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Abstract
In the present paper, a simple spike timing distance is defined which can be used to measure the degree of synchronization

with the information only encoded in the precise timing of the spike trains. Via calculating the spike timing distance

defined in this paper, the spike train similarity of uncoupled Hindmarsh–Rose neurons in bursting or spiking states with

different initial conditions is investigated and the results are compared with other spike train distance measures. Later, the

spike timing distance measure is applied to study the synchronization of coupled or common noise-stimulated neurons.

Counterintuitively, the addition of weak coupling or common noise doesn’t enhance the degree of synchronization

although after critical values, both of them can induce complete synchronizations. More interestingly, the common noise

plays opposite roles for weak and strong enough couplings. Finally, it should be noted that the measure defined in this

paper can be extended to measure large neuronal ensembles and the lag synchronization.
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Introduction

Understanding neural coding is an important part of

understanding informational neurodynamics in our brains.

For example, the rate codes play an important role in

identifying the regulation of the neuronal firing trains (Guo

et al. 2016a, b). For temporal codes, two different types of

encoding, namely, the frequency of firing and the exact

temporal occurrence of spikes, are reported in experimental

recordings (Rabinovich et al. 2006). Spike trains’ similarity

and dissimilarity can thus have two kinds of metrics, the

inter spike interval (ISI) distance (Kreuz et al. 2007) and

the spike distance (Kreuz et al. 2011, 2013). A measure by

introducing a kernel function was proposed by van Rossum

(2001), whereby the distance could interpolate between

coincidence detection and spike count difference via

changing the time constant, which gave rise to a continuous

prototype of spike train topology. A similar approach is

proposed recently by Rusu and Florian (2014), where they

show their max-metric and modulus-metric are particularly

suitable for measuring distances in spike trains where

information is encoded in the identity of bursts as unitary

events. For classifications of spike train distance, one can

also refer to Victor (2015) and references therein, where he

classified spike train metrics into embedding-based

(Houghton and Sen 2008; van Rossum 2001) and cost-

based (Victor and Purpura 1998) distances.

Synchronization (Pikovsky et al. 2003) as a collective

behavior has attracted much attention in neuroscience

partly due to its relation with many brain disorders, e.g.

schizophrenia, epilepsy, autism, Alzheimer’s disease, and

Parkinson’s disease, all of which are considered associated

with abnormal neural synchronizations (Uhlhaas and

Singer 2006). In neuronal ensembles, synchronizations

may be impacted by connection topologies (Bera et al.

2017; Majhi et al. 2016) and other systematic parameters,

e.g. time delay (Dhamala et al. 2004b; Sun et al. 2017; Zhu

et al. 2016), coupling strength (Dhamala et al. 2004a;

Ivanchenko et al. 2004), network size (Zhu et al. 2016), etc.

For coupled spiking neurons, the lag synchronization (LG)

can be measured by using the similarity function (Rosen-

blum et al. 1997), e.g. in the Rulkov map neurons (Zhu

et al. 2016) and in the Morris–Lecar neurons (Wang et al.

2013). However, it has been shown that LG does not occur
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in coupled Hindmarsh–Rose (HR) neurons (Hindmarsh and

Rose 1984) which is related to the burst process (Shuai and

Durand 1999). Moreover, for information encoded only in

the precise spike timing, synchronization should not be

related with the spike amplitude where the latter will cer-

tainly affect the value of the similarity function. Generally,

for two coupled HR neurons, absolute phase difference or

frequency difference can serve as a simple criterion for

phase synchronization (Shuai and Durand 1999), but the

value may be influenced by the missing recorded data or

noise, while the latter is ubiquitous in neurons (Lindner

et al. 2004) and the phase definition can be quite puzzling

in bursting neurons. Other measures, e.g. transverse Lya-

punov exponent is frequently used in coupled bursting

neurons (Dhamala et al. 2004a, b; Ivanchenko et al. 2004),

which is significant in determining the stability of syn-

chronization. Yet, it shares the same feature as the simi-

larity function that the amplitude of the action potential is

considered in the synchronization manifold. Noise may

play a constructive role on the amplification of information

transfer (Perc and Marhl 2005) and on the activation pro-

cess (Franović et al. 2015a, b), which will also influence

the synchronization between neuronal ensembles (Lindner

et al. 2004). In this paper, a new spike timing distance

which is simple but efficient is introduced to quantify the

spike train distance between the HR neurons with infor-

mation only encoded in the precise timing of the spikes. It

can be used to measure the degree of synchronization and

desynchronization in coupled or noise-stimulated HR

neurons.

This paper is organized as follows. In ‘‘Model and

bifurcation analysis’’ section, dynamical behaviors of a

single HR neuron model are briefly discussed including the

bifurcation analysis. In ‘‘Spike timing distance’’ section,

the definition of the new spike timing distance is intro-

duced. Comparisons with previous measures are given in

‘‘Comparison with previous measures’’ section. Next, in

‘‘Synchronization with electrical coupling’’ section, the

degree of synchronization of two electrically coupled HR

neurons is investigated in both bursting and spiking states

by using the distance measure. Furthermore, because of the

inevitable noise in neuronal population, especially of

recent increasing interest in the influence of common noise

(Sunada et al. 2014; Vidne et al. 2012; Zambrano et al.

2010), the roles of common noise acting on uncoupled and

coupled HR neurons are studied in ‘‘The influences of

common noise’’ section. In ‘‘Possible extensions and

applications’’ section, possible extensions and applications

are given. Finally, conclusions and discussions are pre-

sented in ‘‘Conclusions and discussions’’ section.

Model and bifurcation analysis

We consider the Hindmarsh–Rose neuron model. It is an

extension of the Fitzhugh–Nagumo neuron model which

demonstrates the bursting behavior of neurons by adding a

slow adaptation current. The governing equations are as

follows:

dx

dt
¼ y� ax3 þ bx� zþ Iext

dy

dt
¼ c� dx2 � y

dz

dt
¼ r s x� x0ð Þ � zð Þ

ð1Þ

where x and y represent the membrane potential and the

recovery variable respectively. The parameter Iext is the

external current. The variable z is the aforementioned

adaptation current. In the following, we shall choose

parameters traditionally as: a = 1, b = 3, c = 1, d = 5,

r = 0.001, s = 4, x0 = - 1.6. As r « 1, the variable

z changes slowly, so z - Iext can be viewed as the bifur-

cation parameter for the first two equations in Eq. (1). The

corresponding bifurcation diagram is plotted in Fig. 1a [see

e.g. (Innocenti et al. 2007; Wang 1993) for similar bifur-

cation analyses]. For the original model, the interspike

interval (ISI) bifurcation versus the external current is

illustrated in Fig. 1b. It is shown in Fig. 1 that for Iext = 4

and 1.5, the HR neuron will be in the tonic spiking and

bursting states, respectively.

In the following sections, the spike train distance of

uncoupled and coupled neurons in both states will be

investigated. Before doing so, an appropriate distance

measure should be defined. It should be noted that the

synchronization in this paper is similar to the phase syn-

chronization as we consider that the information is encoded

in the precise timing of the spikes not the amplitude of

them, although the difference of complete synchronization

(considering the amplitude of the spikes) and phase syn-

chronization (considering only the phase of the spikes) may

be important in oscillators.

Spike timing distance

For information encoded only in the precise timing of the

spikes, the needed data for calculating the distances

between different neurons are merely the simultaneously

measured spike trains for the same length of the time

window. Suppose S ¼ s1; s2; . . .; smf g and P ¼
p1; p2; . . .; pnf g are the corresponding series for neuron S

and P, where si and pi are the ith precise timing of the

spikes in each neuron. Our measure for the spike train

distance of the neurons is defined as follows:
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Std S;Pð Þ ¼ mean S1; S2f g ð2Þ

S1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m

X

m

i¼1

si � pi�ð Þ2
s

S2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

pi � si�ð Þ2
s

ð3Þ

where pi* is the nearest spike to si in neuron P, and simi-

larly for si*. mean S1; S2f g ¼ S1þS2
2

.

A distance metric should satisfy nonnegativity, sym-

metry and triangle inequality (Victor 2015). However, one

can verify that the measure defined as in Eq. (2)–(3) is not

a metric. The nonnegativity and symmetry of the metric are

obvious because of the variance-like type in Eq. (3) and

mean S1; S2f g ¼ mean S2; S1f g. But an example is as fol-

lows: let S = {0}, P = {a} and T = {0, a} be three spike

trains (a[ 0). It is easy to calculate that Std S; Tð Þ
þStd T ;Pð Þ ¼ a

�
ffiffiffi

2
p

\a ¼ Std S;Pð Þ, which certainly vio-

lates the triangle inequality. Despite that our measure is not

a metric (It could be controversial that the concept of

metrics is not important in neuroscience), the measure

defined as above could be useful in measuring synchrony

for bursting and spiking neurons.

It is possible to use a simpler measure as S1 ¼
1
n

Pn
i¼1 si � pi�j j (This definition is similar to the averaged

phase difference of coupled neurons). However, this kind

of measure cannot distinguish between the two cases in

Fig. 2a (since for case 1, the two spike trains have different

interspike intervals while for case 2, the interspike intervals

are the same). In contrast, the spike timing distance Std
defined in Eq. (2)–(3) can solve the problem that Std in case

1 is larger than in case 2. This can be explained by Cauchy

inequality that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn
i¼1 si � pi�ð Þ2

q

� 1
n

Pn
i¼1 si � pi�j j,

where they are equal if and only if all si � pi�j j are the

same. This feature is important in distinguishing between

entrainment and phase locking (Izhikevich 2007).

As a start, we calculate the spike timing distance Std in

uncoupled identical HR neurons but with different initial

conditions and compare it with other measures to validate

its effectiveness later in ‘‘Comparison with previous mea-

sures’’ section. Let two uncoupled neurons have initial

conditions as: {x1, y1, z1} = {0.1, 0, 0} and {x2, y2,

z2} = {0.1 ? dx, 0, 0}, where dx is the initial difference

between the membrane potential of the neurons. The results

are in Fig. 2b. It can be seen that for the spiking state

(Iext = 4), the spike timing distance increases monotoni-

cally as the initial difference increases while for the

bursting state (Iext = 1.5), it shows a counterintuitive peak

which means two uncoupled HR neurons with a larger

initial difference in the membrane potential (x variable)

don’t guarantee a larger final spike timing distance. The

results of the bursting state can be further demonstrated by

the phase portraits and time series of the corresponding

initial differences [see Fig. 2c], which clearly shows the

maximal difference for dx = 0.44 as compared with the

peak in Fig. 2b.

Comparison with previous measures

There are lots of spike train distance measures (Victor

2015) that could be used to characterize the similarity and

dissimilarity between spike trains. Some of them are con-

cerned with the spike series’ waveforms, i.e., both the

phase and amplitude of them (e.g. the similarity function

(Rosenblum et al. 1997)) while the others are interested in

the spike timing which consider the neuron activity as a

point process (Victor 2015), e.g. van Rossum spike train

metric (van Rossum 2001) and Kreuz et al. ISI-distance

measure(Kreuz et al. 2007). Since the measure defined in

z-I
ext
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Fig. 1 a Bifurcation diagram by setting z-Iext as the bifurcation

parameter. The black solid (green dotted) lines represent the

stable (unstable) equilibrium points. The red dotted line represents

the saddles and the blue cycles represent the extrema of the limit

cycles. b Bifurcation diagram for the interspike interval versus the

external current Iext. Typical time series for Iext = 1.5 and 4 are

plotted in purple and green, which have also been plotted in a of the

same colors

Cognitive Neurodynamics (2018) 12:225–234 227

123



this paper considers the spike timing as the essential

information, we compared the performance of our measure

with the latter.

van Rossum spike train metric

Consider two spike trains as S ¼ s1; s2; . . .; smf g and

P ¼ p1; p2; . . .; pnf g, so the spike train could be given in

the continuous time form as

f origs tð Þ ¼
X

m

i

d t � sið Þ;

gorigp tð Þ ¼
X

n

i

d t � pið Þ:
ð4Þ

According to van Rossum, each spike will be associated

with an exponential function as

fs tð Þ ¼
X

m

i

H t � sið Þe� t�sið Þ=tc

gp tð Þ ¼
X

n

i

H t � pið Þe� t�pið Þ=tc
ð5Þ

where H is the Heaviside step function (H(x) = 0 for x\ 0

and H(x) = 1 for x� 0). The variable tc is a free parameter.

Finally, the van Rossum spike train metric (van Rossum

2001) can be calculated as

Dvr ¼
1

tc

Z 1

0

fs tð Þ � gp tð Þ
� �2

dt ð6Þ

This measure can be used as a coincidence detection for

small enough tc and a spike count difference measure for

large tc.

Kreuz et al. ISI-distance measure

Different from the previous van Rossum metric which can

be interpreted as a time coding measure, Kreuz et al. (2007)
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Fig. 2 a Two cases of spike

timing distance. The black

horizontal lines are the

timelines. The red and green

small rectangles represent

spikes for each neuron on the

timeline. b Spike timing

distance between two uncoupled

HR neurons versus different

initial conditions for two kinds

of firing states (spiking for

Iext = 4 and bursting for

Iext = 1.5; the time window is

[10,000, 19,000] for calculating

Std). c Phase portraits and time

series for Iext = 1.5 with

different initial differences,

where x1 and x2 represent the

membrane potentials of the two

uncoupled HR neurons
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defined a rate coding measure. For the same spike trains

considered above, the Kreuz et al. ISI-distance measure is

introduced as follows:

I tð Þ ¼ xisi tð Þ � yisi tð Þ
max xisi tð Þ; yisi tð Þð Þ ð7Þ

where xisi tð Þ ¼ min sijsi [ tð Þ �max sijsi\tð Þ and similarly

for yisi tð Þ. To be a measure of spike train distance, we adopt

the following definition (Eq. (4) in Ref. (Kreuz et al.

2007)):

Dtk ¼
Z T

0

I tð Þj jdt ð8Þ

Comparison between spike train distance
measures for Std, Dvr and Dtk

In order to compare these three measures, we normalize the

values to the interval [0, 1]. The results are in Fig. 3. It is

shown in Fig. 3a that all of these measures exhibit a

maximum at dx = 0.44. The general tendency is similar.

However, for Kreuz et al. ISI-distance measure, there is

only one extremum, but for the other two, there are more

than one. The difference is more remarkable in Fig. 3b that

Std and Dvr show a similar trend while Dtk exhibit large

fluctuations. It can be explained that our measure is by

definition a time coding measure which is, not surprising,

closer to the van Rossum spike train measure, thus could be

totally different from the Kreuz et al. ISI-distance measure

when measuring various spike trains (although for com-

plete synchronization, they all equal to zero). The brief

summary of their comparison between these three mea-

sures is given Table 1.

It should be noted that the spike timing distance defined

in this paper is parameter-free compared with van Rossum

spike train metric (van Rossum 2001) and Victor–Purpura

spike train metric (Victor and Purpura 1998). However, one

should keep in mind that parameter-free implies less con-

trollability of the measure. If one wants to consider the

sensitivity of the measure to the temporal pattern, a

controllable parameter should be considered like van

Rossum metric or Victor–Purpura metric. Note that our

measure is applicable to neurons in the steady state. To

measure the transient process for neurons from desyn-

chronization to synchronization, one can refer to (Kreuz

et al. 2007, 2013).

Synchronization with electrical coupling

In this section, the electrically coupled HR neurons will be

investigated. The equations are as follows:

dxi

dt
¼ yi � ax3i þ bxi � zi þ Iext þ D xj � xi

� �

dyi

dt
¼ c� dx2i � yi

dzi

dt
¼ r s xi � x0ð Þ � zið Þ

ð9Þ

where i = 1, 2 and j = 2, 1, represent the labels of the

neurons. The variable D is the coupling strength. By

increasing the coupling strength, it is expected that the

degree of synchronization will be enhanced. However, as is

shown in Fig. 4a and b, the spike timing distance does not

decrease monotonically. In fact, it is larger than that

without coupling for a wide range of coupling strengths,

which means the degree of synchronization is weakened by

the addition of the coupling between the two identical

neurons (for both bursting and spiking states). For neurons

at the bursting state, i.e. Iext = 1.5, at most coupling

strengths, the spike timing distance remains a small value,

which can be seen in the insets of Fig. 4a for D = 0.128

and D = 0.132. While there are values e.g. D = 0.13, the

spike timing distance of the two coupled neurons becomes

considerably large. Another feature which should be noted

is that for the former (D = 0.128 and D = 0.132), the

spike counts in each burst are not fixed but for the latter

(D = 0.13), the spike counts are fixed (note the waveforms

of the two identical neurons are different which is a phe-

nomenon of symmetry breaking since the coupling is

dx
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Fig. 3 Comparison between

different spike train distance

measures (normalized).

a Iext = 1.5. b Iext = 4. For van

Rossum spike train distance, the

time constant tc = 5. The time

window is [10,000, 19,000] for

calculating the distances

Cognitive Neurodynamics (2018) 12:225–234 229

123



symmetric). For neurons at the spiking state, i.e. Iext = 4,

the electrical coupling transforms the spiking states into the

bursting states (see the inset of Fig. 4b for D = 0.163). It

shows for HR neurons, the route to synchronization of

spiking neurons should undergo bursting processes with the

increase of the coupling strength.

The results are compared with van Rossum spike train

metric and Kreuz et al. ISI-distance measure in Fig. 5 (To

reveal the details, the resolution of the D-axis is reduced).

The results show that the desynchronization induced by

moderate coupling strength is observed by all these three

measures. However, details can be quite different among

them. The shapes of the curves for our measure and the van

Rossum spike train metric are more similar although their

maxima exhibit at different values for Iext = 4 [see

Fig. 5b]. This is consistent with the statement in ‘‘Com-

parison with previous measures’’ section that they are both

time coding measures. The critical values for complete

synchronization in these measures are also divided into two

groups. The first one is our measure and the van Rossum

metric and the other is the Kreuz et al. ISI-distance mea-

sure. So one should keep in mind that different coding

measures may come into different critical values as they

focus on different properties of the series.

The influences of common noise

There is evidence for synchronization via common stimu-

lation between uncoupled neurons (Kruscha and Lindner

2015, 2016). In this section, the influences of common

noise on the synchronization between coupled and uncou-

pled HR neurons will be investigated. The equations go as:

dxi

dt
¼ yi � ax3i þ bxi � zi þ Iext þ D xj � xi

� �

þ
ffiffiffiffi

w
p

n tð Þ
dyi

dt
¼ c� dx2i � yi

dzi

dt
¼ r s xi � x0ð Þ � zið Þ

ð10Þ

where w is the strength of the Gaussian white noise with

n tð Þh i ¼ 0; n tð Þn t � sð Þh i ¼ d sð Þ.
In the first situation, the two HR neurons are uncoupled,

i.e. D = 0. It is shown in Fig. 6 that initially, the increase

of the noise strength will not contribute to the enhancement

of synchronization. Until a critical value is exceeded

(around 1e-6 for Iext = 1.5 and 1e-5 for Iext = 4), the

degree of synchronization decreases which is demonstrated

by the increase of Std. There is a peak for both bursting and

spiking states that the spike timing distance between two

uncoupled neurons reaches the maximum value, after

which the input of common noise begins to enhance the
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Fig. 4 Spike timing distance

versus coupling strength. a For

Iext = 1.5. The insets are time

series of x1 (dotted green) and x2
(solid red) for different coupling

strengths. The time series are

shifted for a better illustration.

b For Iext = 4. The time

window for calculating Std is
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for one neuron and {0.2, 0, 0}

for the other
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Fig. 5 Comparison between

different spike train distance
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a Iext = 1.5. b Iext = 4. For van

Rossum spike train distance, the

time constant tc = 5. The time

window for calculating these

distances is [100,000, 180,000],

and the initial conditions are

{0.1, 0, 0} for one neuron and

{0.2, 0, 0} for the other
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synchronization of the neurons. Two different initial con-

dition mismatches are tested, which shows no qualitative

distinction. The critical value of the noise strength for

complete synchronization is observed about w = 5 for

Iext = 1.5 and w = 6 for Iext = 4, which is consistent with

previous studies (He et al. 2003). It should be noted that the

critical values in both cases are too large for neurons that

the dynamics of the neurons are dominated by noise. It

remains to be validated whether such strong noises can be

used in real neurons under the promise of not destroying

the functioning of them.

The results are again compared with van Rossum spike

train metric and Kreuz et al. ISI-distance measure. As is

shown in Fig. 7, all these measures show the process from

desynchronization to synchronization by increasing the

noise strength. And the critical values for complete syn-

chronization match well for them. But the shape of them

differ significantly. The reason for the narrow width of the

Dvr curve may be explained by the small value of the time

constant tc that for small noise strengths the spike counts

for two HR neurons differ negligibly while for large noise

strengths they may differ considerably.

In the second situation, the influences of common noise

in coupled HR neurons are researched. For Iext = 1.5, as in

Fig. 8a, we can see that with the increase of the noise

strength, the abnormal peak around D = 0.13 disappeared

which shows the symmetry breaking behavior discussed

previously in Fig. 4a cannot be preserved at the presence of

noise. Moreover, the peak moves toward larger coupling

strengths for larger noise strengths (although the peak

height decreases). For Iext = 4, as in Fig. 8b, the multiple

peaks in Fig. 4b are merged into one peak as the noise

strength increases. Detailed analysis shows the common

noise plays different roles for weak and strong coupling

strengths. For D = 0, as is illustrated in Fig. 8c, the degree

of synchronization decreases with the increase of the noise

strength. While for large enough D, the results are reversed,

whereby larger strength of noise enhances the synchro-

nization [see Fig. 8d]. This shows the evidence for the

cooperation between noise and coupling in the induction of
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Fig. 6 Spike timing distance versus noise strength in uncoupled HR

neurons. a Iext = 1.5. b Iext = 4. Initial conditions: {x1, y1,

z1} = {0.1, 0, 0} and {x2, y2, z2} = {0.1 ? dx, 0, 0}. Euler method

is used and Std is obtained by averaging over 20 samples. The

considered noise strength is [1e-8, 1e1]
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Fig. 7 Comparison between different spike train distance measures

(normalized). a Iext = 1.5. b Iext = 4. For van Rossum spike train

distance, the time constant tc = 5. Initial conditions: {x1, y1,

z1} = {0.1, 0, 0} and {x2, y2, z2} = {0.11, 0, 0}. Euler method is

used and the result is obtained by averaging over 20 samples. The

considered noise strength is [1e-8, 1e1]
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synchronization which is opposite to the observation in two

coupled oscillators (Garcia-Alvarez et al. 2009) (Table 1).

Possible extensions and applications

Although the distance measure is in a symmetric form (by

the ‘‘mean’’ sign) in this paper which is consistent with the

symmetry of system itself and electrical coupling, it could

be transformed into other asymmetric or more generalized

forms in different cases. For example, in the driver/re-

sponse system as is illustrated in Fig. 9a, instead of

applying the mean value of the spike timing distance as in

Eq. (2), one of Eq. (3) is selected. For the sake of certainty,

we assume S and P being the spike trains of the driver and

response respectively. Then S1 in Eq. (3) can be a quanti-

tative measure of the interdependences between the driver

and response system. Similarly, it can be applied to sys-

tems with hubs to measure the degree of correlation

between the neurons which connected with the same hub as

in Fig. 9b. Table 2 summarizes all the applications in this

paper and in possible future extensions.

Conclusions and discussions

In summary, a simple spike timing distance is defined in

this paper which is suitable for determining synchroniza-

tion between neurons with information only encoded in the

precise timing of spikes. By using this measure, we

investigate the spike train distance for uncoupled HR

Table 1 The comparison between three measures

Spike train distance Time coding Rate coding Parameter free

Std H H

Dvr H

Dtk H H
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Fig. 8 Spike timing distance

versus noise strength for weak

and strong coupling strengths.

Parameters: a Iext = 1.5;

b Iext = 4; c D = 0;

d D = 0.46. Initial conditions:

{x1, y1, z1} = {0.1, 0, 0} and

{x2, y2, z2} = {0.2, 0, 0}
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Fig. 9 a Typical driver/response system. b Neuronal system with a

hub

Table 2 The applications of Std and in future extensions

Summarized application Future application

Uncoupled HR neurons Driver/response system

Electrically coupled HR neurons Hub system

Common noise-stimulated HR neurons –
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neurons with different initial conditions. It is shown that

with the increase of the deviation between the initial con-

ditions, the spiking timing distance for spiking neurons

increases as is expected, but exhibits a peak for bursting

neurons which means that a larger initial difference doesn’t

make a larger final spike timing distance. To evaluate our

measure, we compare it with the van Rossum spike train

metric and Kreuz et al. ISI-distance measure. Since the

spike timing distance defined in this paper is a time coding

measure, the result reveals the similarity of it to the van

Rossum spike train metric while the dissimilarity of it to

the Kreuz et al. ISI-distance measure as the latter is a rate

coding measure. Next, we use our measure to study the

synchronization in coupled or noise-stimulated HR neu-

rons. When the electrical coupling is added, it is quite

counterintuitive that as the coupling strength enhances, the

spike timing distance doesn’t decrease monotonically,

instead there is a wide range of strength that the addition of

coupling destroyed the synchronization between both

bursting and spiking HR neurons. It is interesting that the

spiking neurons undergo the bursting process before the

final synchronization (the spikes in each burst is much

more than that in the bursting state). Further, the common

noise induced synchronization (CNIS) in uncoupled HR

neurons is investigated. It is found that a small common

noise doesn’t enhance or weaken the synchronization.

After a critical value is exceeded, the degree of synchro-

nization decreases as the increase of the noise strength. For

strong enough noise, synchronization is achieved. How-

ever, it remains to be verified if the too strong noise will

influence the functioning of real neurons. Finally, for

coupled HR neurons, the common noise plays opposite

roles in neurons with weak and strong coupling strengths

which shows the cooperation between coupling and noise

in the induction of synchronization.

The spike timing distance defined in this paper has been

shown to be useful in both spiking and bursting neurons. It

has an advantage of not dealing with the definition of

instantaneous phases, which is hard to define for a busting

neuron. The only information needed to calculate the

degree of synchronization is the simultaneously measured

spike trains, which is beneficial to theoretical and experi-

mental studies. It can be easily extended to multiple spike

timing distances for large neuronal ensembles. Moreover,

higher order moments, e.g.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var si � pi�ð Þ2
q

can be used in

measuring the regularity and other details between spike

trains. It should be noted that the lag synchronization

(Rosenblum et al. 1997) is not considered in this paper but

it is easy to translate the spike trains via plus or minus a

time lag to investigate the lag synchronization in our future

works.
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