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Abstract In this paper, we extensively study the global

asymptotic stability problem of complex-valued neural

networks with leakage delay and additive time-varying

delays. By constructing a suitable Lyapunov–Krasovskii

functional and applying newly developed complex valued

integral inequalities, sufficient conditions for the global

asymptotic stability of proposed neural networks are

established in the form of complex-valued linear matrix

inequalities. This linear matrix inequalities are efficiently

solved by using standard available numerical packages.

Finally, three numerical examples are given to demonstrate

the effectiveness of the theoretical results.

Keywords Additive time-varying delays � Complex-

valued neural networks � Global asymptotic stability �
Leakage delay � Lyapunov–Krasovskii functional

Introduction

In the past decades, there have been increasing research

interests in analyzing the dynamic behaviors of neural

networks due to their widespread applications (Guo and Li

2012; Manivannan and Samidurai 2016; Mattia and

Sanchez-Vives 2012; Yu et al. 2013), and the references

therein. In many applications, complex signals are involved

and complex-valued neural network is preferable. In the

recent years, the complex-valued neural network is an

emerging field of research in both theoretical and practical

points of view. The major advantage of complex-valued

neural networks is to explore new capabilities and higher

performance of the designed network. According to that

there has been increasing attention paid to study the

dynamical behavior of the complex-valued neural networks

and found an applications in different areas, such as pattern

classification problems (Nait-Charif 2010), associative

memory (Tanaka and Aihara 2009) and optimization

problems (Jiang 2008). The equilibrium point of those

existing applications are necessary to keep the networks to

be stable. Therefore, the stability analysis is the most

important dynamical property of complex-valued neural

networks.

In real life situation, a time delay often occurs for the

reason of the finite switching speed of the amplifiers, and it

also appears in the electronic implementation of the neural

networks when processing the signal transmission, which

may cause the dynamical behaviors of neural networks in

the form of instability, bifurcation and oscillation (Alofi

et al. 2015; Cao and Li 2017; Hu et al. 2014; Huang et al.

2017). Thus, many authors have taken into account the

constant time delays (Hu and Wang 2012; Subramanian

and Muthukumar 2016) and time-varying delays (Chen

et al. 2017; Gong et al. 2015) in the stability analysis of

complex-valued neural networks.

In addition, a time delay in leakage term of the systems,

which is called the leakage delay and a considerable factor

affecting dynamics for the worse in the systems, is being

put to use in the stability analysis of neural networks. The

aforesaid results (Bao et al. 2016; Chen et al. 2017; Gong
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et al. 2015; Hu and Wang 2012; Subramanian and

Muthukumar 2016) concerning the dynamical behavior

analysis of the complex-valued neural networks with con-

stant time delays or time-varying delays and did not con-

sider the leakage effect. Even though, the leakage delay is

extensively studied for real-valued neural networks (Lak-

shmanan et al. 2013; Li and Cao 2016; Sakthivel et al.

2015; Xie et al. 2016), the complex-valued neural net-

works with leakage delay has been rarely considered in the

literature (Chen and Song 2013; Chen et al. 2016; Gong

et al. 2015). As an example, by constructing an appropriate

Lyapunov–Krasovskii functionals, the authors Gong et al.

(2015) and Chen et al. (2016), respectively, studied the

global l-stability problem for the continuous-time and

discrete-time complex-valued neural networks with leak-

age time delay and unbounded time-varying delays. By

employing a combination of fixed point theory, Lyapunov–

Krasovskii functional and the free weighting matrix

method, the existence, uniqueness and global stability of

the equilibrium point of complex-valued neural networks

with both leakage delay and time delay on time scales are

established in Chen and Song (2013).

Furthermore, the neural networks model with two suc-

cessive time-varying delays has been introduced in Zhao

et al. (2008) and the authors correctly pointed out that

since signal transmissions may experience a few segment

of networks and the conditions of network transmission

may differ for each other, which can possibly produce

successive delays with different properties. It is not rational

to lump the two time delays into one time delay. Thus, it is

more reasonable to model the neural networks with addi-

tive time-varying delays. In Shao and Han (2012), the

authors discussed the stability and stabilization for con-

tinuous-time systems with two additive time-varying input

delays arising from networked control systems. The prob-

lem of stability criteria of neural networks with two addi-

tive time-varying delay components are addressed in Tian

and Zhong (2012) by using the both reciprocally convex

and convex polyhedron approach. The authors Rakkiyap-

pan et al. (2015) studied the passivity and passification

problem for a class of memristor-based recurrent neural

networks with additive time-varying delays. From the

above, the additive time-varying delays are only presented

in the real-valued neural networks in the previous

literature.

However, it is worth noting that in those existing results,

the time-varying delay considered in the complex-valued

neural networks is usually a single. Stability research on

complex-valued neural networks with additive time-vary-

ing delays has not been considered in the literature, which

motivates our research interesting. To the best of authors

knowledge, the global asymptotic stability analysis for

complex-valued neural networks with leakage delays and

additive time-varying delays has not been considered in the

literature, and remains as a topic for further investigation.

In this paper, the main contributions are given as

follows:

• It is the first time to establish the global asymptotic

stability of complex-valued neural networks with

leakage delays and additive time-varying delay

components.

• A suitable Lyapunov–Krasovskii functional is con-

structed with the full information of additive time-

varying delays and leakage delays.

• A new type of complex-valued triple integral inequality

is introduced to estimate the upper bound of the

derivative of Lyapunov–Krasovskii functional.

• Based on the model transformation technique, sufficient

conditions for the global asymptotic stability of

proposed neural networks are obtained in the linear

matrix inequality form, which can be checked numer-

ically by using the effective YALMIP toolbox in

MATLAB.

• Finally, three illustrative examples are provided to

show the effectiveness of the proposed criteria.

The rest of this paper is organized as follows: In ‘‘Prob-

lem formulation and preliminaries’’ section, the model of

the complex-valued neural networks with leakage delay

and additive time-varying delays is presented, and some

preliminaries are briefly outlined. In ‘‘Main result’’ sec-

tion, the sufficient conditions are derived to ascertain the

global asymptotic stability of the complex-valued neural

networks with leakage delay and additive time-varying

delays by Lyapunov–Krasovskii functional method. Three

numerical examples are given to show the effectiveness of

the acquired conditions in ‘‘Numerical example’’

section. Finally, conclusions are drawn in ‘‘Conclusion’’

section.

Notations The notation used throughout this paper is

fairly standard. Cn and Cm�n denote the set of n-dimen-

sional complex vectors, m� n complex matrices, respec-

tively. The superscript T and � denotes the matrix

transposition and complex conjugate transpose, respec-

tively; i denotes the imaginary unit, that is i ¼
ffiffiffiffiffiffiffi

�1
p

. For

any matrix P, P[ 0 ðP\0Þ means P is positive definite

(negative definite) matrix. For complex number z ¼ xþ iy,

the notation jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

stands for the module of z and

kzk ¼
ffiffiffiffiffiffi

z�z
p

; diag f�g stands for diagonal of the block-

diagonal matrix. If A 2 Cn�n, denotes by kAk its operator

norm, i.e., kAk ¼ supfkAxk : kxk ¼ 1g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kmaxðA�AÞ
p

.

The notation H always denotes the conjugate transpose of

block in a Hermitian matrix.
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Problem formulation and preliminaries

In this paper, we consider a model of complex-valued

neural networks with leakage delay and two additive time-

varying delay components, which can be described by

_uðtÞ¼�Auðt�rÞþBgðuðtÞÞþCgðuðt� s1ðtÞ� s2ðtÞÞÞþJ; ð1Þ

where uðtÞ¼ ðu1ðtÞ;u2ðtÞ; . . .;unðtÞÞT 2Cn is the state vec-

tor of the neural networks with n neurons at time t, A¼
diagfa1;a2; . . .;ang2Rn�n with aj[0 ðj¼ 1;2; . . .;nÞ is the

self feedback connection weight matrix. B¼ðbjkÞn�n 2
Cn�n and C¼ðcjkÞn�n 2Cn�n are the connection weight

matrix and delayed connection weight matrix, respectively;

gðuðtÞÞ¼ ðg1ðu1ð�ÞÞ; g2ðu2ð�ÞÞ; . . .;gnðunð�ÞÞÞT 2Cn is the

complex-valued neuron activation function; J¼
ðJ1;J2; . . .;JnÞT is the external input vector; r denotes

leakage delay, s1ðtÞ and s2ðtÞ are two time varying delays

satisfies 0�s1ðtÞ�s1, _s1ðtÞ�l1, 0�s2ðtÞ�s2, _s2ðtÞ�l2,

sðtÞ¼ s1ðtÞþ s2ðtÞ, s¼ s1 þ s2, l¼ l1 þl2 and l1;l2;l
are less than one. The initial condition associated with the

complex-valued neural network (1) is given by

uðsÞ ¼ /ðsÞ; s 2 ½�q; 0�; where q 2 maxfr; sg;
/ 2 Cð½�q; 0�;DÞ:

It means that u(s) is continuous and satisfies (1). Let

Cð½�q; 0�;DÞ be the space of continuous functions map-

ping ½�q; 0� into D 2 Cn:

Assumption 2.1 Let gjð�Þ satisfies the Lipschitz conti-

nuity condition in the complex domain, that is, for all

j ¼ 1; 2; . . .; n, there exists a positive constant F̂j, such that,

for u1; u2 2 C, we have

jgjðu1Þ � gjðu2Þj � F̂jju1 � u2j:

Definition 2.2 The vector û 2 Cn is said to be an equi-

librium point of complex valued neural networks (1) if it

satisfies the following condition

�Aûþ ðBþ CÞgðûÞ þ J ¼ 0:

Theorem 2.3 (Existence of equilibrium point) Under the

Assumption 2.1, there exist an equilibrium point û 2 Cn

for the system (1) if

�Aûþ ðBþ CÞgðûÞ þ J ¼ 0:

Proof Since the activation function of the system (1) is

bounded, there exists a constant Mi such that,

jgiðuiÞj �Mi for any ui 2 C; i ¼ 1; 2; . . .; n:

Let M ¼
P

n

i¼1

ðM2
i Þ

1
2. Then kgðuÞk�M; for u ¼

ðu1; u2; . . .; unÞ 2 Cn: We denote A ¼ fu 2 Cn : kuk�

kA�1kðkBþ CkÞM þ kJkg and let us define the map Cn !
Cn by,

HðuÞ ¼ A�1ðBgðuÞ þ CgðuÞ þ JÞ:

Since, H is a continuous map and using the condition

kgðuÞk�M; we obtain that

kHðuÞk� kA�1kðkBþ CkM þ kJkÞ:

Therefore from the definition of A, H maps A into itself.

By Brouwers fixed point theorem, it can be inferred that

there exist a fixed point û of H, which satisfies

A�1ðBgðûÞ þ CgðûÞ þ JÞ ¼ û:

Pre multiplying by the matrix A on both sides, gives

�Aûþ BgðûÞ þ CgðûÞ þ J ¼ 0:

That is, by Definition 2.2, û is an equilibrium point of (1).

Hence, the proof is completed. h

For convenience, we shift the equilibrium point û to the origin

by letting zðtÞ ¼ uðtÞ � û:Then, the system (1) can be written as

_zðtÞ ¼ �Azðt � rÞ þ Bf ðzðtÞÞ þ Cf ðzðt � s1ðtÞ � s2ðtÞÞÞ:
ð2Þ

where, f ðzðtÞÞ ¼ gðzðtÞ þ ûÞ � gðûÞ: By using the trans-

formation, the system (2) has an equivalent form as follows

d

dt
zðtÞ � A

Z

t

t�r

zðsÞds

2

4

3

5 ¼ �AzðtÞ þ Bf ðzðtÞÞ

þ Cf ðzðt � s1ðtÞ � s2ðtÞÞÞ:

ð3Þ

In the following, we introduce relevant assumption and lem-

mas to facilitate the presentation of main results in the ensuing

sections.

Assumption 2.4 Let fjð�Þ satisfies the Lipschitz continu-

ity condition in the complex domain, that is, for all

j ¼ 1; 2; . . .; n, there exists a positive constant Fj, such that,

for z1; z2 2 C, we have

jfjðz1Þ � fjðz2Þj �Fjjz1 � z2j;

where Fj is called Lipschitz constant. Moreover, define

C ¼ diag fF2
1 ;F

2
2 ; . . .;F

2
ng:

Lemma 2.5 Velmurugan et al. (2015)(Schur Comple-

ment) A given matrix,

X ¼
X11 X12

XT
12 X22

� �

[ 0;

where X11 ¼ XT
11, X22 ¼ XT

22 is equivalent to any one of

the following conditions

X22 [ 0; X11 � XT
12X

�1
22 X12 [ 0;

X11 [ 0; X22 � X12X
�1
11 X

T
12 [ 0:
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Lemma 2.6 For any constant Hermitian matrix M 2 Cn�n

and M[ 0, a scalar function zðsÞ : ½a; b� ! Cn with scalars

a\b such that the following inequalities are satisfied:

(i)
Z

b

a

zðsÞds

0

@

1

A

�

M

Z

b

a

zðsÞds

0

@

1

A�ðb� aÞ
Z

b

a

z�ðsÞ

MzðsÞds

(ii)
R

b

a

R

b

s

zðhÞdhds
� ��

M
R

b

a

R

b

s

zðhÞdhds
� �

� ðb�aÞ2

2

R

b

a

R

b

s

z�ðhÞMzðhÞdhds

(iii)
R

b

a

R

b

s

R

b

h

zðcÞdcdhds
 !�

M
R

b

a

R

b

s

R

b

h

zðcÞdcdhds
 !

� ðb�aÞ3

6

R

b

a

R

b

s

R

b

h
z�ðcÞMzðcÞdcdhds:

Proof The proof of complex-valued Jensen’s inequality

(i) is given in Chen and Song (2013). Therefore, we have to

prove (ii) and (iii) as follows:

From (i), the following inequality holds:

Z

b

s

zðhÞdh

0

@

1

A

�

M

Z

b

s

zðhÞdh

0

@

1

A�ðb� sÞ
Z

b

s

z�ðhÞMzðhÞdh:

By the Schur complement Lemma (Velmurugan et al.

2015), the above inequality becomes,

R

b

s

z�ðhÞMzðhÞdh
R

b

s

z�ðhÞdh

R

b

s

zðhÞdh ðb� sÞM�1

2

6

6

6

4

3

7

7

7

5

� 0: ð4Þ

Integrating (4) from a to b, we have

R

b

a

R

b

s

z�ðhÞMzðhÞdhds
R

b

a

R

b

s

zðhÞdhds
� ��

R

b

a

R

b

s

zðhÞdhds
R

b

a

ðb� sÞM�1ds

2

6

6

6

4

3

7

7

7

5

� 0;

R

b

a

R

b

s

z�ðhÞMzðhÞdhds
R

b

a

R

b

s

zðhÞdhds
� ��

R

b

a

R

b

s

zðhÞdhds ðb� aÞ2

2
M�1

2

6

6

6

4

3

7

7

7

5

� 0:

ð5Þ

By using Schur complement Lemma, the inequality (5) is

equivalent to

Z

b

a

Z

b

s

zðhÞdhds

0

@

1

A

�

M

Z

b

a

Z

b

s

zðhÞdhds

0

@

1

A

� ðb� aÞ2

2

Z

b

a

Z

b

s

z�ðhÞMzðhÞdhds:

This completes the proof of (ii). By applying the same

procedure presented in the proof of (ii), the inequality (iii)

can be easily derived. Thus, it is omitted. h

Main result

In this section, by utilizing a Lyapunov–Krasovskii func-

tional and integral inequalities, we will present a delay-

dependent stability criterion for the complex-valued neural

networks with leakage delays and additive time-varying

delays (3) via linear matrix inequality.

Theorem 3.1 Under Assumption 2.4, the complex-valued

neural networks (3) is globally asymptotically stable, if

there exist positive Hermitian matrices J, M, N, O, P, Q, R,

S, T, U, V, W, X, Y and positive diagonal matrix G such that

the following linear matrix inequality holds:

H¼

H1;1 0 0 W X 0 PB PC H1;9 0 s1M s2N

H H2;2 0 0 0 0 0 0 0 0 0 0

H H H3;3 0 0 0 0 0 0 0 0 0

H H H H4;4 0 0 0 0 0 0 0 0

H H H H H5;5 0 0 0 0 0 0 0

H H H H H H6;6 H6;7 H6;8 0 0 0 0

H H H H H H H7;7 H7;8 H7;9 0 0 0

H H H H H H H H8;8 H8;9 0 0 0

H H H H H H H H H9;9 0 0 0

H H H H H H H H H H10;10 0 0

H H H H H H H H H H H11;11 0

H H H H H H H H H H H H12;12

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

\0; ð6Þ
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where H1;1 ¼ �PA� A�Pþ Qþ Rþ Sþ T þ U þ r2Y�
W � X � r2Oþ r6

36
J þ GC� s2

1M � s2
2N, H1;9 ¼ A�PAþ

rO, H2;2 ¼ �ð1 � l1ÞQ, H3;3 ¼ �ð1 � l2ÞR, H4;4 ¼
�W � S, H5;5 ¼ �X � T , H6;6 ¼ �U þ s2

1A
�WAþ

s2
2A

�XAþ s4
1

4
A�MAþ s4

2

4
A�NAþ r4

4
A�OA, H6;7 ¼ �s2

1A
�

WB� s2
2A

�XB� s4
1

4
A�MB� s4

2

4
A�NB� r4

4
A�OB, H6;8 ¼

�s2
1A

�WC � s2
2A

�XC � s4
1

4
A�MC � s4

2

4
A�NC � r4

4
A�OC,

H7;7 ¼ s2
1B

�WBþ s2
2B

�XBþ s4
1

4
B�MBþ s4

2

4
B�NBþ r4

4
B�OB

þV � G, H7;8 ¼ s2
1B

�WC þ s2
2B

�XC þ s4
1

4
B�MC þ s4

2

4
B�NC

þ r4

4
B�OC, H7;9 ¼ �B�PA, H8;8 ¼ s2

1C
�WC þ s2

2C
�XCþ

s4
1

4
C�MC þ s4

2

4
C�NC þ r4

4
C�OC � ð1 � lÞV , H8;9 ¼ �C�

PA, H9;9 ¼ �Y � O, H10;10 ¼ �J, H11;11 ¼ �M, H12;12 ¼
�N.

Proof Consider the following Lyapunov–Krasovskii

functional

VðtÞ ¼
X

5

j¼1

ViðtÞ; ð7Þ

where

V1ðtÞ ¼ zðtÞ �
Z

t

t�r

zðsÞds

2

4

3

5

�

P zðtÞ �
Z

t

t�r

zðsÞds

2

4

3

5;

V2ðtÞ ¼
Z

t

t�s1ðtÞ

z�ðsÞQzðsÞdsþ
Z

t

t�s2ðtÞ

z�ðsÞRzðsÞds

þ
Z

t

t�s1

z�ðsÞSzðsÞdsþ
Z

t

t�s2

z�ðsÞTzðsÞds

þ
Z

t

t�r

z�ðsÞUzðsÞdsþ
Z

t

t�sðtÞ

f �ðzðsÞÞVf ðzðsÞÞds;

V3ðtÞ ¼s1

Z

0

�s1

Z

t

tþh

_z�ðsÞW _zðsÞdsdh

þ s2

Z

0

�s2

Z

t

tþh

_z�ðsÞX _zðsÞdsdh

þ r
Z

0

�r

Z

t

tþh

z�ðsÞYzðsÞdsdh;

V4ðtÞ ¼
s2

1

2

Z

t

t�s1

Z

t

h

Z

t

c

_z�ðsÞM _zðsÞdsdcdh

þ s2
2

2

Z

t

t�s2

Z

t

h

Z

t

c

_z�ðsÞN _zðsÞdsdcdh;

V5ðtÞ ¼
r2

2

Z

t

t�r

Z

t

h

Z

t

c

_z�ðsÞO _zðsÞdsdcdh

þ r3

6

Z

t

t�r

Z

t

h

Z

t

c

Z

t

d

z�ðsÞJzðsÞdsdddcdh:

Taking the time derivative of V(t) along the trajectories of

system (3), it follows that

_V1ðtÞ ¼ 2 zðtÞ � A

Z

t

t�r

zðsÞds

2

4

3

5

�

P½�AzðtÞ þ Bf ðzðtÞÞ

þ Cf ðzðt � s1ðtÞ � s2ðtÞÞÞ�;
¼ �2z�ðtÞPAzðtÞ þ 2z�ðtÞPBf ðzðtÞÞ
þ 2z�ðtÞPCf ðzðt � s1ðtÞ � s2ðtÞÞÞ

þ 2

Z

t

t�r

z�ðsÞdsA�PAzðtÞ

� 2

Z

t

t�r

z�ðsÞdsA�PBf ðzðtÞÞ

� 2

Z

t

t�r

z�ðsÞdsA�PCf ðzðt � s1ðtÞ � s2ðtÞÞÞ; ð8Þ

_V2ðtÞ� z�ðtÞ½QþRþ SþT þU�zðtÞ� ð1�l1Þz�ðt� s1ðtÞÞ
Qzðt� s1ðtÞÞ� ð1�l2Þz�ðt� s2ðtÞÞRzðt� s2ðtÞÞ

�z�ðt� s1ÞSzðt� s1Þ� z�ðt� s2ÞTzðt� s2Þ
�z�ðt�rÞUzðt�rÞþf �ðzðtÞÞVf ðzðtÞÞ

�ð1�lÞf �ðzðt� sðtÞÞÞVf ðzðt� sðtÞÞÞ; ð9Þ

_V3ðtÞ ¼ _z�ðtÞðs2
1W þ s2

2XÞ _zðtÞ þ r2z�ðtÞYzðtÞ

� s1

Z

t

t�s1

_z�ðsÞW _zðsÞds� s2

Z

t

t�s2

_z�ðsÞX _zðsÞds

� r
Z

t

t�r

z�ðsÞYzðsÞds; ð10Þ
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_V4ðtÞ ¼
s2

1

2

Z

t

t�s1

Z

t

c

_z�ðtÞM _zðtÞdsdc

� s2
1

2

Z

t

t�s1

Z

t

c

_z�ðsÞM _zðsÞdsdc

þ s2
2

2

Z

t

t�s2

Z

t

c

_z�ðtÞN _zðtÞdsdc

� s2
2

2

Z

t

t�s2

Z

t

c

_z�ðsÞN _zðsÞdsdc;

¼ _z�ðtÞ s4
1

4
M þ s4

2

4
N

� �

_zðtÞ

� s2
1

2

Z

t

t�s1

Z

t

c

_z�ðsÞM _zðsÞdsdc

� s2
2

2

Z

t

t�s2

Z

t

c

_z�ðsÞN _zðsÞdsdc; ð11Þ

_V5ðtÞ ¼
r2

2

Z

t

t�r

Z

t

c

_z�ðtÞO _zðtÞdsdc

� r2

2

Z

t

t�r

Z

t

c

_z�ðsÞO _zðsÞdsdc

þ r3

6

Z

t

t�r

Z

t

c

Z

t

d

z�ðtÞJzðtÞdsdddc

� r3

6

Z

t

t�r

Z

t

c

Z

t

d

z�ðsÞJzðsÞdsdddc;

¼ r4

4
_z�ðtÞO _zðtÞ þ r6

36
z�ðtÞJzðtÞ

� r2

2

Z

t

t�r

Z

t

c

_z�ðsÞO _zðsÞdsdc

� r3

6

Z

t

t�r

Z

t

c

Z

t

d

z�ðsÞJzðsÞdsdddc: ð12Þ

Applying Lemma 2.6 (i) to the integral terms of (10) which

produces that

� s1

Z

t

t�s1

_z�ðsÞW _zðsÞds� �
Z

t

t�s1

_z�ðsÞdsW
Z

t

t�s1

_zðsÞds

¼ �½zðtÞ � zðt � s1Þ��W ½zðtÞ � zðt � s1Þ�; ð13Þ

� s2

Z

t

t�s2

_z�ðsÞX _zðsÞds� �
Z

t

t�s2

_z�ðsÞdsX
Z

t

t�s2

_zðsÞds

¼ �½zðtÞ � zðt � s2Þ��X½zðtÞ � zðt � s2Þ�; ð14Þ

�r
Z

t

t�r

z�ðsÞYzðsÞds��
Z

t

t�r

z�ðsÞdsY
Z

t

t�r

zðsÞds: ð15Þ

From (3) and (13)–(15), it follows that

_V3ðtÞ� z�ðt� rÞ½s2
1A

�WAþ s2
2A

�XA�zðt� rÞ
� z�ðt� rÞ½s2

1A
�WBþ s2

2A
�XB�f ðzðtÞÞ

� z�ðt� rÞ ½s2
1A

�WCþ s2
2A

�XC�f ðzðt� sðtÞÞÞ
� f �ðzðtÞÞ½s2

1B
�WAþ s2

2B
�XA�zðt� rÞ

þ f �ðzðtÞÞ½s2
1B

�WBþ s2
2B

�XB�f ðzðtÞÞ
þ f �ðzðtÞÞ½s2

1B
�WCþ s2

2B
�XC�f ðzðt� sðtÞÞÞ

� f �ðzðt� sðtÞÞÞ½s2
1C

�WAþ s2
2C

�XA�zðt� rÞ
þ f �ðzðt� sðtÞÞÞ½s2

1C
�WBþ s2

2C
�XB�f ðzðtÞÞ

þ f �ðzðt� sðtÞÞÞ½s2
1C

�WCþ s2
2C

�XC�f ðzðt� sðtÞÞÞ
þ z�ðtÞ½r2Y �W �X�zðtÞ � z�ðt� s1Þ
�Wzðt� s1Þ þ z�ðtÞWzðt� s1Þ þ z�ðt� s1ÞWzðtÞ
� z�ðt� s2ÞXzðt� s2Þ þ z�ðtÞXzðt� s2Þ

þ z�ðt� s2ÞXzðtÞ �
Z

t

t�r

z�ðsÞdsY
Z

t

t�r

zðsÞds:

ð16Þ

By using Lemma 2.6 (2), the integral terms in (11) can be

estimated as follows:

� s2
1

2

Z

t

t�s1

Z

t

c

_z�ðsÞM _zðsÞdsdc� �
Z

t

t�s1

Z

t

c

_z�ðsÞdsdcM

�
Z

t

t�s1

Z

t

c

_zðsÞdsdc;¼ � s1zðtÞ �
Z

t

t�s1

zðsÞds

0

@

1

A

�

�M s1zðtÞ �
Z

t

t�s1

zðsÞds

0

@

1

A; ð17Þ
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� s2
2

2

Z

t

t�s2

Z

t

c

_z�ðsÞM _zðsÞdsdc�

�
Z

t

t�s2

Z

t

c

_z�ðsÞdsdcN
Z

t

t�s2

Z

t

c

_zðsÞdsdc;

¼ � s2zðtÞ �
Z

t

t�s2

zðsÞds

0

@

1

A

�

N s2zðtÞ �
Z

t

t�s2

zðsÞds

0

@

1

A:

ð18Þ

Then, substituting (17) and (18) into (11), yields

_V4ðtÞ� z�ðt � rÞ s4
1

4
A�MAþ s4

1

4
A�NA

� �

zðt � rÞ

� z�ðt � rÞ s4
1

4
A�MBþ s4

2

4
A�NB

� �

f ðzðtÞÞ � z�ðt � rÞ

� s4
1

4
A�MC þ s4

2

4
A�NC

� �

f ðzðt � sðtÞÞÞ

� f �ðzðtÞÞ s4
2

4
B�MAþ s4

2

4
B�NA

� �

zðt � rÞ þ f �ðzðtÞÞ

� s4
1

4
B�MBþ s4

2

4
B�NB

� �

f ðzðtÞÞ

þ f �ðzðtÞÞ s4
1

4
B�MC þ s4

2

4
B�NC

� �

f ðzðt � sðtÞÞÞ

� f �ðzðt � sðtÞÞÞ s2
1C

�MAþ s2
2C

�NA
� �

zðt � rÞ
þ f �ðzðt � sðtÞÞÞ s2

1C
�MBþ s2

2C
�NB

� �

f ðzðtÞÞ

þ f �ðzðt � sðtÞÞÞ s4
1

4
C�MC þ s4

2

4
C�NC

� �

f ðzðt � sðtÞÞÞ

� z�ðtÞ½s2
1M þ s2

2N�zðtÞ �
Z

t

t�s1

z�ðsÞdsM
Z

t

t�s1

zðsÞds

þ s1z
�ðtÞM

Z

t

t�s1

zðsÞdsþ s1

Z

t

t�s1

z�ðsÞdsMzðtÞ

�
Z

t

t�s2

z�ðsÞdsN
Z

t

t�s2

zðsÞdsþ s2z
�ðtÞN

Z

t

t�s2

zðsÞds

þ s2

Z

t

t�s2

z�ðsÞdsNzðtÞ:

ð19Þ

Similarly, by using Lemma 2.6 (ii) and (iii), the integral

terms in _V5ðtÞ can be obtained as follows:

� r2

2

Z

t

t�r

Z

t

c

_z�ðsÞO _zðsÞdsdc� �
Z

t

t�r

Z

t

c

_z�ðsÞdsdcO

�
Z

t

t�r

Z

t

c

_zðsÞdsdc;¼ � rzðtÞ �
Z

t

t�r

zðsÞds

0

@

1

A

�

� O rzðtÞ �
Z

t

t�r

zðsÞds

0

@

1

A;

ð20Þ

� r3

6

Z

t

t�r

Z

t

c

Z

t

d

z�ðsÞJzðsÞdsdddc�

�
Z

t

t�r

Z

t

c

Z

t

d

z�ðsÞdsdddcJ
Z

t

t�r

Z

t

c

Z

t

d

zðsÞdsdddc:

ð21Þ

Therefore, together with (12) and (20), (21), we get

_V5ðtÞ� z�ðt � rÞ r4

4
A�OA

� �

zðt � rÞ

� z�ðt � rÞ r4

4
A�OB

� �

f ðzðtÞÞ

� z�ðt � rÞ r4

4
A�OC

� �

f ðzðt � sðtÞÞÞ

� f �ðzðtÞÞ r4

4
B�OA

� �

zðt � rÞ

þ f �ðzðtÞÞ r4

4
B�OB

� �

f ðzðtÞÞ

þ f �ðzðtÞÞ r4

4
B�OC

� �

f ðzðt � sðtÞÞÞ

� f �ðzðt � sðtÞÞÞ½r2C�OA�zðt � rÞ
þ f �ðzðt � sðtÞÞÞ½r2C�OB�f ðzðtÞÞ

þ f �ðzðt � sðtÞÞÞ r4

4
C�OC

� �

f ðzðt � sðtÞÞÞ

� z�ðtÞ r2Oþ r6

36
J

� �

zðtÞ �
Z

t

t�r

z�ðsÞdsO
Z

t

t�r

zðsÞds

þ rz�ðtÞO
Z

t

t�r

zðsÞdsþ r
Z

t

t�r

z�ðsÞdsOzðtÞ

�
Z

t

t�r

Z

t

c

Z

t

d

z�ðsÞdsdddcJ
Z

t

t�r

Z

t

c

Z

t

d

zðsÞdsdddc:

ð22Þ
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Moreover, based on Assumption 2.4, for any p ¼
1; 2; . . .; n; we have

jfpðzpðtÞÞj �FpjzpðtÞj: ð23Þ

Let G ¼ diag fs1; s2; . . .; sng[ 0. From (23), it can be

seen that

spf
�
p ðzpðtÞÞfpðzpðtÞÞ � spF

2
pz

�
pðtÞzpðtÞ� 0; 8p ¼ 1; 2; . . .; n:

Thus,

f �ðzðtÞÞGf ðzðtÞÞ � z�ðtÞGCzðtÞ� 0: ð24Þ

Combining (8), (9), (16), (19), (22) and (24), one can

deduce that

_VðtÞ� f�ðtÞHfðtÞ;

where

f�ðtÞ ¼ z�ðtÞ z�ðt � s1ðtÞÞ z�ðt � s2ðtÞÞ½
z�ðt � s1Þ z�ðt � s2Þ z�ðt � rÞ f �ðzðtÞÞ

f �ðzðt � sðtÞÞÞ
Z

t

t�r

z�ðsÞds
Z

t

t�r

Z

t

c

Z

t

d

z�ðsÞdsdddc

Z

t

t�s1

z�ðsÞds
Z

t

t�s2

z�ðsÞds�:

If (6) holds, then we get

_VðtÞ\0:

Hence, the complex-valued neural networks (3) is globally

asymptotically stable. This completes the proof. h

Remark 3.2 In Dey et al. (2010), the problem of asymp-

totic stability for continuous-time systems with additive

time-varying delays is investigated by utilizing the free

matrix variables. The authors Wu et al. (2009) addressed

the stability problem for a class of uncertain systems with

two successive delay components. By using a convex

polyhedron method, the delay-dependent stability criteria is

established in Shao and Han (2011) for neural networks

with two additive time-varying delay components. How-

ever, when constructing the Lyapunov–Krasovskii func-

tional, those results are not adequately use the full

information about the additive time-varying delays s1ðtÞ,
s2ðtÞ and sðtÞ, which would be inevitably conservative to

some extent. Since, the authors Cheng et al. (2014) utilized

the full information about the additive time-varying delays

in the constructed Lyapunov–Krasovskii functional and

studied the delay-dependent stability of real-valued con-

tinuous-time system which gives the less conservative

results. Inspired by the above, in the present paper, we also

make the full information of additive time-varying delays

s1ðtÞ, s2ðtÞ and sðtÞ in the study of stability analysis for

complex-valued neural networks.

Remark 3.3 In the existing literature, many researchers

studied the stability problem of neural networks and pro-

posed good results, for example see Lakshmanan et al.

(2013); Sakthivel et al. (2015); Xie et al. (2016) and ref-

erences there in. Most of these results are founded on

the inequality
R

b

a

zðsÞds
� �T

M
R

b

a

zðsÞds
� �

�ðb� aÞ
R

b

a

zTðsÞ

MzðsÞds: Chen and Song (2013) and Velmurugan

et al. (2015) studied the stability and passivity analysis

of complex-valued neural networks with the help of

complex-valued Jensen’s inequality
R

b

a

zðsÞds
� ��

M
R

b

a

zðsÞds
� �

�ðb� aÞ
R

b

a

z�ðsÞMzðsÞds: Based on the

above analysis and discussions, in this paper the single

integral inequality is handled with the complex-valued

Jensen’s inequality. Moreover, in this present paper, we

introduce the double integral inequality

R

b

a

R

b

s

zðhÞdhds
� ��

M
R

b

a

R

b

s

zðhÞdhds
� �

� ðb�aÞ2

2

R

b

a

R

b

s

z�ðhÞ

MzðhÞdhds and as well as triple integral inequality

Z

b

a

Z

b

s

Z

b

h

zðcÞdcdhds

0

@

1

A

�

M

Z

b

a

Z

b

s

Z

b

h

zðcÞdcdhds

0

@

1

A�ðb�aÞ
3

6

R

b

a

R

b

s

R

b

h

z�ðcÞMzðcÞdcdhds; for calculating the derivative of

Lyapunov–Krasovskii functional in the complex-valued

neural networks.

Remark 3.4 In the following, we will discuss the global

asymptotic stability criteria for complex-valued neural net-

works with additive time-varying delays, that is, there is no

leakage delay ði:e:;r ¼ 0Þ in (3), then the system (3) becomes

_zðtÞ ¼ � AzðtÞ þ Bf ðzðtÞÞ þ Cf ðzðt � s1ðtÞ � s2ðtÞÞÞ;
zðsÞ ¼/ðsÞ; s 2 ½�s; 0�:

ð25Þ

Then, according to Theorem 3.1, we have the following

corollary for the delay-dependent global asymptotic sta-

bility of system (25).
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Corollary 3.5 Given scalars s1, s2, l1 and l2, the equi-

librium point of complex-valued neural networks (25) with

additive time-varying delays is globally asymptotically

stable if there exist positive Hermitian matrices M, N, P, Q,

R, S, T, V, W, X and positive diagonal matrix G such that

the following linear matrix inequality holds:

~H¼

~H1;1 0 0 W X ~H1;6
~H1;7 s1M s2N

H ~H2;2 0 0 0 0 0 0 0

H H ~H3;3 0 0 0 0 0 0

H H H ~H4;4 0 0 0 0 0

H H H H ~H5;5 0 0 0 0

H H H H H ~H6;6
~H6;7 0 0

H H H H H H ~H7;7 0 0

H H H H H H H ~H8;8 0

H H H H H H H H ~H9;9

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

\0;

ð26Þ

where ~H1;1 ¼ �PA� A�Pþ Qþ Rþ Sþ T �W � Xþ
GC � s2

1M � s2
2N þ s2

1A
�WA þ s2

2A
�XA þ s4

1

4
A�MA þ s4

2

4
A�

�NA; ~H1;6 ¼ PB � s2
1A

�WB � s2
2A

�XB � s4
1

4
A�MB � s4

2

4
A�

�NB; ~H1;7 ¼ PC � s2
1A

�WC � s2
2A

�XC � s4
1

4
A�MC � s4

2

4
A�

�NC; ~H2;2 ¼ �ð1 � l1ÞQ; ~H3;3 ¼ �ð1 � l2ÞR; ~H4;4 ¼
�W � S; ~H5;5 ¼ �X � T; ~H6;6 ¼ s2

1B
�WB þ s2

2B
�XBþ

s4
1

4
B�MBþ s4

2

4
B�NBþ V � G; ~H6;7 ¼ s2

1B
�WC þ s2

2B
�XCþ

s4
1

4
B�MCþ s4

2

4
B�NC; ~H7;7 ¼ s2

1C
�WCþ s2

2C
�XC þ s4

1

4
C�MC

þ s4
2

4
C�NC � ð1 � lÞV , ~H8;8 ¼ �M; ~H9;9 ¼ �N:

Proof The proof immediately follows from the proof of

Theorem 3.1, by setting r ¼ 0; U ¼ 0; Y ¼ 0; O ¼ 0 and

J ¼ 0; hence it is omitted. This completes the proof. h

Remark 3.6 When s1ðtÞ ¼ 0 or s2ðtÞ ¼ 0 complex-valued

neural networks with additive time-varying delays (25)

reduces to single time-varying delays. Without loss of

generality, assume that s2ðtÞ ¼ 0 then (25) becomes

_zðtÞ ¼ �AzðtÞ þ Bf ðzðtÞÞ þ Cf ðzðt � s1ðtÞÞÞ;
zðsÞ ¼ /ðsÞ; s 2 ½�s1; 0�:

ð27Þ

By letting s2 ¼ 0; R ¼ T ¼ X ¼ N ¼ 0 in Corollary 3.5,

we can easily obtain the sufficient condition for global

asymptotic stability of complex-valued neural networks

with time-varying delays (27), which are summarized the

following corollary.

Corollary 3.7 Given scalars s1 and l1, the equilibrium

point of complex-valued neural networks (27) is globally

asymptotically stable if there exist positive Hermitian

matrices M, P, Q, S, V, W and positive diagonal matrix G

such that the following linear matrix inequality holds:

Ĥ ¼

Ĥ1;1 0 W Ĥ1;4 Ĥ1;5 s1M

H � ð1 � l1ÞQ 0 0 0 0

H H �W � S 0 0 0

H H H Ĥ4;4 0 0

H H H H Ĥ5;5 0

H H H H H �M

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

\0;

ð28Þ

where Ĥ1;1 ¼ �PA� A�Pþ Qþ S�W þ GC� s2
1Mþ

s2
1A

�WA þ s4
1

4
A�MA, Ĥ1;4 ¼ PB � s2

1A
�WB � s4

1

4
A�MB,

Ĥ1;5 ¼ PC � s2
1A

�WC � s4
1

4
A�MC;

Ĥ4;4 ¼ s2
1B

�WBþ s4
1

4
B�MBþ V � G,

Ĥ4;5 ¼ s2
1B

�WC þ s4
1

4
B�MC,

Ĥ5;5 ¼ s2
1C

�WC þ s4
1

4
C�MC � ð1 � l1ÞV ,

Ĥ6;6 ¼ �M:

Remark 3.8 In Liu and Chen (2016), the global expo-

nential stability of complex-valued neural networks with

asynchronous time delays is established by decomposing

the complex-valued networks into its real and imaginary

parts and construct an equivalent real-valued system. The

authors Xu et al. (2014) derived the exponential stability

condition for a class of complex-valued neural networks

with time-varying delays and unbounded delays by utiliz-

ing the vector Lyapunov–Krasovskii functional method,

homeomorphism mapping lemma and the matrix theory. In

Liu and Chen (2016) and Xu et al. (2014), the authors

addressed the stability results of complex-valued neural

networks with constant or time-varying delays by sepa-

rating their activation function into its real and imaginary

parts. However, when the activation functions cannot be

expressed by separating their real and imaginary parts, the

proposed stability results in Liu and Chen (2016) and Xu

et al. (2014) cannot be applied. It should be mentioned

that, in this present paper, the proposed stability criterion

for complex-valued neural networks is valid regardless of

the active functions can be expressed by separating their

real and imaginary parts. Thus, the derived delay depen-

dent stability condition in this paper is more general than

the existing literature (Liu and Chen 2016; Xu et al. 2014).

Numerical example

In this section, we give three numerical examples to

demonstrate the derived main results.

Example 4.1 Consider a two-dimensional complex-val-

ued neural networks (3) with the following parameters:

Cogn Neurodyn (2017) 11:293–306 301

123



A ¼
9 0

0 9

� �

;B ¼
1 � i � 1 � i

2 � i 2 � 5i

� �

;C ¼
1 � i 1 � i

1 þ i � 1 � i

� �

;

The activation functions are chosen as f ðzðtÞÞ ¼
1�e�xðtÞ

1þe�xðtÞ þ i 1
1þe�yðtÞ. The time-varying delays are considered as

s1ðtÞ ¼ 0:2sint þ 0:2, s2ðtÞ ¼ 0:5cost þ 0:8, which satis-

fying s1 ¼ 0:4; s2 ¼ 1:3; l1 ¼ 0:2 and l2 ¼ 0:5: Take C ¼
diagf0:5; 0:5g and r ¼ 0:08; by using the effective YAL-

MIP toolbox in MATLAB, we can find the feasible solu-

tions to linear matrix inequality in (6) as follows:

P ¼
1:5815 � 0:1675 þ 0:0342i

�0:1675 � 0:0342i 1:0867

� �

;

Q ¼
0:2537 � 0:1143 þ 0:0229i

�0:1143 � 0:0229i 0:0772

� �

;

R ¼
0:2538 � 0:1144 þ 0:0229i

�0:1144 � 0:0229i 0:0773

� �

;

S ¼
0:2507 � 0:1129 þ 0:0226i

�0:1129 � 0:0226i 0:0764

� �

;

T ¼
0:2533 � 0:1141 þ 0:0229i

�0:1141 � 0:0229i 0:0771

� �

;

U ¼
0:8848 � 0:2728 þ 0:0567i

�0:2728 � 0:0567i 0:4261

� �

;

V ¼
7:0635 � 1:2995 þ 0:8830i

�1:2995 � 0:8830i 3:1009

� �

;

W ¼
0:0061 � 0:0028 þ 0:0006i

�0:0028 � 0:0006i 0:0017

� �

;

J ¼
87:0921 � 0:0011 þ 0:0002i

�0:0011 � 0:0002i 87:0905

� �

;

X ¼ 10�03 �
0:5620 � 0:2517 þ 0:0505i

�0:2517 � 0:0505i 0:1735

� �

;

M ¼
0:2831 � 0:1315 þ 0:0264i

�0:1315 � 0:0264i 0:0802

� �

;

Y ¼ 10�03
1:1409 � 0:1424 þ 0:0287i

�0:1424 � 0:0287i 0:7563

� �

;

N ¼
0:0026 � 0:0012 þ 0:0002i

�0:0012 � 0:0002i 0:0007

� �

;

O ¼ 10�02 �
0:8791 0:5352 � 0:0968i

0:5352 þ 0:0968i 1:4391

� �

;

and G ¼ diagf9:6363; 7:7007g: According to Theorem 3.1,

the complex-valued neural networks with leakage delay

and additive time-varying delays (3) is globally asymp-

totically stable. Figures 1 and 2 show that the time

responses of the real and imaginary parts of the system (3)

with 21 initial conditions, respectively. The phase

trajectories of the real parts of the system (3) is given in

Fig. 3. Similarly, the phase trajectories for imaginary parts

of the system (3) is given in Fig. 4. Also, Figs. 5 and 6

depict the real and imaginary parts of states of the con-

sidered complex-valued neural networks (3) with r ¼ 1

under the same 21 initial conditions. It is easy to check that

the unique equilibrium point of the system (3) is unstable,

this implies that the delays in leakage term on the dynamics

of complex-valued neural networks cannot be ignored

when we analyze the stability of complex-valued neural

networks.

Example 4.2 Consider the following two-dimensional

complex-valued neural networks (25) with additive time-

varying delays:

_zðtÞ ¼ �AzðtÞ þ Bf ðzðtÞÞ þ Cf ðzðt � s1ðtÞ � s2ðtÞÞÞ;

where

A ¼
10 0

0 10

� �

;B ¼
2 � i � 1 � 3i

2 � 2i 2 � i

� �

;C ¼
2 � i 1 � i

1 þ i � 3 � i

� �

:

The additive time-varying delays are taken as s1ðtÞ ¼
0:5 sinð0:2tÞ and s2ðtÞ ¼ 0:4 cosð0:6tÞ. Choose the nonlin-

ear activation function as f ðzÞ ¼ tan hz with

C ¼ diag f0:5; 0:5g, s1 ¼ 0:5, s2 ¼ 0:4, l1 ¼ 0:1, l2 ¼
0:24: By using the YALMIP toolbox in MATLAB along

with the above parameters, the linear matrix inequality (26)

is feasible. From Figs. 7 and 8, we have found that the state

trajectories of the system with its real and imaginary parts

are converge to the zero equilibrium point with different

initial conditions, respectively. The phase trajectories of

real and imaginary parts of the system (25) are depicted in

Figs. 9 and 10, respectively. By Corollary 3.5, we can

conclude that the proposed neural networks (25) is globally

asymptotically stable.

0 0.5 1 1.5 2 2.5 3
−50
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50
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(t)

0 0.5 1 1.5 2 2.5 3
−50

0

50

Time(Secs)

x 2
(t)

Fig. 1 State trajectories of real parts of the system (3) in Example 4.1
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Example 4.3 Consider the following two-dimensional

complex-valued neural networks (27) with time-varying

delays:

_zðtÞ ¼ � AzðtÞ þ Bf ðzðtÞÞ þ Cf ðzðt � s1ðtÞÞÞ;

where

A ¼
8 0

0 8

� �

;B ¼
�1 � 2i 1 � 3i

2 � 3i 4 � i

� �

;C ¼
2 � 2i 1 � i

3 þ i 1 � i

� �

:

Choose the nonlinear activation function as f ðzÞ ¼ tan hz

with C ¼ diag f0:5; 0:5g. The time-varying delays are

chosen as s1ðtÞ ¼ 0:1 sin t þ 0:6 which satisfies s1 ¼ 0:7,

l1 ¼ 0:1: By employing the MATLAB YALMIP Toolbox,

we can find the feasible solutions to linear matrix

inequalities in (28) as follows, which guarantee the global

asymptotic stability of the equilibrium point.
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Fig. 2 State trajectories of imaginary parts of the system (3) in

Example 4.1
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Fig. 6 Time response of imaginary parts of the system (3) when

d ¼ 1
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Fig. 7 Trajectories of the real parts x(t) of the states z(t) for the neural

network (25)
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Fig. 3 State trajectories of neural networks (3) between real subspace

½Reðz1Þ;Reðz2Þ�
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Fig. 4 State trajectories of neural networks (3) between imaginary

subspace ½Imðz1ðtÞÞ; Imðz2ðtÞÞ�
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Fig. 5 Time response of real parts of the system (3) when d ¼ 1
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Fig. 9 State trajectories of neural networks (25) between real

subspace ½x1ðtÞ; x2ðtÞ�
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Fig. 10 State trajectories of neural networks (25) between imaginary

subspace ½y1ðtÞ; y2ðtÞ�
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Fig. 11 Time responses of real parts of the system (27) with 21 initial

conditions
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Fig. 12 Time responses of imaginary parts of the system (27) with 21

initial conditions
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Fig. 8 Trajectories of the imaginary parts y(t) of the states z(t) for the

neural network (25)
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Fig. 13 Phase trajectories of real parts of the proposed system (27)
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P ¼
49:3881 � 14:0945 þ 18:3994i

�14:0945 � 18:3994i 37:0857

� �

;

Q ¼
51:1062 � 19:9936 þ 26:6048i

�19:9936 � 26:6048i 39:9656

� �

;

S ¼
44:6015 � 17:1853 þ 23:1041i

�17:1853 � 23:1041i 34:9374

� �

;

V ¼ 1002 �
1:7782 � 0:0575 � 0:4004i

�0:0575 þ 0:4004i 0:7124

� �

;

W ¼
10:7229 � 4:4289 þ 5:6768i

�4:4289 � 5:6768i 7:4946

� �

;

M ¼
38:5826 � 8:7800 þ 11:8910i

�8:7800 � 11:8910i 31:9817

� �

;

G ¼ diagf311:1505; 230:5390g: Figures 11 and 12,

respectively, displays state trajectories of the complex-

valued neural networks (27) with its real and imaginary

parts are converge to the origin with 21 randomly selected

initial conditions. The phase trajectories of real and

imaginary parts of the system (27) are drawn in Figs. 13

and 14, respectively.

Conclusion

In this paper, the global asymptotic stability of the com-

plex-valued neural networks with leakage and additive-

time varying delays has been studied. The sufficient con-

ditions have been proposed to ascertain the global

asymptotic stability of the addressed neural networks based

on the appropriate Lyapunov–Krasovskii functional with

involving triple integral terms. The complex-valued linear

matrix inequalities are used to study the main results which

can be easily solved by YALMIP tool in MATLAB. Three

numerical examples have been presented to illustrate the

effectiveness of theoretical results.
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