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Abstract
Random pulses contribute to stochastic resonance in neuron models, whereas common random pulses cause stochastic-

synchronized excitation in uncoupled neuron models. We studied concurrent phenomena contributing to phase synchro-

nization and stochastic resonance following induction by a weak common random pulse in uncoupled non-identical

Hodgkin–Huxley type neuron models. The common random pulse was selected from a gamma distribution and the degree

of synchronization depended on the corresponding shape parameter. Specifically, a low shape parameter of the weak

random pulse induced well-synchronized spiking in uncoupled neuron models, whereas a high shape parameter of the weak

random pulse or a weak periodic pulse caused low degrees of synchronization. These were improved by concurrent inputs

of periodic and random pulses with high shape parameters. Finally, the output pulse was synchronized with the periodic

pulse, and the common random pulse revealed periodic responses in the present neuron models.

Keywords Noise-induced synchronization � Stochastic resonance � Neural networks � Conductance-based model �
Spiking neurons

Introduction

In neural systems, subthreshold signals are not detected by

sensors because the membrane potential does remains

below the detectable threshold. In addition, input signals

are usually contaminated by external or internal random

forces. In bistable neurons, weak signal detection can be

enhanced by adding white Gaussian noise at a certain

intensity range. Under these conditions, white Gaussian

noise improves signal-to-noise ratios during detection of

subthreshold periodic signals in nonlinear elements (Fauve

and Heslot 1983; Bulsara et al. 1991; Longtin et al. 1991;

Douglass et al. 1993; Moss et al. 1993). This phenomena is

known as stochastic resonance (SR). Weak signals were

also detected under sine-Wiener noise in the FitzHugh–

Nagumo model (Yao and Ma 2018) and with high fre-

quency inputs in a noisy neural network model (vibrational

resonance) (Qin et al. 2018).

SR was previously detected in sensory peripheries that

were forced by periodic inputs (Douglass et al. 1993;

Longtin et al. 1994; Levin and Miller 1996; Shimozawa

et al. 2003). With relevance to central nervous systems, SR

has been reported in rat hippocampal slices and in a

computer simulation of a CA1 pyramidal cell model (Sta-

cey and Durand 2000, 2001, 2002). In these studies, action

potentials synchronized with periodic synaptic inputs in the

presence of random synaptic inputs, which contributed to

recall of stored patterns in a hippocampal neural network

model (Yoshida et al. 2002). In this neural network model,

weak periodic synaptic inputs evoked an embedded pattern

in CA1 pyramidal cell in cooperation with irregular

synaptic inputs.

Spike synchronization has also been shown in coupled

neural network models, such as the small-world network

reported by Kim and Lim (2017) and in their subsequent

free-scale network model (Kim and Lim 2018). In a noisy

neural network model based on Izhikevich neuron models,

SR was induced by a white Gaussian current (Zhao et al.
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2017) and was supported by neural coupling following

synchronization of neural spikes. Under these conditions,

decoupling eliminated synchronization. Stochastic burst

synchronization also appeared in a scale-free neural net-

work model (Kim and Lim 2018) and the effects of

synaptic plasticity of spike-times were examined.

Gaussian white noise induces synchronization in

uncoupled nonlinear oscillators of theoretical models and

in physiological experiments, and this process is known as

noise-induced synchronization (Mainen and Sejnowski

1995; Teramae and Tanaka 2004; Goldobin and Pikovsky

2006; Galán et al. 2006). In rat neocortical slices, the

timing of spike trains was precisely reproducible using low

intrinsic noisy depolarization, whereas constant dc current

induced fluctuations in spike times (Mainen and Sejnowski

1995). The precision of spike times between separate trials

indicates synchronization between uncoupled neural

oscillators following common noise inputs. Noise-induced

synchronization has also been observed in neuron models

that were driven by Poisson trains (Nagai et al. 2005; Nagai

and Nakao 2009). Furthermore, in a pair of uncoupled

neuron models, synchronization was induced by common

random neural pulses that were generated by an exponen-

tial distribution with a negative slope (Tateno et al. 2011).

Currently available data indicates that noise-induced

synchronization occurs even in pairs of non-identical

neurons. In the electroreceptors of paddlefish, bursts of

neural activities in electroreceptor afferents were syn-

chronized by common Gaussian noise (Neiman and Russell

2002). Although afferent neurons oscillate at various

intrinsic frequencies, the common noise contributes to

convergence of interburst intervals. This convergence of

firing frequencies is facilitated under conditions of greater

noise intensity. Accordingly, noise-induced synchroniza-

tion has been found in an ensemble of uncoupled non-

identical Hodgkin–Huxley neuron models (Zhou and

Kurths 2003).

In human brains, augmentation of phase synchronization

by random signals potentially causes behavioral SR. In

previous studies, detection of weak visual signals in the

right eye was enhanced by random luminance signals

applied to the left eye (Kitajo et al. 2003, 2007). Yet these

noise inputs also augmented long-range phase synchro-

nization of electro-encephalogram signals in human brains

(Ward et al. 2006; Kitajo et al. 2007). These studies sug-

gest that increases in phase synchronization increase signal

transfer between neurons, and consequently induce

behavioral SR.

Random forces reportedly induced SR and noise-in-

duced synchronization simultaneously in a neural network

(Yao and Ma 2018). Thus, we investigated the conditions

under which similar concurrent phenomena between phase

synchronization and SR are induced by random spiking

inputs. To this end, we examined rhythmic synchronization

of two uncoupled non-identical neuron models. We show

that the common random pulse input contributes to noise-

induced synchronization in the pair of neuron models, and

SR was concurrently induced by common periodic pulse

inputs with common random pulse inputs. Moreover,

common random pulse inputs uncovered periodic respon-

ses in these neuron models, and the induced periodic

responses facilitated phase synchronization.

In the present uncoupled non-identical neuron models,

periodic responses were induced by common periodic input

with the common random pulse, and these occurred in both

neuron models, thus facilitating phase synchronization. In

‘‘Methods’’ section, we present the neuron model with

stimulation patterns and data analysis. ‘‘Results’’ section

describes noise-induced synchronization and SR induced

by random pulses in the pair of non-identical neuron

models. In ‘‘Discussion’’ section we discuss applications of

these noise-related phenomena.

Methods

Mathematical neuron model

As shown in the schematic of the present system (Fig. 1),

neuron models received common random and/or periodic

pulse inputs. We introduced random or periodic pulses as

the input layer, the output properties of the pair of neuron

models were investigated. The output layer comprised two

INa;p þ IK neuron models, and both of these were the

Hodgkin–Huxley type models proposed by Izhikevich

(2007). No interconnection was presented between the two

neurons. Pulse inputs were applied to both neuron models,

either randomly or as a periodic pulse train.

The INa;p þ IK model comprises a persistent Naþ chan-

nel and a delayed rectified Kþ channel and is represented

by following equations:

Fig. 1 An outline of the present system: the two Hodgkin–Huxley

neuron models were uncoupled and were exposed to a common

random pulse and/or a periodic pulse
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Cm

dVi

dt
¼ �gNam1;i ENa � Við Þ þ �gK;ini EK � Við Þ

þ gl El � Við Þ þ Icom tð Þ þ n tð Þ;
dni

dt
¼ n1;i � ni

sn

where i = 1 or 2. Icom tð Þ is a common pulse input current,

and n tð Þ is the Gaussian noise.

\n tð Þ; n t0ð Þ[ ¼ r2d t � t0ð Þ. r ¼ 0:02 lA/cm2. Detailed

input patterns of the common pulse input current are

described in ‘‘Stimulation’’ section.

The rate functions of the persistent Naþ channel and the

delayed rectified Kþ channel current are calculated as

follows:

m1;i Við Þ ¼ 1

1 þ exp �20�Vi

15

� �

n1;i Við Þ ¼ 1

1 þ exp �25�Vi

5

� �

The following parameters were used: Cm ¼ 1 lF/cm2,

ENa = 60 mV, EK = - 90 mV, El = - 80 mV,

�gNa = 20 mS/cm2, gl = 8 mS/cm2. sn = 1 ms.

In this study, we set different gK values in the neuron

models but fixed �gK;1 at 10 mS/cm2 throughout the present

simulations. Unless otherwise specified, �gK;2 was fixed at

10.5 mS/cm2. This parameter difference caused a differ-

ence in distances between resting and threshold states,

thereby demonstrating that dc current induces different

responses in spike frequencies.

Neuron model equations were integrated using the Euler

scheme with a time step of 0.001 ms.

Stimulation

The common input current (Icom) was applied to the two

neuron models with three stimulation patterns. The first, a

random pulse, was applied to the neuron models and the

interval y between the down stroke of the pulse and the

upstroke of the next pulse was selected from the following

gamma distribution:

f yð Þ ¼ h
C kð Þ hyð Þk�1

e�hy y� 0ð Þ

where C kð Þ is the gamma function (k ¼ 1; 2; 3; 4; or 5).

The shape parameter k and the scale parameter h deter-

mined the mean random pulse train frequency. When

k ¼ 1, the gamma distribution is equivalent to the expo-

nential distribution with a negative slope. Hence, by

varying the shape parameter of the gamma distribution, the

common pulses exhibit intermediate properties between

random Poisson and periodic pulses. In these subthreshold

simulations, the pulse duration was fixed at 5 ms and the

pulse amplitude was fixed at 5.5 lA/cm2.

In the second simulation pattern, the periodic pulse was

applied to neuron models with varying input frequencies of

the periodic pulse, but with a pulse duration of 5 ms.

In the third simulation pattern, periodic and random

pulses were applied concurrently to the neuron models and

the random pulse was selected from the gamma distribu-

tion. When two pulses were coincident, the pulse was

simply superimposed on the other pulse with a constant

pulse amplitude of 5.5 lA/cm2.

The computation presented above was repeated 10 times

with a computational time of 10 s.

Data analysis

In assessments of the phase differences between the present

neuron models, degrees of synchronization in spiking of

neuron models were quantified according to vector strength

q. We defined a phase variable for the spike train as

follows:

/j tð Þ ¼ 2piþ 2p
t � Ti

Tiþ1 � Ti
j ¼ 1 or 2ð Þ

where Ti is the time of the i-th spike (Zhou and Kurths

2003) and the phase /j tð Þ is increased by 2p every time a

spike occurs. The phase was interpolated linearly between

sequential spikes, but the phase difference D/ tð Þ ¼
/1 tð Þ � /2 tð Þ changed with time due to disturbances but

plateaued when the spike timing was locked. The vector

strength was calculated using the following equation:

q2 ¼ sinD/h i2þ cosD/h i2

The brackets denote the average over time and q ¼ 1

when phase synchronization continues during the compu-

tation. The mean value of the vector strength q was

obtained using the average of 10 trials with computation

times of 10 s. Under these conditions, q was not calculated

if the mean spiking frequency was less than 2 Hz.

Periodicity of output spikes was assessed after applying

the periodic pulse with the random pulse. Interpulse

intervals were then collected from neuron #1 and period-

icity was assessed using a histogram of the interpulse

intervals. The bin size was 2 ms. The rate of periodic

responses in all response events was quantified by the

number of periodic spike events. For example, when the

periodic pulse was 40 Hz, interspike intervals in the range

of 25 � 1 ms were regarded as periodic responses and the

common periodic pulse was applied for 15, 25, and 45 ms.

The number of periodic spike events was then normalized

by the total number of spike events in each trial, and the

resulting value is the periodic event rate.
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Results

Synchronization induced by the common random
pulse

Figure 2 shows the vector strength q induced by the

common random pulse or the periodic pulse as a function

of the mean input frequency. In these computations, �gK;1

was fixed at 10 mS/cm2 and �gK;2 was varied. Figure 2a

shows q for �gK;2 ¼ 10:5 mS/cm2. For k = 1, q was

approximately 0.9 when the input frequency was above

30 Hz (Fig. 2a (filled circle)) and the vector strength q was

less dependent on the mean input frequency and decreased

with increases in the shape parameter k (Fig. 2a). However,

when k ¼ 3, q was constant at around 0.7 with frequencies

of greater than 90 Hz (Fig. 2a (filled square)). When k ¼ 5,

q was close to 0.6 at frequencies higher than 100 Hz

(Fig. 2a (filled triangle)). The common periodic pulse led

to a low vector strength (\ 0.4) throughout the frequency

range (Fig. 2a (triangle)). Because the stimulus amplitude

was weak, several periodic input pulses were required to

induce a spike and numbers of input pulses required for

excitation were not constant because of the Gaussian noise.

Moreover, phase differences jumped randomly and vector

strength was consequently low.

The vector strength q at the mean random frequency of

100 Hz was plotted as a function of potassium channel

conductance �gK;2 (Fig. 2b). Difference in �gK;2 caused

decrements of q and the slope of these depended on the

shape parameter k. Specifically, when k = 1, a peak was

found at �gK;1 = �gK;2 = 10 mS/cm2, reflecting identical

parameters (Fig. 2b (filled circle)). Differences between

�gK;1 and �gK;2 increased asynchronous spiking of the neuron

models. Yet, the roll-off slope of the vector strength was

not symmetrical. Thus, if �gK;2\�gK;1, the slope was steeper

than that of the other side. Consequently, when �gK;2 [ �gK;1,

q was maintained at a relatively high value. Accordingly,

random inputs with k = 2 or higher induced lower q than

those with k = 1 (Fig. 2b). For k = 2–5, differences in �gK

caused relatively symmetric decrements of q. Under the

periodic conditions, the vector strength was zero (Fig. 2b

(triangle)), and was insensitive to differences in �gK.

Although one of the neurons had a low threshold and

excited by a few periodic pulses, the other needed a few

more input pulses for excitation. These differences in

excitability resulted in low degrees of synchronization and

�gK;2 was thereafter fixed at 10.5 mS/cm2.

Figure 3a shows the membrane potential of neurons that

were stimulated by the common random pulse with k = 1.

In these simulations, the mean input frequency was 100 Hz

(h = 0.2 ms�1) and the neurons fired spikes simultane-

ously, albeit with non-constant interspike intervals. More-

over, frequent bursts of pulses induced simultaneous

excitation in the pair of neurons. Figure 3b depicts the

temporal evolution of the phase difference D/ tð Þ. In this

simulation, the phase synchronization was detected by

plateaus of D/. Specifically, D/ tð Þ slipped by 2p. To give

the cyclic phase difference Dc/, D/ tð Þ was then remapped

in the range of �p and p as described previously (Schäfer

et al. 1998; Zhou and Kurths 2003). In Fig. 3c, we present

the probability density of the cyclic phase difference Dc/,

and the sharp peak in the distribution of Dc/ indicates that

the random pulse induced phase synchronization.

Figure 4a shows the membrane potential of neurons

after stimulation by the random pulse with k ¼ 5 and a

Fig. 2 Degrees of synchronization in output spikes of a pair of neuron

models stimulated by a common random pulse; k ¼ 1 (filled circle), 2

(filled inverted triangle), 3 (filled square), 4 (filled diamond) and 5

(filled triangle) or a common periodic pulse (triangle); data are

presented as means � standard errors of the mean (S.E.). a A common

random pulse with a low shape parameter induced a higher vector

strength q; �gK;1 = 10 mS/cm2 and �gK;2 = 10.5 mS/cm2. b Vector

strengths q were collected with the random pulse at 100 Hz and are

plotted as a function of �gK;2. Differences in �gK reduce q. The roll-off

slope with k = 1 is not symmetrical
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mean input frequency of 100 Hz (h = 1 ms�1). Under these

conditions, each neuron fired spikes independently of the

other, although spike times were occasionally simultane-

ous. Moreover, D/ tð Þ increased gradually with time

(Fig. 4b) and included several short plateaus that were

maintained for shorter periods. Figure 4c shows a low peak

at around Dc/ ¼ 0. Dc/ was not limited around 0 and the

skirts of probability densities were apparent around the

peak, indicating that, opportunities for phase synchroniza-

tion were reduced.

Figure 5 shows the spike frequency as a function of the

mean input frequency for the shape parameter k = 1 or 5.

The spiking frequency of the neurons increased monoton-

ically with the input frequency in both cases. Moreover,

when k = 1, the mean spiking frequency of neuron #1

overlapped with that of neuron #2, indicating that the

neurons behave as identical oscillators. Under the condi-

tions of k = 5, differences in spiking frequencies were

found in the range of 50–150 Hz, and these differences led

to low degrees of synchronization.

Random pulse-induced synchronized periodic
responses

In these experiments, the periodic pulse was applied with

the random pulse at k ¼ 5. The resulting vector strength q
is shown in Fig. 6b as a function of the mean frequency of

the random pulse, and the synthesized pulse induced a high

q value. Moreover, q was improved throughout the fre-

quency range. Figure 6a shows membrane potentials of

neurons after stimulation with periodic (40 Hz) and ran-

dom pulses (mean = 33 Hz). Spikes emerged simultane-

ously in the two neurons under these conditions and phase

differences were maintained at 2p or multiples of 2p (data

not shown). The vector strength q at a mean random fre-

quency of 100 Hz was plotted as a function of the potas-

sium channel conductance �gK;2 (Fig. 6c), and q was

approximately 0.9 when �gK;2 was between 10 and 11.5 mS/

cm2. The slope of the vector strength became nonsym-

metrical in these simulations. Specifically, when

�gK;2 [ �gK;1, the slope was shallower than that of the other

side. Yet, the common random pulse with the common

Fig. 3 Spikes of neurons after stimulation by random pulses with

k = 1; a The mean input frequency of the random pulse was 100 Hz

(h = 0.2 ms�1). Spikes are elicited simultaneously; vector strength

q = 0.88; b time course of phase differences; c probability density of

cyclic phase differences Dc/; D/ was remapped in the range of �p
and p
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periodic pulse improved the degree of synchronization,

especially when �gK;2 [ �gK;1.

The histogram in Fig. 7 shows the interspike interval of

output spikes in neuron #1 following periodic stimulation

with the random pulse at 40 Hz (k ¼ 5). The random pulse

with applied with mean frequencies of 33 (h = 0.2 ms�1),

67 (h = 0.5 ms�1), and 182 Hz (h = 10 ms�1). At 33 Hz,

peaks of the interval histogram appeared at 25, 50, and

75 ms (Fig. 7a), corresponding with the interval of the

periodic input pulse and its multiples. When the random

pulse was applied at 67 Hz, a peak of the interval his-

togram appeared at 25 ms (Fig. 7b) and q was 0.95. Under

conditions of 182 Hz random pulses, the peak of the

interval histogram appeared below 25 ms (Fig. 7c). The

Fig. 4 Spikes induced by the common random pulse with k ¼ 5; a the mean input frequency of the random pulse was 100 Hz (h = 1.0 ms�1);

vector strength q = 0.62; b phase differences of spikes; c probability density of cyclic phase differences Dc/

Fig. 5 Mean spiking frequency of neurons as a function of the mean input frequency of the random pulse; a k = 1 and b k = 5
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mean periodic event rate is presented in Fig. 7d, which

shows that simulation with a weak periodic pulse alone

does not elicit an action potential in the low frequency

range of the random pulse. Peaks in histograms of inter-

spike intervals appeared at 25 ms when the frequency

range of the random pulses was adequate, indicating that

periodic responses were uncovered by random pulse

stimulation. In addition, corresponding spikes occurred

simultaneously in the two neurons. In Fig. 7d, we present

the periodic event rate obtained with periodic pulses of 67

(15 ms) and 22 Hz (45 ms). At 22 Hz, the periodic event

rate peaked with the random pulse at 67 Hz. In contrast, the

periodic pulse of 67 Hz led to two peaks of periodic event

rates. The first peak was induced by stochastic detection of

periodic events, whereas the second peak was induced by

the high frequency of the random pulse, which also caused

short interspike intervals (ISIs) of around 10 ms, as shown

in Fig. 7c. These ISIs prevented detection of periodic

events.

Discussion

In this study, we examined stochastic phase synchroniza-

tion of uncoupled non-identical neuron models. Phase

synchronization was induced using a common random

input pulse that was generated by the gamma distribution

with the shape parameter k ¼ 1. Bursting patterns in the

random input pulse forced synchronized excitation even in

non-identical neurons. In addition, noise-induced syn-

chronization in the two uncoupled non-identical canonical

neuron models was the product of frequency locking

(Neiman and Russell 2002). As shown in Fig. 5a, the

common random input pulse caused convergence of the

mean interspike intervals of the two neurons, and fre-

quency locking occurred at a wide frequency range of input

pulses.

The shape parameter of the common random input pulse

changed the degree of synchronization between output

spikes. In particular, the common random input pulse that

was selected from the gamma distribution with k ¼ 5

reduced the chance of synchronization in the pair of

uncoupled neurons. Gamma distributions with k ¼ 5 gen-

erated relatively regular pulse patterns and mean spiking

frequencies did not converge, especially in the low

Fig. 6 Periodic responses were improved by the common random

pulse with k ¼ 5. a Responses of the neurons following mixed inputs

of periodic (40 Hz) and random pulses (mean = 33 Hz); q = 0.88.

b Vector strengths of the output spikes (mean ± S.E.);

synchronization was facilitated by random synaptic inputs in the

entire frequency range. c Vector strength q with random pulses at

100 Hz are plotted as a function of �gK;2; k = 5; periodic pulse

frequency = 40 Hz
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frequency range. We suggest that this difference in spiking

frequency prevents random pulse-induced synchronization.

In accordance, the common periodic input pulse induced

few pulses and was accompanied by a low degree of syn-

chronization. In subthreshold stimulations, the common

periodic input pulse caused independent entrainment in

non-identical neuron models, reflecting different thresh-

olds. Hence, these regular input pulses fail to induce syn-

chronized excitation.

When the common periodic pulse was applied with the

common random input pulse that was selected from the

gamma distribution with a high shape parameter, phase

synchronization was facilitated and output spikes were

synchronized with incoming periodic input pulses. Because

common periodic and random pulses were simultaneously

applied to neurons, the dense parts of common input pat-

terns tended to increase periodically. These conditions

augmented the opportunities for periodic firing, which did

not occur without the common random input pulse. These

results further imply that random input pulses can uncover

periodic responses of uncoupled non-identical neuron

models.

In a small-world network connected with central pattern

generators, synchronization depended on random synaptic

connections (Liu and Tian 2014). This network showed SR

in response to signals from central pattern generators, but

noise-induced synchronization was not investigated. In a

similar study, however, noise-induced synchronization was

shown in a small-world network of identical phase oscil-

lators (Esfahani et al. 2012). Hence, SR and noise-induced

synchronization can be induced in small-network models

under certain conditions.

When a set neurons start to fire in peripheral nervous

systems, they excite neurons in the next layer and firing of

these leads to propagation of signals from layer to layer of

the central nervous system. However, sets of neurons are

connected by diverging and converging pathways, and

signal transmission between divergent sets of neurons is

difficult. According to the synfire chain theory (Abeles

1991), synchronized volleys of spikes cause synchronous

firing in the next layer in a synchronous mode. Hence, SR

Fig. 7 Histograms of interspike intervals of neuron #1 after stimu-

lation with periodic and random pulses; the input frequency of the

periodic pulse train was 40 Hz. Mean input frequencies of the random

pulses were a 33 (h = 0.2 ms�1), b 67 (h = 0.5 ms�1), and c 182 Hz

(h = 10 ms�1). With random input pulses at 33 and 67 Hz, peaks

appeared at of 25 ms (indicated by filled inverted triangle) and its

multiples when frequencies of random pulses were adequate; d mean

periodic event rates (mean ± S.E.). Periodic pulses were applied at

frequencies of 67 (15 ms), 40 (25 ms), or 22 Hz (45 ms)
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and noise-induced synchronization in neural networks may

contribute to propagation of weak periodic neural activity.

Under noiseless conditions, it is difficult to propagate

spikes into deeper layers of neural networks (van Rossum

et al. 2002). Internal noise from fluctuations of membrane

potential supports stable propagation of synchronized

spikes and spiking rates from layer to layer (Diesmann

et al. 1999; van Rossum et al. 2002). This noise boosts

neurons to the spike-ready condition, allowing rapid

responses to an input signals.

In the central nervous system, spatiotemporal patterns of

neural spikes represent environmental and internal condi-

tions, and regular and irregular spiking patterns were

reportedly observed in the cortex (Shinomoto et al. 2009;

Mochizuki et al. 2016). In a dynamic neural model with

stochastic parameters for feeling of understanding (FU), a

process of gathering evidence to understand an event was

represented and an initial growth was followed by a quasi-

stable regime and then possible decay of FU (Mizraji and

Lin 2017). The present pair of HH-type neuron models

shows rhythmically or randomly synchronized spiking, or

asynchronous spiking. Thus, differences in input patterns

can switch spatiotemporal patterns of output spikes and

change the synchronous mode. These results indicate that

random neural activity contributes to signal transfer and

signal processing in neural networks.

Acknowledgements This work was supported by JSPS KAKENHI

Grant No. JP16K05869.

References

Abeles M (1991) Corticonics: neural circuits of the cerebral cortex.

Cambridge University Press, New York

Bulsara A, Jacobs EW, Zhou T, Moss F, Kiss L (1991) Stochastic

resonance in a single neuron model: theory and analog simula-

tion. J Theor Biol 152:531–555

Diesmann M, Gewaltig MO, Aertsen A (1999) Stable propagation of

synchronous spiking in cortical neural networks. Nature

402:529–533

Douglass JK, Wilkens L, Pantazelou E, Moss F (1993) Noise

enhancement of information transfer in crayfish mechanorecep-

tors by stochastic resonance. Nature 365:337–340

Esfahani RK, Shahbazi F, Samani KA (2012) Noise-induced

synchronization in small world networks of phase oscillators.

Phys Rev E 86:036204

Fauve S, Heslot F (1983) Stochastic resonance in a bistable system.

Phys Lett A 97:5–7
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