et al. 2000). Although natural scenes are viewed as

simple superposition of different types of stimuli, neuronal

responses are not simple. Therefore, we cannot determine the

mechanism of neuronal processing and coding of complex

natural visual stimuli accurately using simple stimuli. Thus,

natural stimuli are vital for exploring the perception of the

human brain (Felsen et al. 2005; Simoncelli and Olshausen

2001; Felsen and Dan 2005).

Since information processing and transfer in the brain

are restricted by energy metabolism, the nervous system

may use energy-efficient strategies to deal with informa-

tion, especially visual information processing and coding

(Barlow 1961; Mizraji and Lin 2017). Recent advances in

neurobiology suggested that neuronal response of the pri-

mary visual cortex (V1) to natural stimuli might be

attributed to a sparse approximation of images and

encoding stimuli to activate the specific neurons (Ol-

shausen and Field 1996; Simoncelli 2003; Olshausen and

Field 1997). Sparse coding refers to the activation of a

subset of neurons at a specific period in response to a

stimulus. Consecutively, single neuronal activities are pri-

marily maintained at a low level during stimulation (Ol-

shausen and Field 2004; Zheng et al. 2016; Lewick 2002).

Sparse coding is essential for the processing of visual

information; it reduces the number of neurons involved,

saves energy consumption, improves the efficacy of

information transmission and enhances the ability of

information processing (Hubel and Wiesel 1997; Peters

et al. 2017). In recent years, visual information processing

and coding have been comprehensively investigated and

the results (Lewick 2002; Hubel and Wiesel 1997; Peters

et al. 2017; Vinje and Gallant 2002) allow simulation of the

visual system in silico. Combining the data and results

obtained by neurophysiologists using signal processing and

computing theory facilitates the simulation of visual

system by computers in order to resolve the challenges

encountered in image processing (Huberman et al. 2008;

Pillow et al. 2008; Tozzi and Peters 2017).

So far, there are many studies on the RGCs. Kameneva

et al. use the Hodgkin–Huxley model to simulate mor-

phological and physiological characteristics of RGCs

(Kameneva et al. 2016). Hadjinicolaou et al. established a

linear and non-linear model that predicts the response of

RGCs under multi-electrode array stimulation (Hadjinico-

laou et al. 2016). Wohrer and Kornprobst proposed virtual

retina software which can simulate large-scale simulation

of up to 100,000 neurons with good physiological charac-

teristics (Wohrer and Kornprobst 2009). These experiments

show that we can simulate the relevant characteristics of

RGCs very well through the computer.

Fast Independent Component Analysis (FASTICA) is a

unique sparse coding algorithm invented by Hyvärinen and

Hoyer (Hyvarinen 1999; Hoyer and Hyvarinen 2000;

Hyvarinen et al. 2001). It is a fast iterative algorithm based

on an orthogonal rotation of pre-whitened data, using a

fixed-point iteration scheme that maximizes the non-

Gaussianity of the rotated components. The convergence of

FASTICA is rapid, and independent of the step-size. In

authors’s previously published paper,standard sparse cod-

ing and sparse coding based on FASTICA have been

simulated, and the time of training bases, the convergence

speed of objective function and the sparsity of coefficient

matrix were compared respectively. The results show that

sparse coding based on FASTICA is more effective than

standard sparse coding. In addition, many experiments

have proved that FASTICA can simulate sparse coding

very well (Wang and Wang 2017; Hyvärinen 1999).

Methods

The basic idea of FASTICA is to determine the matrix W

to maximizeWTX non-Gaussianity with projection steps (X

projected onto W).

The FASTICA involves the following steps:

1. Whitening and centralizing the input data X and we

can obtain processed data Z.

2. Random initialization of Projection matrix Wp.

3. Wp ¼ E½ZgðWT
p ZÞ� � E½g0ðWT

p ZÞ�WP, where

g(.) = tanh(.), E½:� is an averaging operation.

4. Each iteration of the process is Wp ¼ Wp �
Pp�1

j¼1

ðWT
p WjÞWj

5. Normalization: Wp ¼ Wp= Wp

�
�

�
�

6. Repetition of step 3 until Wp convergence is obtained.
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After the above steps we can get the projection matrix, the

initial characteristic matrix can be obtained by the fol-

lowing formula:

A ¼ ðWðWTWÞ�1=2Þ�1 ð1Þ

Then the resulting initial feature matrix A is brought into

the following process:

7. Initialize the coefficient matrix S ¼ ATX.

8. According to given A, solve to minimize S.

9. According to the given S, solution to minimize A.

10. Record the value of the coefficient corresponding to

each pixel in the 1000 small image blocks, stop the

iteration after 100 iterations, otherwise repeat step 8.

Here we did not use gaussian function because tanh func-

tion has better versatility (Hyvarinen et al. 2001; Hyvarinen

and Hoyer 2002).We established a sparse coding model in

order to describe the FASTICA algorithms effectively

(Fig. 1).

In the experiments, training samples consist of a sample

of 10 image patches of 512 9 512 pixels sampled from

natural images. We selected 10,000 mini-patches of

10 9 10 pixels from 10 images (each image 1000) ran-

domly. Taking into account the computational speed and

time cost, we randomly selected 1000 small blocks from

the above 10,000 small blocks for experiments. The

extracted small image blocks are taken as input data and

processed through a sparse coding model based on FAS-

TICA. The number of fixed iterations is 100, and finally the

feature matrix and its corresponding coefficient matrix are

obtained. It should be noted that the purpose of this paper is

to simulate the temporal and spatial responses of ganglion

cells under different stimuli through sparse coding based

on FASTICA. Therefore, we consider each pixel of 1000

mini-patches of images as a ganglion cell and ignore visual

field of neurons, and the coefficient corresponding to each

pixel is the distribution of ganglion cells. The total number

of pixels and corresponding ganglion cells are 100,000.

The iterations equivalent to the experiment time in a

physiological experiment, each iteration corresponds to the

activation of all 100,000 ganglion cells for image stimuli.

Due to the ‘‘fire or not’’ of neuronal action potentials, we

do not consider the size of the coefficient for each pixel, we

just consider the value of the coefficient is nonzero or zero.

(zero means a ganglion cell is not activated and no action

potential is generated, nonzero means a ganglion cell is

activated and generated an action potential). So in this

paper we consider a non-zero value as 1 in order to sim-

plify the calculation.

Two types of stimuli are discussed in this study: natural

scenes and random checkerboard stimuli, compared with

the natural stimuli. Natural stimuli comprise of the sample

with 10-image patches measuring 512 9 512 pixels

derived from natural images. Conversely, the random

checkerboard stimuli consist of 64 9 64 patches measuring

8 9 8 pixels. The brightness of each patch generated by

the random sequence is graded on a scale of 0–1, with 1

representing black and 0 denoting white. The RGC was

simulated by training the FASTICA algorithm with either

natural scenes or random checkerboards. Then using the

outputs of the trained model to simulate the responses to

either natural scenes or random checkerboards. The reason

why we use random checkerboard stimuli is that the arti-

ficial stimuli used in physiological experiments are random

checkerboard stimuli. Checkerboard image stimuli was

used in physiological experiments to measure the receptive

field of ganglion cells, and the ganglion cells were com-

pared with the response of random checkerboard stimula-

tion and natural image stimulation at the same time. Since

we want to compare the simulated experimental data with

the physiological experimental data, we also used

checkerboard stimuli, not white noise stimuli.

Statistical analysis

The neuronal response to stimuli was measured using

kurtosis (Willmore and Tolhurst 2001). Kurtosis is the

fourth moment of distribution at the peak. The value of

kurtosis is close to zero for a Gaussian distribution and a

high positive value is related to heavy-tailed peak distri-

bution, similar to that in sparse neuronal response.

KðXÞ ¼
E ðX � lÞ4
h i

r4
� 3 ð2Þ

x1 

x2 
... 

xn 

Input 

a1 

a2 

am 

Basis Output 

…
 

x1’ 

x2’ 

xn’ 

…
 

Training Coding 

Fig. 1 Sparse coding model. The model consists of three layers:

input, basic function and output. Data is fed into the input layer and

trained by FASTICA to obtain basic functions, which are converted to

output data through coding process
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Sparseness can be defined as lifetime and population

sparseness. The fourth moment of the response distribution

of a single neuron in response to stimuli was used for the

quantification of the lifetime sparseness (KL). Exposure to

M stimuli evokes neuronal responses r1 … ri … rM, and the

lifetime sparseness, KL is obtained by the following

equation:

KL ¼ 1

M

XM

i¼1

ri � r

rr

� �4
" #

� 3 ð3Þ

where r and rr represent the mean and standard deviation

of the responses, respectively. A distribution manifests

high positive kurtosis if it contains several small responses

(as compared to the standard deviation rr), and only a few

large responses. A large KL value implies short neuronal

firing, and most often the absence of firing

Similarly, the distribution of the firing rate of the neu-

ronal population in response to stimuli can be used to

quantify the population sparseness (KP), which is calcu-

lated as follows:

KP ¼ 1

N

XN

j¼1

rj � r

rr

� �4
" #

� 3 ð4Þ

where N denotes the number of neurons, rj is the firing rate

of the entire population of neurons to a single stimulus, r

and rr represent the mean and standard deviation of the

firing rates, respectively. The population sparseness is

indicated by the distribution of responses of the entire

coding population of N neurons to a single stimulus. A

large KP value indicates limited neuronal firing, and a

majority of the neurons do not fire in response to a single

stimulus.

Treves et al. proposed an alternative to lifetime sparse-

ness and population sparseness (Treves and Rolls 1991).

Similar to kurtosis, the parameter a measures the shape of

response distribution. However, it is appropriate only for

responses (such as those of real neurons), which range from

0 to ? 1. The Treves–Rolls sparseness a is obtained by

the following equation:

a ¼
1
n

Pn
i¼1 ri

� �2

1
n

Pn
i¼1 r

2
i

ð5Þ

The sparseness value is subtracted from 1 in order to

obtain S that increases with rising population sparseness:

S ¼ 1� a

1� 1
n

ð6Þ

The parameter S is used to characterize the lifetime

response of single neurons (SL) and the population response

of the entire neurons (SP) in response to stimuli. If the

measure was used to represent M different responses

generated by a single neuron in response to different

stimuli (Eq. 1), the proportion of strong responses is clo-

sely related to lifetime kurtosis of the specific neuron. The

value of S is between 0 and 1. A large SL suggests the more

sparse the discharge activity of a single neuron under

stimulation, the neuron does not issue action potentials for

most of the time under stimulation. A large SP value sug-

gests firing by a small number of neurons and most of the

neurons do not respond to a single stimulus.

Student’s t test was employed for the comparison of the

statistical results.

Results

Simulation of responses in single RGCs

We simulated the responses of single RGCs to stimuli.

Consequently, RGCs showing an enhanced response to

natural stimuli and random checkerboard stimuli was

selected. The kurtosis was calculated, and the KL values

were 5.111 and 1.308, respectively. These results suggested

that the RGCs exhibits a significant lifetime sparseness in

response to natural and random checkerboard stimuli. The

RGCs fires sparsely in response to natural stimuli. In

addition, we calculated the Treves–Rolls sparseness of the

RGCs, and the SL values were 0.587 and 0.418, respec-

tively. The resulted also showed that the RGCs fires more

sparsely in response to natural stimuli than random

checkerboard stimuli. The responses of a ganglion cell to

natural stimuli and random checkerboard stimuli are shown

in Figs. 2 and 3.

Horizontal axis represents the duration of the experi-

ment and the vertical axis represents the response of the

RGCs: 1 indicates neuronal firing, and 0 denotes the

absence of response. Each vertical line indicates a single

spike.

Simulating the population response of RGCs

Next, we simulated the population response of RGCs to

stimuli. The statistical results show that approximately

65% of the RGCs do not fire and nearly 6% fire more than

15 times constantly in response to natural stimuli (Fig. 4).

About 72% of the RGCs do not fire, and all the RGCs fire

less than 15 times in response to random checkerboard

stimuli continually (Fig. 5).

The lifetime sparseness of single neurons is an inter-

esting property, which is not identical to population

sparseness. Population sparseness is an instantaneous

response of the population, whereas lifetime sparseness is

defined as the lifetime response of an individual cell. We

compared the population response of RGCs to different
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stimuli quantitatively using population sparseness param-

eters KP and SP. Next, we simulated the response of RGCs

population to natural stimuli and determined that the KP

was 5.019. Interestingly, the RGCs fire substantially less in

response to the random checkerboard stimuli than natural

stimuli. However, the KP was 1.499 corresponds to random

checkerboard stimuli suggesting that the ‘‘burst’’ of action

potentials of single neurons primarily contribute to the

sparse representation of the population of RGCs. Subse-

quently, the Treves–Rolls sparseness of population

Fig. 2 The distribution of a

ganglion cell under natural

image stimulation

Fig. 3 The distribution of a

ganglion cell under random

checkerboard stimulation

Fig. 4 Population response of

RGCs to natural stimuli
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response to natural stimuli and random checkerboard

stimuli was evaluated, and the SP values were found to be

0.578 and 0.319, respectively. The results also suggested

that in response to natural stimuli, individual neurons fire at

a low rate, while the occasional ‘‘burst’’ of neuronal pop-

ulation transmits information efficiently.

The statistical results of lifetime sparseness (KL, SL) and

population sparseness (KP, SP) of the neuronal activities in

response to natural and random checkerboard stimuli are

shown in Table 1, together with the results recorded from

the chicken RGCs (Zhang et al. 2010). We observe the

simulation data are more consistent with the results of real

biophysical experiments recorded in the chicken RGCs.

Results of this paper do not correspond to experimental

data presented in Table 1, because our experiment is a

simulation experiment and quoted data is from a physio-

logical experiment. It is normal that the data of two

experiments are not completely consistent, but the result of

the two is the same. For example, the KL data of natural

stimuli is larger than random checkerboard stimuli in

simulation experiment in Table 1, and the KL data of nat-

ural stimuli is also larger than random checkerboard stimuli

in chicken retinal experiment. Although the KL values of

the two experiments were different, they all showed that

the response of ganglion cells under natural image stimu-

lation were more sparse.

It should be noted that since the method of modelling

and experimental are different, the values of modelling and

experimental results are also different. Although there are

discrepancies in the values between modelling and exper-

imental data, the results of modelling and experimental are

consistently. In our simulation experiment the outputs of

neurons were 0 or 1, a burst of neural activity means

multiple 1 values in less continuous iterations. The exact

statement here about a burst of neural activity is the high

frequency firing of a single ganglion cell. Here we corre-

spond 100 iterations in our simulation experiment to a

period of time in a physiological experiment. More in

detail, 100 iterations in our simulation correspond 192 s of

stimulation in the reference (Zhang et al. 2010).

The differential response of RGCs in response to natural

and random checkerboard stimuli is explained by The-

unissen et al. (2001). The study recorded neural response in

the V1 of awake macaques, using natural spatiotemporal

statistics, and also in response to a dynamic grating

sequence stimulus. In addition, the fitted nonlinear recep-

tive field models were established using each of these data

sets and their varying response to natural visual stimuli

compared. Although reference (Theunissen et al. 2001) is

Fig. 5 Response of RGCs

population to random

checkerboard stimuli

Table 1 Results of simulation

and chicken retinal experiments
Simulation experiment KL SL KP SP Population response of RGCs

Natural stimuli 5.111 0.587 5.019 0.578 65% show negative response

Random checkerboard stimuli 1.308 0.418 1.499 0.319 72% show negative response

Chicken retinal experiment KL SL KP SP Population response of RGCs

Natural stimuli 8.827 0.802 10.250 0.852 68% show negative response

Random checkerboard stimuli 3.780 0.777 3.500 0.802 73% show negative response

Results of the lifetime sparseness (KL,SL) and population sparseness (KP,SP) of the neuronal activities in

response to natural and random checkerboard stimuli

620 Cognitive Neurodynamics (2018) 12:615–624
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about cortical neurons, we think this explanation can also

be applied to the retinal, because we believe that the main

reason is the difference between the natural image and the

random check-board image, which may not be related to

the structural difference of cortical neurons and retinal. On

average, the model using the natural stimulus predicted the

visual response more than two times as accurately as the

model fit using artificial stimulus. During natural stimula-

tion, the temporal responses often showed a stronger late

inhibitory component, indicating the effect of nonlinear

temporal summation during natural vision. The natural

stimuli are also strongly related spatially and temporally in

contrast to synthetic stimuli. RGC receptive fields reduce

the relevance between natural stimuli spatially and tem-

porally, thereby, decreasing the number of neurons

involved. Sparse coding can make neurons fire less times or

reduce the number of activated neurons to represent

enough information, and the efficacy of information

transmission was improved. More in detail, sparse coding

can reduce the energy consumption of action potentials

produced by neurons. Since the brain consumes a certain

amount of energy per unit time, less activated neurons or

action potentials means less energy to represent a particular

stimulus. Therefore, retinal processing of natural stimuli

improves the efficiency of information transmission.

Discussion

We simulated the responses of RGCs to natural and ran-

dom checkerboard stimuli using FASTICA. Also, kurtosis,

lifetime and population sparseness were investigated and

analyzed. These results were in agreement with biophysical

experiments involving chicken RGCs.

First, the RGCs exhibited the significant lifetime

sparseness in response to natural stimuli and random

checkerboard stimuli. About 65 and 72% of the RGCs do

not fire continually in response to natural and random

checkerboard stimuli, respectively. The results showed that

RGCs might respond to stimuli by sparse coding.

Second, we calculated the kurtosis and the Treves–Rolls

sparseness of the RGCs in response to natural and random

checkerboard stimuli. Consequently, both KL and SL values

were larger in the case of natural than random checker-

board stimuli. The results show that the RGCs fires spar-

sely in response to natural stimuli.

Third, the population of RGCs fires much less in

response to random checkerboard stimuli than natural

stimuli. However, KP and SP values were larger with nat-

ural than random checkerboard stimuli. The results sug-

gested that in response to natural stimuli, individual

neurons fire at a low rate, while the occasional ‘‘burst’’ of

neuronal population transmits information efficiently.

Finally, about 6% of the RGCs fire more than 15 times

in response to natural stimuli while all of the RGCs fire less

than 15 times in response to random checkerboard stimuli

continuously. This phenomenon indicated that RGCs cod-

ing stimulates the information depending on a small

number of RGCs that fire at a high frequency.

The responses of RGCs to natural and random

checkerboard stimuli were simulated using FASTICA. We

investigated and analyzed kurtosis, lifetime and population

sparseness. The results of these simulation experiments

were consistent with those of the biophysical experiments

involving chicken RGCs indicating their reliability. The

natural stimulus inputs are derived from the training set of

natural scenes in this paper. In making a case for the

robustness of the study, since presumably mammals have a

vast set of ‘‘training inputs’’, sparse coding was facilitated

even for inputs beyond previously observed scenes.

Although checkerboard image stimuli was used in physi-

ological experiments to measure the receptive field of

ganglion cells, we did not consider receptive fields for

simplicity.

The results suggested that RGCs may represent stimuli

by sparse coding. Sparse coding facilitates the retinal

processing of natural visual information efficiently and

improves the efficacy of information transmission. It also

ensures optimal balance between metabolic energy con-

sumption and efficiency of information transmission and

was found to be conceptually similar to energy coding;

thus, it uses minimal energy (Wang and Zhu 2016; Wang

et al. 2017; Hasenstaub et al. 2010). The fewer the number

of active neurons in a neural network, the less energy the

network cost. Studies have shown that sparse neural coding

patterns reflect the maximization of energy efficiency, that

is, consume little energy to encode information (Levy and

Baxter 1999; Laughlin 2001). Our study is mainly a sim-

ulation experiment without physiological studies, because

biophysical mechanisms are too complicated and many

mechanisms are not yet clear (Protopapa et al.

2016; Momtaz and Daliri 2016). We are simply trying to

simulate and perform a simple analysis on a simplified

ganglion cell activity using an artificial neural network, so

biophysical mechanisms were not investigated in the study.

Since presumably mammals have a vast set of ‘‘training

inputs’’, sparse coding is facilitated even for inputs beyond

previously observed scenes. Nevertheless, some complex

mechanisms in the simulation experiments was not inves-

tigated. However, the results of simulation suggested the

feasibility of in silico modeling of the visual system.

Although the current simulation experiments illustrated the

proof of concept, additional studies are essential to validate

these findings.
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Appendix

Sparse coding

Sparse coding includes a class of unsupervised methods for

learning sets of complete bases for efficient data repre-

sentation. The aim of sparse coding is to develop a set of

basic vectors that represent an input vector as a linear

combination of the basic vectors:

x ¼ As ¼
Xn

i¼1

aisi ð7Þ

where x ¼ ðx1; x2; . . .; xnÞT represents input data, A ¼
ða1; a2; . . .; amÞT is base matrix, ai is column i in A, which

represents the basic functions. S ¼ ðs1; s2; . . .; smÞT denotes

coefficient matrix. With a complete basis, S is no longer

uniquely determined by the input vector x. Therefore, we

introduced the additional criterion of sparsity in sparse

coding. We define sparsity in terms of few non-zero

components or few components not close to zero. The

choice of sparsity as a desired characteristic in our repre-

sentation of the input data is motivated by the observation

that most sensory data such as natural images may be

described as the superposition of a small number of atomic

elements such as surfaces or edges. Other justifications

such as comparisons of the properties of the primary visual

cortex have also been advanced.

We define the sparse coding cost function using a set of

n input vectors as follows:

FðA; SÞ ¼ min
aj;sj

Xn

i¼1

xi �
Xm

j¼1

ajsj

�
�
�
�
�

�
�
�
�
�

2

þ k
Xm

j¼1

HðsjÞ ð8Þ

where aj represents basic function, sj is coefficient, xi is

input data, k is a constant, HðsjÞ denotes a sparsity cost

function, which penalizes sj for being far from zero. Usu-

ally a common choice for the sparsity cost is the L1 penalty

HðsjÞ ¼ sj
�
�
�
�
1
, but it is non-differentiable when basic

function equals 0, therefore, we selected sparsity cost

HðsjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
s2j þ e

q
, wherein e is a constant.

We interpret the first term of the sparse coding objective

as a reconstruction term, which uses the algorithm to

provide a good representation of x and the second term as a

sparsity penalty, which is a sparce representation of x. The

constant k is a scaling constant determining the relative

importance of these two contributions.

In addition, it is possible to make the sparsity penalty

arbitrarily small by scaling down sj and scaling aj up using

a large constant. To prevent this event, we constrain

aj
�
�

�
�2 �C; 8j ¼ 1; 2; . . .m to be less than the constant C.

The full sparse coding cost function including our con-

straint is as follows:

FðA; SÞ ¼ min
aj;sj

Xn

i¼1

xi �
Xm

j¼1

ajsj

�
�
�
�
�

�
�
�
�
�

2

þ k
Xm

j¼1

HðsjÞ

Subject to aj
�
�

�
�2 �C; 8j ¼ 1; 2; . . .m

ð9Þ

However, the constraint of aj
�
�

�
�2 �C; 8j ¼ 1; 2; . . .m

cannot be enforced using simple gradient-based methods.

This constraint is weakened to a ‘‘weight decay’’ term

designed to keep the entries of A small. Therefore, we

added the constraints to the objective function to provide a

new objective function:

FðA; SÞ ¼ X � ASk k2þk
X ffiffiffiffiffiffiffiffiffiffiffiffi

S2 þ e
p

þ c Ak k2 ð10Þ

where X is input data,A ¼ ða1; a2; . . .amÞT is base matrix,

S ¼ ðs1; s2; . . .smÞT is coefficient matrix, k and c are

constants.

The objective function is non-convex, and hence

impossible to optimize well using gradient-based methods.

However, given A, the problem of finding S that minimizes

FðA; SÞ is convex. Similarly, given S, the problem of

finding A that minimizes FðA; SÞ is also convex suggesting

an alternative to optimize A for a fixed S, and then opti-

mizing S with a fixed A.

The analytic solution of A is obtained as follows:

oFðA; SÞ
oA

¼ xST � ASST � cA ð11Þ

The analytic solution of S is provided by:

oFðA; SÞ
oS

¼ ATx� ATAS� kS:=
ffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ e

p
ð12Þ

Therefore, the learning equation of basic function ai is

represented by:

Dai ¼ aiðt þ 1Þ � aiðtÞ ¼ xis
T
i � aisis

T
i � cai ð13Þ

The learning equation of coefficient si is as follows:

Dsi ¼ siðt þ 1Þ � siðtÞ ¼ aTi xi � aTi aisi � ksi:=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sTi si þ e

q

ð14Þ

Using the simple iterative algorithm on a large dataset

(including 10,000 patches) results in prolonged iterations

and convergence of the algorithm. To increase the rate of

convergence by accelerating the iteration, the algorithm

may be run on mini-patch selecting a mini-patch random

subset of 1000 patches from the 10,000 patches.

A faster and better convergence may be obtained via

initialization of the feature matrix S before using gradient

descent (or other methods) to optimize the objective
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function for S given A. In practice, initializing S randomly

at each iteration results in poor convergence unless a good

optimum is found for S before optimizing for A. A better

way to initialize S involves the following steps:

1. Random initialization of A

2. Repetition until convergence

1. Selection of a mini-patch random subset.

2. Initialization of S with S ¼ ATX, dividing the

feature by the the corresponding basic vector in A.

3. Finding S that minimizes FðA; SÞ for the A in the

previous step.

4. Determination of A that minimizes FðA; SÞ for the
S found in the previous step. Using this method,

good local optima can be reached relatively

quickly.

We obtained the base matrix A trained by FASTICA. Using

the FASTICA method, we derived the coefficient matrix

and the objective function values through traditional sparse

coding. We selected a convex function HðsjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
s2j þ e

q

for the sparsity cost in objective function, where e = 0.01

and k = 0.3. Since the base matrix Ak k2 in objective

function was obtained and normalized by FASTICA, Ak k2

equals 1. Ak k2 does not affect the optimization of the

objective function, and therefore, c = 0.
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