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Abstract When two eyes are simultaneously stimulated by

two inconsistent images, the observer’s perception

switches between the two images every few seconds such

that only one image is perceived at a time. This phe-

nomenon is named binocular rivalry (BR). However,

sometimes the perceived image is a piecemeal mixed of

two stimuli known as piecemeal perceptions. In this study,

a BR task was designed in which orthogonal gratings are

presented to the two eyes. The subjects were trained to

report 3 states: dominant perceptions (two state matching

to perceived grating orientation) and the piecemeal per-

ceptions (third state). We explored the scale-freeness of the

BR percept durations considering the two dominant

monocular states as well as the piecemeal transition state

using detrended fluctuation analysis. Our results repro-

duced the previous finding of memory in the perceptual

switches between the monocular perception states. More-

over, we showed that such memory also exists in the

transitory periods of dichoptic piecemeal perceptions.

These results support our hypothesis that the pool of

unstable piecemeal perceptions could be regarded as sep-

arate multiple low-depth basin in the perceptual state

landscape. Likewise, the transitions from these piecemeal

state basins and stable monocular state basins are faced

with resistance. Therefore there is inertia and memory (i.e.

positive serial correlation) for the piecemeal dichoptic

perception states as well as the monocular states.

Keywords Binocular rivalry � Scale-freeness � Piecemeal

perceptions � Detrended fluctuation analysis �
Consciousness

Introduction

Binocular rivalry (BR) is a phenomenon observed when

two eyes are stimulated by two inconsistent images

simultaneously. In this case, the observer’s perception

switches between the two images every few seconds such

that only one image is perceived at a time; however,

sometimes the perceived image is a piecemeal mixture of

the two stimuli. Considering that the perception alternates

despite constant visual inputs, BR studies have been

employed to gain insight about the relation between con-

sciousness and brain functions during visual perception

(Pitts et al. 2010; Blake 2001; Brascamp et al. 2005).

Different theoretic models have been proposed for

describing BR and tried to describe the relation between

different stimulus features (such as its strength and con-

trast) and the phenomenology of binocular rivalry (Bras-

camp et al. 2006, 2015). These models should explain two

main aspects of this phenomenon, the mechanisms of

selection and maintenance of alternative percepts, and the

mechanisms underlying stochastic perceptual durations.

The mainstream models of percept alternations during

binocular rivalry are built upon the concept of mutual

inhibition (Kang and Blake 2011). Mutual inhibition

models propose that coalitions of neurons representing
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each perceptual state support the activity of their fellow

neurons, while mutually inhibiting the activity of neurons

representing alternative perceptual states. To account for

stochastic percept change durations, models have included

an adaptation component (Kalarickal and Marshall 2000;

Laing and Chow 2002; Lankheet 2006). Simulation studies

have successfully reproduced the stochastic percept dura-

tion series by introducing noise in either the mutual inhi-

bition (Kim et al. 2006; Moreno-Bote et al. 2007) or

adaptation modules (Van Ee 2009) of the model (Fig. 1a).

Most studies on perceptual switching time-series during

binocular rivalry have ignored the transitory piecemeal

perceptual periods, where the conscious perception is a

dichoptic mixture of two monocular stimuli. In such studies

certain measures have been taken to minimize the piece-

meal formation (e.g. using experimental setups with small-

sized stimuli). Furthermore, most studies did discard the

time-course of piecemeal periods prior to applying math-

ematical correlation analyses. We propose that the piece-

meal dichoptic perceptions during the transition from one

monocular state to another could be conceptualized as

multiple low-depth basins interleaving the stable monocu-

lar state basins (Fig. 1b). Such basins produce very little

inertia and the inherent noise of neural activity might be

sufficient for providing the energy for trespassing them. In

the classic setup for binocular rivalry—that is two sta-

tionary monocular stimuli each exclusively presented to

left or right eye—formation of a piecemeal percept means

that the visual system has alternated from ignoring an eyes

input altogether, to integrating the two eyes’ images. We

conjecture that such a change from exclusively monocular

consciousness to dichoptic piecemeal consciousness is

faced with resistance, thus creating a barrier in the state

landscape in between of a monocular and a piecemeal basin

(Fig. 1c, double headed arrow; Kang and Blake 2011).

This hypothesis implies several predictions about the

properties of piecemeal time courses during binocular

rivalry. The basic implication is that there is inertia and

memory (i.e. positive serial correlation) for the piecemeal

dichoptic perception states as well as the monocular states.

One of the ways of finding correlations and the memory of

a system is studying the scale-freeness of that phenomenon.

Scale-freeness of certain series of fluctuations means

whether or not they have characteristic time scale (Gao

et al. 2006) and can be assumed as self-affinity in fractal

time series. Fractal time series are similar to geometric

fractals. As self-similarity in geometric fractals, there is

also a similar property called self-affinity in fractal time

series which describes an anisotropic scaling for the time

dimension (West 2010; Hardstone et al. 2012).

Distributions with characteristic scales can be appro-

priately described with measures of central tendency (e.g.

mean, median) and dispersion (e.g. SD); however, for

scale-free phenomena these statistical measures are
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Fig. 1 State space reinterpretation of perceptual change during

binocular rivalry. a Noise and adaptation have been proposed as

mechanisms underlying perceptual alternation during binocular

rivalry. Adaptation mechanisms (shape changes presented during

time) decrease the depth of the winning perceptual basin, eventually

facilitating the jump to another perceptual basin. Energy impetuses

produced by noise (wavy arrow) underlies the stochastic variations in

percept durations. The height of the wall of a basin is the basis of

positive serial correlation observed between perceptual duration time-

series of each perceptual state. b, c Inclusion of piecemeal perceptions

in the state landscape. b The piecemeal binocular perceptions during

the transition from one monocular state to another could be

conceptualized as multiple low-depth basins interleaving the

stable monocular states. c The transition from a uniformly monocular

perception to a mixed binocular perception might be inherently

resisted by a monocular-binocular barrier (double-head arrow) in the

energy landscape. This would impose inertia and memory specific to

the period of piecemeal transitions as a whole
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insufficient. A better solution is to use exponent of a

power-law function (Hardstone et al. 2012).

A method for examining the scale-freeness of a phe-

nomenon is using the detrended fluctuation analysis (DFA).

DFA characterizes the correlation structure of non-sta-

tionary time series and is an appropriate method for

determining long range correlations and scaling properties

in non-stationary time series (Gao et al. 2006; Hardstone

et al. 2012; Stam and de Bruin 2004). This approach was

used in diverse brain studies (Yuvaraj and Murugappan

2016; Bornas et al. 2015; Freeman and Zhai 2009). In a

log–log plot of a power-law distribution of a time series the

relationship between x-axis and y-axis becomes linear and

its slope is independent of the scaling of the x-axis. In

general, the slope of that line will be the DFA exponent, a,

which is called scaling or self-similarity coefficient.

Indeed, a shows the level of correlation between the signal

and a power law function.

• If a is between 0 and 0.5 the system is anti-correlated

and has memory.

• If a is between 0.5 and 1 the system is positive

correlated and has memory.

• If a is 0.5 the system does not have memory and is

identifiable from a random process.

• If a is between 1 and 2 the system is non stationary

(Hardstone et al. 2012).

As an example, in a white noise signal which all the

frequencies have similar amplitudes the result of DFA

would be around 0.5 which confirms that a white noise

signal is a random process; however, the result of DFA for

1/f signal which lower frequencies have higher amplitude

is around 1 which shows that this signal is positively

correlated.

Also in DFA, another coefficient is used called Hurst

coefficient. If a is between 0 and 1 then Hurst coefficient is

equal to a, and if a is between 1 and 2 then Hurst coeffi-

cient is a-1. Hurst coefficient is the dimensionless esti-

mator of self-affinity. For a scale-free phenomenon, the

statistical distribution of smaller part of the time series

have the similar statistical distribution of the larger part, so,

they can well define a self-affine process (Hardstone et al.

2012; Arita 2005; Barabási and Albert 1999). This method

is used in a variety of fields like DNA sequences, cardio-

vascular dynamics, neuron spiking, solid state physics and

even in economic and humanities such as ethnology (Peng

et al. 1992; Kantelhardt et al. 2002). Neural activity is a

substantial instance of physiological scale-free phenomena.

Scale-freeness in brain connectivity has been proved by

different studies based on EEG and fMRI signals. The

results have shown that brain dynamics produced by scale-

free synchronous cell assemblies (Stam and de Bruin 2004;

Stam 2005; He et al. 2010; Minati et al. 2013; Freeman and

Breakspear 2007) which means that brain could be con-

sidered as a complex self-organizing system (Ozaki et al.

2012; Feldman 2013; Yamaguti et al. 2014). In a previous

study, Gao et al. indicated that BR fluctuations are also

scale-free and can be considered as a 1/f process (Gao et al.

2006). They considered the two dominant states of BR,

disregarding the piecemeal percept durations, and used

DFA technique to study the time series of perception

fluctuations.

In this study we aim to find out the scale-freeness of

fluctuations in BR durations in order to test for evidence of

memory in percept switch durations of both two dominant

monocular states and the transitory piecemeal states using

the DFA (Gao et al. 2006; Stam and de Bruin 2004). We

used a classic binocular setup which was designed to

facilitate vergence and binocular fusion while using stimuli

size that allowed a satisfactory amount of piecemeal peri-

ods. If the transition between complete monocular per-

ceptions and piecemeal dichoptic perceptions imposes any

resistance to switching of consciousness, we expect to

observe positive memory in the system, whether we

include the piecemeal transitions periods or not. As Pear-

son and Brascamp (2008) suggested, studying the overlap

between visual perception and memory will improve our

understanding of these brain functions (Pearson and Bras-

camp 2008).

Materials and methods

Experimental design

In order to induce binocular rivalry, the stimuli were pre-

sented on a gamma-corrected CRT monitor (80 Hz refresh

rate) and viewed through a customizable mirror stereo-

scope (Fig. 2). Chin and head rests were used to minimize

head movements. They also fixed the eye to monitor dis-

tance at 50 cm, leading to an image viewing distance of

^65 cm through mirror reflections. The rivaling stimuli

(Fig. 2) consisted of two static oblique sine-wave gratings,

oriented at ?45� for the left and -45� for the right eye.

Gratings had a spatial frequency of 6 cycles per visual

degree and filled a circular patch (d = 0.7�) with a smooth

edge boundary in which intensity dropped following a

Gaussian kernel (FWHM = 0.1�) making a total stimulus

span of one visual degree. The background was uniform

gray (15 cd/m2) which matched the average luminance of

gratings.

To assist perceptual superposition of gratings and

facilitate binocular fusion, each stimulus was surrounded

by a white alignment ring (d = 1.85�) with four nonius

lines protruding 0.2� along cardinal axes. Moreover a

binocular gray-scale natural pattern was used to backdrop
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the visual field afterward a 1.5� distance from gratings and

onwards. The use of identical binocular elements and soft-

edged stimuli turned out to be beneficial in enhancing

stable vergence, while allowing both dominant monocular

and piecemeal perceptions.

Data gathering

Data gathering was performed in a light and sound atten-

uated room. 12 subjects (7 males; age: 23-30) naı̈ve to the

purpose of study with normal or corrected-to-normal vision

participated. Subjects were students of Amirkabir Univer-

sity of technology and participated in this test voluntary.

Preliminary to the experiment session, orientations of

stereoscope’s mirrors were individually customized to

yield best binocular fusion for each participant. Subjects

were instructed to report rivalry dominances by pressing

and holding either of left or right arrows on keyboard,

corresponding to perceived grating orientation, or releasing

all keys in case of a transition, piecemeal percept, or

uncertainty; this is the special part of the experiment which

considers the period of transitory mixed images as a third

state. Each participant completed a 2-min training run

followed by four experimental trials, each comprising

5 min of continuous viewing, with a mandatory 2-min

resting period between trials. This resulted in 240 min time

series of rivalry dominance durations. All Stimulus pre-

sentation and data gathering routines were performed using

Psychtoolbox-3 (Brainard 1997; Pelli 1997; Kleiner et al.

2007), implemented in Matlab Mathworks.

Data analysis

Detrended fluctuation analysis (DFA)

The method which is followed here is DFA analysis which

is applied to a discrete time series of every subject. These

time series represent their state of perception. In our

experiments we recorded the time interval of each state for

every subject. Then, we changed these intervals to per-

ception duration and finally, made a time series for each of

them.

For using the DFA, in the first step, a cumulative sum of

the time series was calculated in order to create a signal

profile:

y kð Þ ¼
Xk

i¼1

x ið Þ � xh i½ � ð1Þ

Then, a set of non-overlapping windows with specific

sizes were applied to the signal profile. For each window,

the linear trend was removed from the time series–

preparing detrended signal—and then the SD was

calculated:

F nð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k¼1

yh i � yn kð Þ½ �2
vuut ð2Þ

where y was the mean of detrended signal in each window.

Windows were applied to the data from beginning to the

end and vice versa to cover all the data. After that, the

fluctuation function was computed as the mean SD of all

equal window sizes and finally, fluctuation function versus

all window sizes would be plotted in logarithmic axis. By

fitting a line on the given data and calculating its slope we

found DFA exponent and Hurst coefficient. These values

revealed the time scale of the fluctuations.

In this analysis we evaluated 3-states which included the

transition state and two dominant percept states and all the

states (right dominant, left dominant and piecemeal states)

were considered as the same in DFA analysis.

In BR’s researches usually only the two dominant state

data is studied. In a second analysis, we eliminated the

transition periods from the time courses and analyzed the

remaining data with DFA. Paired t test statistic was

applied on the results of both analyzes to compare the

outcomes. All analyses were performed with MATLAB

R2014a.

45°

45°

Left eye Right eye

Fig. 2 The binocular rivalry stimuli and mirror stereoscope setup. A

vertical divider (thick black line) blocked image leaks to the

contralateral eyes. Arrows represent mirror customizability. Gratings

had a spatial frequency of 6 cycles per visual degree and filled a

circular patch (d = 0.7�) with a smooth edge following a Gaussian

kernel (FWHM = 0.1�). Dimensions are drawn arbitrarily for the

sake of illustration
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Results

Figure 3a shows the BR fluctuations time series of an

exemplary participant for three perceptual states. The

average percept duration of subjects for left dominant and

right dominant states was 1.34 ± 0.45 (mean ± SD) and

1.31 ± 0.56 respectively. Paired samples t-test showed that

these values were statistically equal (t(11) = -0.29;

p = 0.78). Piecemeal perception states had an average

duration of 2.34 ± 0.80. Figure 3b shows the average

percept duration of three perceptual states for each par-

ticipants. It is apparent that participants showed varied

amount of piecemeal percept durations, the average dura-

tion being larger in most cases but smaller in some others.

Nevertheless, these transitory percept periods had larger

durations in comparison with the two stable perceptual

states (t(11) = -3.39; p = 0.006). The descriptive statis-

tics evaluation of perception duration time series revealed

that our experimental setup was effective in inducing

binocular rivalry and also allowed for considerable periods

of piecemeal perception.

Now we will discuss the DFA results on these data.

Figure 4 presents the fluctuation function versus time

windows for the exemplary time series presented in Fig. 3a

for double state rivalries (a) and triple state rivalries (b).

Our results revealed that for this specific subject, the Hurst

coefficient for perception time series including the piece-

meal states (triple states) was 0.72 which is close to the

Hurst coefficient value determined for double state time

series (0.70).

Table 1 contains the Hurst coefficient for all 12 subjects.

The results reveal that the Hurst coefficients were in the

range of 0.5 and1 implying that the system is positive

correlated and has memory. Paired samples t-test com-

parison of Hurst coefficients calculated for the time series

including (triple state) or excluding (double stat) the

piecemeal periods did not show any significant difference

(t(11) = -1.51; p = 0.16). Moreover, the Hurst coeffi-

cient for only piecemeal states were calculated to show that

separate piecemeal states are also positive correlated and

have memory (in the range of 0.5 and 1).

Discussion

In this study, we investigated the scale-freeness of the BR

percept durations considering the two dominant monocular

states as well as the piecemeal transition state. Scale-

freeness is a sign of existence of long memory in the

process of BR switching. This memory implies that

whenever a long switching time is detected, it is more

expected for the next switching time to be long as well.
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Fig. 3 Binocular rivalry time series. a Perceptual state fluctuations of

a representative participant (subject number 4) during first 5 min of

the experiment. Percept changes from a stable dominant state to

another were mostly interleaved with a transitory piecemeal percep-

tion state. However, there are instances of direct jumps between

stable perceptions and there are instances of returning to the same

dominant perception after a piecemeal period. In this exemplary

subject the average percept durations for left and right dominant states

were close, 1.93 and 2.11 s respectively. The average piecemeal

periods were shorter (1.35 s) in this subject. b Average duration of

left dominant, piecemeal and right dominant perception periods

across 12 subjects. Error bars represent ± standard error of mean
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Gao et al. (2006) suggested that, the long memory feature

is in accordance with the ‘‘dynamic core hypothesis

(DCH)’’ in the consciousness. Based on DCH, a transient

coalition of neurons makes the content of our conscious

perceptions. Therefore, perceptual switching relates to the

exchange of one coalition of neurons by another. The

memory and inertia is an index of the level of neuronal

coalition stability. In a competition between neuronal

coalitions, it takes longer time for replacement of a strong

and stable coalition with another strong and stable one

which results to a longer switching time (Gao et al. 2006).

A method for examining the scale-freeness of a phe-

nomenon is using the DFA. Considering the two dominant

monocular states as well as the piecemeal transition state,

we showed that such memory also exists in the transitory

periods of dichoptic piecemeal perceptions. In our study,

we reinterpreted the inclusion of piecemeal perceptions

based on the well model proposed by Kang and Blake

(2011). Our results reproduced the previous finding of

memory in the perceptual switches between the monocular

perception states (Gao et al. 2006). Moreover, we showed

that such memory also exists in the transitory periods of

dichoptic piecemeal perceptions. In fact, we reinterpreted

the inclusion of piecemeal perceptions based on the well

model proposed by Kang and Blake (2011). Our results

support our hypothesis that the transition between

monocular and piecemeal perceptions is faced with resis-

tance, and the pool of unstable piecemeal perceptions could

be regarded as separate basin in the perceptual state land-

scape (see Fig. 1c). Our current reinterpretation of the

transitional states as a set of shallow basins of perception is

in line with epistemological view proposed by Hohwy et al.

(2008). This view considers brain as engaged in proba-

bilistic unconscious perceptual inference about the causes

of its sensory input. Interpretations of ambiguous sensory

inputs would have a higher chance of lingering in the

consciousness when they explain a fair amount of predic-

tion error signal and enjoy a high prior probability. The

piecemeal perception entails the positive prior probability

that it is resulted by fusing sensory inputs of both eyes.

The current reinterpretation of piecemeal states in the

state landscape (Fig. 1c) also provides plausible explana-

tions for the observation of perceptual waves of binocular

rivalry (Wilson et al. 2001). This phenomenon refers to the

highly ordered transitions in dominance as one monocular

stimulus sweeps the other out of conscious awareness.

These dominance waves are particularly prominent with

larger rival stimuli subtending many degrees of visual

angle, the same physical attributes that invokes the for-

mation of piecemeal perceptions (Kang and Blake 2011;

Wilson et al. 2001; Bressloff and Webber 2012; Kang and

Blake 2008). In order to explain the alternations during BR,

different hypotheses have been proposed. Our results are in

line with one of the most prevailing hypotheses, i.e. neural

adaptation. According to this theory, over time, adaptation

mechanisms attenuate the dominant neural activities and

hence, in the competition between two stimuli, the non-

dominant stimulus will capture the conscious perception.
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2 baFig. 4 Results of DFA analysis

of a representative subject’s

time series. a Considering triple

states, including piecemeal

periods as well as

stable monocular perception

periods. b Double states,

excluding piecemeal periods

Table 1 Hurst coefficient for all 12 subjects

Subject

number

Hurst coefficient

for triple state

Hurst coefficient

for double state

Hurst coefficient for

piecemeal states

1 0.68 0.73 0.77

2 0.85 0.91 0.83

3 0.64 0.67 0.86

4 0.63 0.61 0.89

5 0.82 0.84 0.63

6 0.67 0.71 0.66

7 0.55 0.65 0.59

8 0.71 0.83 0.58

9 0.69 0.66 0.82

10 0.72 0.70 0.75

11 0.72 0.70 0.80

12 0.70 0.65 0.78
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There are three common types of neural adaptation theories

(Tong 2001). Based on Levelt’s theory, BR is a competi-

tive mechanism between monocular neurons in the primary

visual cortex (V1) or in the lateral geniculate nucleus

(LGN) of the thalamus which involves reciprocal inhibition

between two eyes that one eye tries to inhibit the influence

of the other eye (called intracellular competition; Levelt

1965). Unlike the first view, another theory by Logothetis

et al. posits that a competition between inconsistent pat-

terns emerging in higher level cortex causes BR rather than

a low-level competition between eyes (Logothetis et al.

1996). However, in recent years, a hybrid view has been

developed which assumes that both intracellular competi-

tion and pattern competition take part in BR (Tong et al.

2006).

The existence of piecemeal transient states and their

effect on BR’s memory is in favour of the assumption that

higher level cortex participates in BR fluctuations. A study

by Knapen supports this view as well (Knapen et al. 2011).

They evaluated brain functions during BR by considering

both piecemeal and dominant states with fMRI and found

that frontoparietal brain areas respond to BR transitions.

Furthermore, they revealed that transition durations

showed correlation with activation amplitude in frontal and

parietal brain areas (Knapen et al. 2011).

In addition to adaptation theories, pioneer hypotheses

have tried to explain BR fluctuation using quantum

mechanics (Stapp 2007; Manousakis 2009a, b; Conte et al.

2009; Paraan et al. 2014). Some of these theories consider

two quantum states for two dominance states of BR and try

to achieve the observed probability distribution of domi-

nance duration. Furthermore, they state that consciousness

of each BR state correlates with actualization of its quan-

tum state by collapsing its wave function through the

Schrodinger equation (Manousakis 2009a, b). Also, there

are other quantum studies that have considered both

piecemeal and dominant perception states (Conte et al.

2009; Paraan et al. 2014). Some of them introduced the

piecemeal transitions as a third quantum state which

dominates consciousness randomly and should be consid-

ered in statistical calculations of quantum mechanics

(Paraan et al. 2014). Our reinterpretation of piecemeal

states in the state landscape is similar to quantum

mechanics perspective on the importance of piecemeal

percept durations in models of BR.

It should be noted that cognitive condition of subjects in

BR experiments should be considered while discussing the

results. Scocchia et al. discussed that intention, imagery

and working memory can affect adaptation and perceptual

dominance in bistable perceptions such as BR (Scocchia

et al. 2014). In future studies of BR it can be considered

whether or not intellectual bias affects judgments of the

subjects about what they see during BR experiments. For

example, if subjects are forced to report just two dominant

states maybe, they will try to attribute the piecemeal states

to one of the two dominant states, because their minds are

biased that there are only two states.

In some psychiatric disorders, such as bipolar disorder

and autism, patients exhibit slower rates of BR fluctuations

in comparison with normal population (Vierck et al. 2013;

Robertson et al. 2013). BR fluctuations’ rate could be

conceived as a significant marker for diagnosing such

disorders. Therefore, developing effective models of BR,

which incorporates piecemeal periods as well, may help to

define more precise diagnostic markers. Our results cannot

exclusively justify all attributes of BR experiments. Ana-

lyzing the alternation dynamics of BR may be helpful in

elucidating the responsible neural mechanisms producing

BR.
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