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Abstract Experimental investigations have shown that the

pre-Bötzinger complex (pre-BötC) within the mammalian

brainstem generates the inspiratory phase of respiratory

rhythm. Based on a single-compartment model of a pre-

BötC inspiratory neuron, we, in this paper, use semi-ana-

lytical, numerical as well as fast-slow dynamical methods

to investigate the effects of sodium conductance (gNa) and
potassium conductance (gK) on the firing activities of pre-

BötC and try to reveal the dynamical mechanisms behind

them. We show how gNa and gK affect the bifurcations of

the fast-subsystem and how the the firing patterns of pre-

BötC transit according to the bifurcations.

Keywords Pre-Bötzinger complex · Semi-analytical

method · Hopf bifurcation · Bursting

Introduction

At the beginning of 1890s, researchers conducted experi-

ments on neonatal rats. They found that the region between

the Bötzinger complex (pre-BötC) located in the mam-

malian brainstem and the ventral respiratory group (VRG)

may be essential for the generation of respiratory rhythm in

newborn mammals (Smith et al. 1991). Subsequent studies

show that a particular class of excitatory neurons with

oscillating cluster similar to a heart pacemaker in the pre-

BötC drives the inspiratory phase of the respiratory rhythm

(Rekling and Feldman 1998). It is also shown that the

network connection and interaction between inspiratory

and pre-inspiratory neurons in the pre-BötC can cause the

respiratory rhythm (Mellen et al. 2003).

The firing patterns of neurons in the respiratory system

are very rich and can be divided into two categories:

bursting and spiking (Rekling and Feldman 1998; Gray

et al. 1999; Butera et al. 1997, 1988b, 1998a). The

experimental results show that the mode of bursting can be

presented in single cell or network (Rybak et al. 1997;

Butera et al. 1999b; Jia et al. 2017). Based on a large

number of experiments and investigation, researchers have

proposed different computational models of respiratory

rhythm of pre-BötC (Smith 1997; Balis et al. 1994; Botros

and Brace 1990; Duffin 1991; Gottschalk et al. 1994;

Ogilvie et al. 1992; Rybak et al. 1997). The two models

proposed by Butera et al. (1999a, b) have played an

important role in the later research. In model I, bursting

starts with the rapid activation of the persistent sodium

current and terminates in the slow inactivation of the per-

sistent sodium current (Butera et al. 1999a). In model II,

bursting produced by the rapid activation of persistent

sodium currents which end in slow activation of sustained

potassium currents (Butera et al. 1999b).

With the development of nonlinear science, bifurcation

theory has become an important research tool in the study

of the dynamics of neuronal firing activity. Using bifur-

cation analysis, Izhikevich studied the properties of

neuronal excitability, spiking and bursting, revealed the

characteristics of the firing activity of neurons, and at the
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same time, gave the classification of the bursting (Izhike-

vich 2000). Fast-slow decomposition is also an important

approach in neurodynamics research (Rinzel 2007). Taking

the excitatory neuron model in pre-Bötzinger complex as

their research object, Best et al. (2005) studied the the

dynamic range of the bursting by combing the geometry

method with the fast-slow decomposition. Wang et al.

applied fast-slow decomposition, phase plane analysis and

bifurcation analysis to a pre-BötC inspiratory neuron

model, and revealed the mechanisms underlying the novel

mixed bursting solutions (Wang and Rubin 2016). By two

parameter bifurcation analysis and fast-slow decomposi-

tion, Duan et al. (2008, 2010, 2012, 2015, 2017) studied the

effects of different ion channels on the firing patterns of

pre-BötC. Using numerical simulations, bifurcation meth-

ods, and fast-slow decomposition, Rubin et al. (2009, 2011)

investigated the behavior of a neural network, and analyzed

the state-dependent mechanisms for respiratory rhythm

generation and control. The fast-slow decomposition has

also been applied to study the properties of some crucial

bifurcations, such as the Hopf bifurcation, which deeply

related to the firing patterns of neurons (Sterpu and

Rocs
˙
oreanu 2005; Wang et al. 2011; Jia et al. 2012; Kim

and Lim 2015; Kuznetsov 2013).

The delayed rectifier potassium current IK is considered

of particular interest due to its role in neuronal after spike

repolarization (Rybak et al. 2003). Higher conductance

values of potassium ion Kþ enhance the value of IK, which
in turn affect the regimes of neuronal activity as well as the

transitions between regular spiking and bursting. Currently

both Naþ- and Ca2þ-based mechanisms are considered to

contribute to inspiratory rhythm generation in the pre-BötC

network (Bruce et al. 2013). The usual job of sodium

channels is to make brief voltage signals, action potentials,

for long distance propagation (Yu et al. 2012). Specifically,

a transition from asynchronous firing to population bursting

could be induced by a direct suppression of the potassium

conductance or through an elevation of extracellular

potassium concentration (Rybak et al. 2004). In this paper,

we mainly discuss how the transition of firing patterns is

related to the change of the conductance of sodium (Naþ),
potassium (Kþ) or other ions.

This paper is organized as follows. In “Model descrip-

tion” section, the pre-BötC model developed by Park and

Rubin (2013) is introduced. In “Dynamics related to gNa
and gK” section, different bursting patterns in the pre-BötC

model are investigated with the change of the conductances

of sodium and potassium channels. Semi-analytical studies

for Hopf bifurcation are also explored to investigate the

firing activities of the model. Finally, conclusions are given

in the last section. The bifurcation diagrams in this paper

are performed by XPPAUT (Ermentrout 2002).

Model description

In this study, we consider a single-compartment model of a

pre-BötC inspiratory neuron, which was introduced by

Park and Rubin based on a two-compartment model

developed by Park et al. (Park and Rubin 2013). The model

features multiple currents, and dynamics of the membrane

potential is described as follows:

_V ¼ �INa � IK � IL � INaP � ICANð Þ=C ð1Þ
_n ¼ n1ðV Þ � nð Þ=snðV Þ ð2Þ
_h ¼ h1ðV Þ � hð Þ=shðV Þ ð3Þ
where INa, IK, IL, INaP, ICAN represent Naþ current, delayed

rectifier Kþ current, leakage current, persistent sodium

current and calcium-activated nonspecific cationic current,

respectively. Particularly, INa ¼ gNam3
1ðV Þð1� nÞ

ðV � VNaÞ, IK ¼ gKn4ðV � VKÞ, IL ¼ gLðV � VLÞ, INaP ¼
gNaPmp;1hðV � VNaÞ, ICAN ¼ gCAN f ð½Ca�ÞðV � VNaÞ, with
m1ðV Þ ¼ 1=ð1þ expððV � hmÞ=rmÞÞ, n1ðV Þ ¼ 1=ð1þ
expððV � hnÞ=rnÞÞ, mp;1ðV Þ ¼ 1=ð1þ expððV � hm;pÞ=
rm;pÞÞ, h1ðV Þ ¼ 1=ð1þ expððV � hhÞ=rhÞÞ; snðV Þ ¼
sn=coshððv� hnÞ=2rnÞÞ, shðV Þ ¼ sh=coshððv� hhÞ=2rhÞÞ
and f ð½Ca�Þ ¼ 1=ð1þ ðKCAN=½Ca�ÞnCAN Þ.

The calcium dynamics is given as:

d½Ca�=dt ¼ fi JERIN � JEROUTð Þ ð4Þ
dl=dt ¼ AKdð1� lÞ � A½Ca�l ð5Þ
where l indicates the fraction of IP3 channels in the

membrane of the ER that have not been inactivated, which

depends on the intracellular calcium concentration ([Ca]).

Equation (4) shows that [Ca] is determined by the flux into

the cytosol from the ER (JERIN ) and the flux out of the

cytosol into the ER (JEROUT ). These fluxes are regulated by

the intracellular concentration of IP3, ½IP3�, and IP3 chan-

nel gating variable, l, and are described as follows:

JERIN ¼ LIP3
þ PIP3

½ ½IP3�½Ca�l
ð½IP3� þ KI Þð½Ca� þ KaÞ�

3

� �

� ð½Ca�ER � ½Ca�Þ

JEROUT ¼ VSERCA
½Ca�2

K2
SERCA þ ½Ca�2

 ! ð6Þ

where LIP3
, PIP3

, KI and Ka represent ER leak permeability,

maximum total ER permeability, dissociation constants for

IP3 receptor activation by IP3 and Ca2þ respectively.

VSERCA is the maximal SERCA pump rate, KSERCA sets the

half-activation of the SERCA pump. In Eq. (6), ½Ca�ER is

given as:

½Ca�ER ¼ ½Ca�Tot � ½Ca�
r

ð7Þ
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where r is the ratio of cytosolic to ER volume. The other

parameters used are listed in the Appendix Table 2.

Dynamics related to gNa and gK

In the model, h, [Ca] and l vary much more slowly than V
and n. Therefore, we can perform the fast-slow dynamical

analysis. Fixing ½IP3� at 0.8, we can obtain a steady state

calcium concentration ½Ca� ¼ 0:021040572 and corre-

sponding l ¼ 0:950027209 from Eqs. (4) to (5). With these

fixed values, the full system of Eqs. (1)–(5) can be reduced

to a fast-slow dynamical system of Eqs. (1)–(3) with the

slow variable h. Based on this fast-slow system, in what

follows, we investigate how the variation of gNa and gK
affect firing activities of the pre-BötC.

Bifurcations and firings for gNa = 5

In this subsection, we fix gNa at 5 nS and consider bifur-

cations and firings of the system for different values of gK.
The neuron can exhibit three types of bursting, which are,

the “subHopf/subHopf” bursting (Fig. 1a), the “subHopf/

homoclinic” bursting (Fig. 1b, c) and the “fold/homoclinic”

bursting (Fig. 1d). The fast-slow decomposition for dif-

ferent bursting with different values of gK are shown in

Fig. 2a–d respectively.

In the case gK ¼ 3 nS, as shown in Fig. 2a, the equi-

librium points form an “S”-shaped curve. The solid, dotted,

and dashed lines represent the stable node (lower branch),

the saddle (middle branch), and the un-stable focus and

stable focus (upper branch), respectively. The interaction

point F1 (or F2) between the middle and the lower (or

upper) branches is a fold bifurcation point. With h
increasing, the unstable focus becomes stable at the sub-

critical Hopf (subH) point where an unstable limit cycle is

bifurcated from the subH. The maximum and minimum

amplitudes of the unstable limit cycle are shown by upper

and lower red open circles respectively. The unstable limit

cycle intersects with the stable limit cycle (upper and lower

red solid circles) at the fold bifurcation of a limit cycle

(LPC). The stable limit cycle disappears via the homoclinic

bifurcation (HC). The trajectory of the whole system (1)–

(5) (the green curve) is also superimposed. We can see

from the figure that the rest state disappears via subcritical

Hopf bifurcation subH, and the active state disappears via

subcritical Hopf bifurcation subH too. Such bursting is

called the “subHopf/subHopf” type according to the clas-

sifications introduced by Izhikevich (2000).

When gK continuously increases to gK ¼ 4 nS, the

attracting of periodic orbits gradually appears. So the the

rest state disappear via subcritical Hopf bifurcation subH,

then the trajectory damps and tends to stable focus. When

the trajectory goes through the subHopf bifurcation (subH),

it begins to oscillate around the stable limit cycle. Finally,

(a) (b)

(c) (d)

Fig. 1 Fixing gNa at 5 nS,

bursting pattern changes

corresponding to different

parameter values of gK. a gK ¼
3 nS; b gK ¼ 4 nS; c gK ¼ 4:3
nS; d gK ¼ 11:2 nS
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the active state disappears via the homoclinic (HC) bifur-

cation. So the bursting is called the “subHopf/homoclinic”

type via “fold/homoclinic” hysteresis loop (Fig. 2b, c).

With the value of gK increasing further, the subcritical

Hopf (subH) bifurcation of the fast subsystem changes to

supercritical (supH) and there is no fold bifurcation of limit

cycle. When gK increases from 4.3 to 11.2 nS, the rest state

disappears via fold bifurcation F1, and the active state

disappears via the homoclinic (HC) bifurcation. So the

bursting is called the “fold/homoclinic” type, as shown in

Fig. 2d.

As we known, Hopf bifurcation plays an important role

in the dynamical analysis of the neuronal system. The

numerical results about the Hopf bifurcations may be

investigated by semi-analytical study.

When gK ¼ 11:2; numerical results show that super-

critical Hopf bifurcation occurs at the equilibrium

supH1ðv1; n1; h1Þ ¼ supH1ð�26:21; 0:6679; 0:4734Þ. In

order to test this, we rewrite the fast subsystem (1) and (2)

as:

_V ¼ f1ðV ; n; hÞ ð8Þ
_n ¼ f2ðV ; n; hÞ ð9Þ
where

f1ðV ; n; hÞ ¼ ð�gNam
3
1ðV Þð1� nÞðV � VNaÞ

� gKn
4ðV � VKÞ � gNaPmp;1hðV � VNaÞ

� gLðV � VLÞ � gCAN f ð½Ca�ÞðV � VNaÞÞ=C
ð10Þ

f2ðV ; n; hÞ ¼ ðn1ðV Þ � nÞ=snðV Þ ð11Þ
The corresponding Jacobian matrix A can be written as:

A ¼
of1
oV

of1
on

of2
oV

of2
on

0
BB@

1
CCA ð12Þ

Then, we have

AjsupH1
¼ 0:103028 �47:5961

0:00588708 �0:106143

� �
; ð13Þ

which possesses a pair of pure imaginary eigenvalues

k1;2 ¼ �ix, with x ¼ 0:518906.

Let

ATp ¼ �ixp; Aq ¼ ixq; hp; qi ¼
X2
n¼1

piqi ¼ 1; ð14Þ

we have

(a) (b)

(c) (d)

Fig. 2 The fast-slow

decomposition and bifurcation

analysis. The parameter set is

same as that in Fig. 1. The

model exhibits

a“subHopf/subHopf bursting;
b “subHopf/homoclinic”

bursting; c “subHopf/

homoclinic” bursting; d “fold/

homoclinic” bursting,

respectively
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p ¼ 6:82503� 10�6 þ 0:000022887I

0:306874� 89:9117I

� �
;

q ¼ �0:0000171871� 0:000314737I

1:56428� 10�6 � 0:011122I

� �
:

ð15Þ

Consider the following system

_x ¼ Axþ FðxÞ; x 2 R2: ð16Þ
Let F(x) be expanded into

FðxÞ ¼ 1

2
Bðx; xÞ þ 1

6
Cðx; x; xÞ þ Oðkxk4Þ: ð17Þ

In coordinate, we have

Biðx; yÞ ¼
Xn
j;k¼1

o2FiðnÞ
onjonk

�����
n¼0

xjyk ; ð18Þ

Ciðx; y; zÞ ¼
Xn
j;k;l¼1

o3FiðnÞ
onjonkonl

�����
n¼0

xjykzl; ð19Þ

where n ¼ ðn1; n2ÞT , n0 is the equilibrium. Therefore,we

obtain

Now, we can calculate the first Lyapunov coefficient at

supH1:

l1ð0Þ ¼ 1

2x
Re½hp;Cðq; q; qÞi � 2hp;Bðq;A�1Bðq; qÞÞi�

þ hp;Bðq; ð2ixI � AÞ�1Bðq; qÞÞi�
ð22Þ

to get

l1ð0Þ ¼ �5:45731� 10�9\0: ð23Þ
Hence, supH1 is a supercritical Hopf bifurcation point. This

coincides with the numerical results.

The critical values of gK dividing the supercritical and

subcritical Hopf bifurcations corresponding to different

values of gNa are listed in Table 1, from which we can see

for example, that when gNa ¼ 5, the subcritical Hopf

bifurcation transits to supercritical at gK ¼ 4:99. That

means, the “subHopf/subHopf” bursting transits to the

“fold/homoclinic” type at the critical points, and we call

the “subHopf/homoclinic” bursting as the “transition state”

because it exists in a very small range of

Bifurcations and firings for gNa = 15

As gNa ¼ 15 nS, the neurons exhibit different bursting

when gK increases in a certain range. The oscillations of

the whole system (green) are shown in Fig. 3a–d. The

bifurcation structure of the fast subsystem (1), (2) with

respect to the slow variable h is projected onto the (h, V))-
plane, as shown in Fig. 4a–d. Similarly, the equilibrium

points form an “S”-shaped curve. Note that a family of

unstable periodic orbits (red open circle) emanate from the

subcritical Hopf (subH) bifurcation on the upper branch.

The unstable periodic orbits coincide with the stable limit

cycles (red solid circle) and then disappear at fold bifur-

cation of limit cycle (LPC). The trajectory of the whole

system (1)–(5) (the green curve) is also superimposed.

For different values of gK, the neurons can exhibit three

types of bursting, which are, the “subHopf/subHopf”

bursting (Fig. 4a), the “fold cycle/homoclinic” bursting

(Fig. 4b) and the “fold/homoclinic” bursting (Fig. 4c) and

spiking (Fig. 4d). The fast-slow decomposition of different

bursting are shown in Fig. 4a–d respectively.

When gNa ¼ 15 and gK ¼ 11:2, numerical results show

that subcritical Hopf bifurcation occurs at the equilibrium

subH2ðv1; n1; h1Þ ¼ subH2ð�23:91; 0:781; 0:7928Þ:
The Jacobian matrix A at subH2 can be written as:

Table 1 Critical values of gK dividing the supercritical and subcrit-

ical Hopf bifurcations corresponding to different values of gNa

gNa gK gNa gK

4 3 6.5 9

4.5 3.8 7 11

5 4.99 8 15.86

5.5 6 10 30

6 7 15 78.62

Biðx; yÞ ¼
�0:0424508x1y1 � 1:56884x2y1 � 1:56884x1y2 � 167:844x2y2

�4:4239� 10�7x1y1 � 0:00444828x2y1 � 0:00444828x1y2

� �
; ð20Þ

Ciðx; y; zÞ ¼
�0:00461131x1y1z1 þ 0:0929698ðx2y1z1 þ x1y2z1 þ x1y1z2Þ�

2:85498ðx1y2z2 þ x2y2z1 þ x2y1z2Þ � 502:603x2y2z2

0:0000919857x1y1z1 � 0:00165849ðx2y1z1 þ x1y2z1 þ x1y1z2Þ:

0
B@

1
CA ð21Þ
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(a) (b)

(c) (d)

Fig. 3 Bursting patterns and

spiking when gNa ¼ 15 nS with

a gK ¼ 4 nS; b gK ¼ 4:3 nS; c
gK ¼ 11:2 nS; d gK ¼ 14 nS

(a) (b)

(c)
(d)

Fig. 4 The fast-slow decomposition and bifurcation analysis. The parameter values are same as that in Fig. 3. The model exhibits

a “subHopf/subHopf bursting; b “fold cycle/homoclinic” bursting; c “fold/homoclinic” bursting; d spiking respectively

448 Cogn Neurodyn (2017) 11:443–451
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AjsubH2
¼ 0:12814 �98:3901

0:00516961 �0:120933

� �
; ð24Þ

which has a simple pair of complex eigenvalues

k1;2 ¼ �ix, with x ¼ 0:703502: Then we can get

p ¼ �0:00180447� 0:00414688I

2:02861� 138:097I

� �
;

q ¼ 0:00161557� 0:00276375I

0:000026669� 0:00724036I

� �
;

ð25Þ

which satisfy

ATp ¼ �ixp; Aq ¼ ixq; hp; qi ¼
X2
n¼1

piqi ¼ 1: ð26Þ

Therefore, we have

Now, we can calculate the first Lyapunov coefficient at

subH2:

l1ð0Þ ¼ 1

2x
Re½hp;Cðq; q; qÞi � 2hp;Bðq;A�1Bðq; qÞÞi�

þ hp;Bðq; ð2ixI � AÞ�1Bðq; qÞÞi�
ð29Þ

get

l1ð0Þ ¼ 2:50533� 10�7 [ 0: ð30Þ

Hence, subH2 is a subcritical Hopf point.

In this case, there is no transition from subcritical Hopf

bifurcation to supercritical in a small range of gK (the

transition occurs at gK ¼ 78:62, as shown in Table 1). The

“subHopf/subHopf” bursting transits to the “fold/homo-

clinic” type at certain value of gK. The “transition state” in

a very small range of gK is the “fold cycle/homoclinic”

bursting in stead of the “subHopf/homoclinic” bursting

compared with that in the case of gNa ¼ 5.

By treating gK as the second bifurcation parameter for

Eqs. (1)–(2) and following in ðh; gKÞ the HC, subH, LPC

and F1 points in the 1-parameter bifurcation diagram as

shown in Figs. 2a and 4a, we obtain a 2-parameter bifur-

cation diagram in ðh; gKÞ-space (Fig. 5). The 2-parameter

bifurcation diagrams in our analysis will help us identify

how variations of parameter gK and gNa affect the existence

region of bursting or spiking solutions. We only consider

the parameter region for gk 2 ð0; 40�. For a small value of

gNa ¼ 5 (Fig. 5a), the fold bifurcation curve f and Hopf

bifurcation curve h have an intersect at gk ¼ 4:84. And

there is always a gap between the curve f and the homo-

clinic bifurcation curve homo in the ðh; gKÞ 2- parameter

bifurcation diagram. That means for roughly

4:84� gk � 40, the system exhibits the “fold/homoclinic”

bursting. For a big value of gNa ¼ 15 (Fig. 5b), the fold

bifurcation curve f and fold limit cycle bifurcation l curve
intersect at roughly gk ¼ 4:37. And there has a gap

between the curves homo and f until roughly gk ¼ 13:3 in

(a) (b)
Fig. 5 Homoclinic bifurcation

curve homo (green), the Hopf

bifurcation curve h (red), the
fold limit cycle bifurcation

l (blue) and the curve of fold

bifurcations f (black)
corresponding to the lower fold

of the bifurcation diagram

(Figs. 2a, 4a) in ðh; gKÞ
parameter space for a gNa ¼ 5;

b gNa ¼ 15. (Color

figure online)

Biðx; yÞ ¼
�0:0889726x1y1 � 3:08083x2y1 � 3:08083x1y2 � 238:48x2y2
3:21995� 10�7x1y1 � 0:00850068x2y1 � 0:00850068x1y2

� �
; ð27Þ

Ciðx; y; zÞ ¼
0:00142365x1y1z1 þ 0:340426ðx2y1z1 þ x1y2z1 þ x1y1z2Þ�

3:90375ðx2y2z1 þ x2y1z2 þ x1y2z2Þ � 610:705x2y2z2
0:0000807751x1y1z1 � 0:00188958ðx2y1z1 þ x1y2z1 þ x1y1z2Þ

0
B@

1
CA: ð28Þ
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the ðh; gKÞ 2-parameter bifurcation diagram. For gk [ 13:3,

the curves of homo and f both overlap completely with the

green curve, and hence are not visible as separate entities in

the figure (Fig. 5b). That means for 4:37\gk\13:3, the

system exhibits the “fold/homoclinic” bursting. Then the

bursting activities transit to spiking for 13:3� gk � 40.

Discussions and conclusions

In this paper, we have studied the single cell model of Park

and Rubin which yield different types of busting as gNa and
gK vary. We have shown that for small values of gNa,
taking gNa ¼ 5 as an example, the fast subsystem achieved

the transition from subcritical to supercritical Hopf bifur-

cation with a small values of gK (gK ¼ 4:99). The single

cell undergoes the “subHopf/subHopf”, the “subHopf/ho-

moclinic”, and the “fold/homoclinic” bursting with

parameter gK increases. But for the bigger value of gNa, for
example, gNa ¼ 15, the transition will take place at a much

bigger value of gK ( gK ¼ 78:62). In this case the single cell

undergoes the “subHopf/subHopf”, the “fold cycle/homo-

clinic”, and the “fold/homoclinic” bursting and spiking

with parameter gK increases.

We give the semi-analytical study for both the super-

critical and subcritical Hopf bifurcation. According to the

analysis of the Hopf bifurcation, we found that the transi-

tion of the supercritical and subcritical Hopf bifurcation

point is closely related to gNa. Although the types of fast-

slow bursters are similar in both cases of small and big

values of gNa, the corresponding “transition states” of the

bursting are different due to the difference of Hopf bifur-

cations. We also found that both supercritical and

subcritical Hopf bifurcations can lead to the “fold/homo-

clinic” bursting, which implies that the relative position of

bifurcation points is essential for the investigation of

bursting patterns.

Higher gNa values enhance INa, which in turn affect

regimes of bursting and spiking. With small values of gNa,
there is only bursting region. But for the bigger value of

gNa, there is a relative large region for spiking

(13:3� gk � 40). Previous work has suggested that the

Naþ/Kþ pump plays an important role in the generation of

the bursting solution. Our study show that both higher

conductance values of potassium ion Kþ or sodium Naþ

can enhance their currents IK or INa, which in turn affects

the regimes of neuronal activity and transitions between

spiking and bursting. Although our study is motivated by

the bursting patterns observed in the pre-BötC, it may also

be applicable to other cells exhibiting rhythmic activity.

Acknowledgements This work is supported by National Natural

Science Foundation of China (11472009), Science and Technology

Project of Beijing Municipal Commission of Education

(KM201410009012), and Construction Plan for Innovative Research

Team of North China University of Technology (XN07005).

Appendix

See Table 2.

Table 2 Parameter values for

Eqs. (1)–(7)
Parameter Value Parameter Value Parameter Value

C 21 lF gNa 28 nS rh 5 mV

VNa 50 mV gK 11.2 nS sn 10 ms

VK −85 mV gL 2.3 nS sh 10,000 ms

VL −58 mV gNaP 3 nS KCAN 0.74 lM

hm −34 mV gCAN 0.7 nS nCAN 0.97

hn −29 mV rm �5 mV ½IP3� 0.8 lM

hm;p −40 mV rn �4 mV ½Ca�Tot 1.25 lM

hh −48 mV rm;p �6 mV fi 0.000025 pL�1

r 0.185 LIP3
0.37 PL s�1 Ka 0.4 lM

PIP3
31,000 PL s�1 KI 1.0 lM Ka 0.4 lM

VSERCA 400 aMol s�1 KSERCA 0.2 lM A 0.005 lM�1 s�1

Kd 0.4 lM
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