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Abstract In the context of brain-computer interface (BCI)

system, the common spatial patterns (CSP) method has

been used to extract discriminative spatial filters for the

classification of electroencephalogram (EEG) signals.

However, the classification performance of CSP typically

deteriorates when a few training samples are collected from

a new BCI user. In this paper, we propose an approach that

maintains or improves the recognition accuracy of the

system with only a small size of training data set. The

proposed approach is formulated by regularizing the clas-

sical CSP technique with the strategy of transfer learning.

Specifically, we incorporate into the CSP analysis inter-

subject information involving the same task, by minimizing

the difference between the inter-subject features. Experi-

mental results on two data sets from BCI competitions

show that the proposed approach greatly improves the

classification performance over that of the conventional

CSP method; the transformed variant proved to be suc-

cessful in almost every case, based on a small number of

available training samples.

Keywords Brain-computer interfaces (BCI) � Common

spatial pattern (CSP) � Transfer learning �
Electroencephalogram (EEG) � Motor imagery (MI)

Introduction

Noninvasive brain-computer interface (BCI) is a procedure

for translating human intentions into control signals,

potentially providing a direct communication channel

between the brain and external devices by using brain

activity recorded as electroencephalogram (EEG) signals

(Wolpaw et al. 2002). Much of the impetus for developing

BCI methods is derived from the need for assisting, aug-

menting, and repairing the cognitive or sensory-motor

functions of disabled people (Wolpaw et al. 2002; Ebra-

himi et al. 2003; Zhang et al. 2013). For every new user of

an EEG-based BCI system, however, extensive tagged

training samples are required due to the subject-specific

features of the system. Obviously, tagging a large number

of training samples represents a laborious and time-con-

suming task. This limitation of existing BCI system calls

for improved procedures so that the preparation time could

be shortened; in particular, the need for collection of

training samples for each new user could be reduced, or

even obviated (Krauledat et al. 2008).

The implementation of BCI system is frequently chal-

lenging due to the need for sufficient training samples, as is

required to build a reliable classification model. In order to

ensure the efficient operation of machine learning system, a

novel strategy based on transfer learning has been proposed

to alleviate the classification problem by sharing training

samples between individuals (Shao et al. 2015). Unlike the

classical strategy, in which both the training and testing

EEG data for classification must be recorded from the same

subject, the transfer learning-based strategy enables the

transfer of the existing samples from other subjects (named

as source domain) into target domain (the samples of the

subject to be classified) (Pan and Yang 2010; Raina et al.

2007). The objective of transfer learning is to transfer
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useful information from a source group into the target

training data set so as to overcome the problem of having

small calibration data. As we know, the large inter-subject

variability of EEG signals has been an impediment to the

transfer learning. We thus would eliminate the variability

typically existed in user-specific training sample data sets.

Attainment of this goal would allow the routine use by new

users of training samples collected previously in a data set

from other subjects. The time required for new training

sessions would substantially be shortened, which thus

greatly improves the operating efficiency and general

applicability of the BCI system.

In this paper, we develop a novel framework of spatial

filter learning by introducing the transfer learning strategy

into the classical common spatial patterns (CSP) technique

(Blankertz et al. 2008b; Ramoser et al. 2000). The CSP

method seeks spatial filters that maximize the discrim-

inability of two classes of signals so as to extract dis-

criminative features (Blankertz et al. 2006; Yue et al. 2012;

Zhang et al. 2015). However, the conventional CSP method

does not incorporate other subjects’ information engaged in

the same task as the subject of interest. The performance of

CSP would deteriorate when a given subject has very few

training samples (Grosse-Wentrup et al. 2009).

The concept of transfer learning, originally developed in

the field of machine learning (Pan and Yang 2010; Raina

et al. 2007; Shao et al. 2015), was then adopted in the CSP

community. Krauledat et al. (2008) used it for calibration

transfer of different sessions. Afterwards, the transfer

learning technique was employed for subject-to-subject

transfer by linearly combining covariance matrices asso-

ciated with subjects, named composite CSP (CCSP) (Kang

et al. 2009). Likewise, the covariance matrix of the target

subject was regularized with an identity matrix as well as

covariance matrices of other subjects (Lu et al. 2009).

Further, rather than using all source subjects available,

Lotte and Guan (2010, 2011) used a subset of automatically

selected subjects to formulate a weighted sum of covari-

ance matrices, named regularized CSP with selected sub-

jects (SSRCSP). Clearly, these methods aim to address the

estimation of covariance matrix. With samples from mul-

tiple subjects, Devlaminck et al. (2011) optimized a spatial

filter that is decomposed into a global filter and a subject-

specific filter. However, their method has a very restrictive

assumption that there exists similarity between spatial fil-

ters. Besides, the solving of the objective function is

complex due to not a generalized eigenvalue problem.

Samek et al. (2013) developed an approach that extracted

nonstationary subspace across subjects and thus alleviated

the gap between sessions of training and testing. Never-

theless, this method assumes that the principal nonsta-

tionarity is similar across subjects and can be transferred.

Recently, the composite expression of the covariance

matrix given in (Kang et al. 2009) was applied to local

temporal correlation CSP, yielded composite local tempo-

ral correlation CSP (CLTCCSP) (Hatamikia and Nasrabadi

2015). Moreover, the transfer learning technique was

extended to discriminative spatial pattern (DSP) based on

empirical maximum mean discrepancy to reduce differ-

ences between subjects (Wang et al. 2015), and was gen-

eralized to transfer different domains of diseases (Cheng

et al. 2015).

Unlike regularized covariance matrix and without

restrictive assumption, we propose a variant of CSP that

entails subject-to-subject transfer by directly comparing

the difference of features between source and target

subjects. Specifically, we regularize the spatial filters of

CSP by requiring minimization of the feature difference.

The regularization technique is commonly used to

implement prior information into the CSP learning pro-

cedure (Lotte and Guan 2011). With a regularization term

plugged in the formulation of CSP, the previous regu-

larization addressed different situations, as for that

reviewed in (Lotte and Guan 2011) as well as for small

sample setting (Lu et al. 2010), semi-supervised learning

(Wang and Xu 2012), stationary learning (Samek et al.

2012), robust learning (Kang et al. 2009; Samek et al.

2013; Wang and Li 2016), and nonlinear modeling (Zhao

et al. 2010). The basic principle of the proposed regu-

larized CSP is to extract filters that maximize the dis-

criminability of the two classes of EEG signals and

meanwhile minimize the feature difference between the

target subject and the source subject (Samek et al. 2012).

Since signals from the source subjects may differ from

the target subject, we add weights in the penalty term of

the regularized CSP, with formulation of the weights by

using the Frobenius distance (Hatamikia and Nasrabadi

2015). We report the experimental results on two publicly

available EEG data sets, which show the competitiveness

of our proposed approach.

In short, the contribution of this paper is two-fold.

Firstly, we propose a new framework of regularized CSP

with the technique of transfer learning. That is, we intro-

duce the feature difference-based transfer learning strategy

into the procedure of spatial filtering with CSP so as to

address the problem of small sample size of the target

subject. Secondly, we apply different weights to the feature

differences according to the similarities between the source

subjects and the target subject.

The remainder of this paper is organized as follows. In

‘‘Methods’’ section, we propose the regularized CSP

algorithm with transfer learning. The experiments are

reported in ‘‘Experiments’’ section, followed by the results

in ‘‘Results’’ section. Finally, we discuss the results and

conclude the paper in ‘‘Discussion and conclusion’’

section.
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Methods

Common spatial patterns

The CSP algorithm aims at learning spatial filters, which

maximize the variance of the EEG signals from one class

while minimizing the variance of the EEG signals from the

other class, thus achieving optimal discriminative features

based on the variances. In this algorithm, the matrix Xi 2
RD�T represents the EEG signals of a single trial i, where

D denotes the number of channels, and T is the number of

samples within a trial. We consider the task as a binary

classification problem, the goal of which is to assign to

testing trials the appropriate labels chosen from either class

1 or class 2. The CSP problem can be solved by maxi-

mizing (or conversely by minimizing) the Rayleigh quo-

tient (Blankertz et al. 2008b), given by

J xð Þ ¼ xTC1x
xTC2x

ð1Þ

where C1 and C2 are the average covariance matrices from

classes 1 and 2, respectively. The spatial filters are solved

by the generalized eigenvalue equation

C1x ¼ kC2x ð2Þ

where the leading generalized eigenvectors associated with

the first few largest eigenvalues correspond to the spatial

filter x that maximizes the variance of class 1 while min-

imizing the variance of class 2.

Regularized common spatial patterns based

on transfer learning with weighted subjects

The regularization procedure of CSP (Lotte and Guan,

2011) is performed by adding a penalty term PðxÞ to the

denominator of the objective function of CSP, as defined as

the Rayleigh quotient in Eq. (1). Specifically, we maximize

the Rayleigh quotients separately for each class, i.e.,

J xð Þ ¼ xTC1x
xTC2xþ aPðxÞ ð3Þ

J0 xð Þ ¼ xTC2x
xTC1xþ aPðxÞ ð4Þ

where C1 and C2 are calculated using the training trials of

the source subjects and the training trials (any available) of

the target subject, and the parameter a is a user-defined

positive constant which adjusts the influence of the regu-

larization term. We incorporate inter-subject information

into the penalty term PðxÞ by introducing a measure of

inter-subject information, which is the absolute difference

between the average filtered covariances of the source and

the target subject samples. Mathematically, given a target

subject, we seek to minimize the following quantity

PðxÞ ¼
X

s 6¼t

xTCsx� xTCtx
�� �� ð5Þ

where Cs is the average covariance matrix of the source

subject and Ct the average covariance matrix of the target

subject. Here, Ct is calculated by using all the trials

(without labels) of the target subject. Note that there is no

any class information involved, as suggested in (Wang

et al. 2015). The basic idea of (5) is to measure the dif-

ference between the source subjects and the target subject.

We then extract spatial filters that minimize the difference

between the source subjects and the target subject during

maximizing the variances between two classes.

For computational consideration, the penalty PðxÞ
cannot be plugged directly into the Rayleigh quotient. We

therefore apply an operator C that makes symmetric

matrices positive and definite. More precisely, if a sym-

metric matrix M has the eigen-decomposition M ¼
VdiagðdiÞ VT , then the operator returns CðMÞ ¼
V diagðjdijÞ VT , i.e., the signs of all negative eigenvalues

are inverted, thus insuring that the penalty term is always

positive in magnitude. Clearly, if follows that
X

s6¼t

xTCsx� xTCtx
�� �� ¼

X

s6¼t

xTðCs � CtÞx
�� ��

�
X

s6¼t

xTCðCs � CtÞx
ð6Þ

We thus minimize the upper bound of PðxÞ instead.

Mathematically, we use the expression
P

s6¼t x
TCðCs�

CtÞx as penalty term and plug it into the objective function

of CSP. By this means we maximize the regularized

objective functions, as given by

~J xð Þ ¼ xTC1x
xTC2xþ a

P
s 6¼t x

TCðCs � CtÞx ð7Þ

~J0 xð Þ ¼ xTC2x
xTC1xþ a

P
s 6¼t x

TCðCs � CtÞx ð8Þ

In actual fact, the source subjects do not play equal roles

in the classification of the target trials; we endeavor to

emphasize the weighting of source subjects who are more

similar to the target subject, based on objective measures of

similarity. Specifically, the similarity between subjects is

defined by using the Frobenius norm, given by (Hatamikia

and Nasrabadi 2015)

FCs;Ct ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trððCs � CtÞðCs � CtÞTÞ

q
ð9Þ

where the notation tr denotes the trace operator. We assign

larger weights to the source subjects who have more sim-

ilarity with the target subject, with the weights determining
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the influence of the source subjects on the penalty term

defined as

bst ¼
1

Nt
:

1

FCs;Ct

ð10Þ

where Nt ¼
P

s6¼t 1=FCs;Ct is the normalization constant.

Consequently, the Eqs. (7) and (8) are reformulated as

~J xð Þ ¼ xTC1x
xTC2xþ a

P
s 6¼t bstx

TCðCs � CtÞx ð11Þ

~J0 xð Þ ¼ xTC2x
xTC1xþ a

P
s 6¼t bstx

TCðCs � CtÞx ð12Þ

For resolving (11) and (12), the corresponding eigen-

value equation becomes

C1x ¼ k C2 þ a
X

s6¼t

bstCðCs � CtÞ
 !

x ð13Þ

C2x ¼ k C1 þ a
X

s6¼t

bstCðCs � CtÞ
 !

x ð14Þ

Experiments

EEG data sets

We evaluated the effectiveness of the proposed regularized

CSP with the transfer learning (RCSPTL) using two EEG

data sets of motor imagery (MI) derived from public BCI

competitions. We compared the classification performance

of this RCSPTL with that of the traditional CSP in order to

verify the predicted advantages of our transfer learning-

based method.

1. Data set IVa-BCI competition III This public domain

data set had been recorded from five subjects who were

asked to perform cued motor imagery of two classes,

i.e., motion of the right hand and the right foot. The

EEG measurements were recorded using 118 elec-

trodes, band-pass filtered between 0.05 and 200 Hz

and sampled with 100 Hz. A total of 280 trials were

available for each subject, among which, 60, 80, 30, 20

and 10% were fixed and labeled by the organizing

committee of the contest as training samples for A1,

A2, A3, A4 and A5, respectively. As such, the

provided data was already divided into the training

group and the testing group. The labels for the trials in

the testing group were not revealed before the BCI

competition III, in which the challenge was to make a

good classification despite having only a small training

set. Given this property, the data set was an ideal

choice for interrogating a recognition method using

information from other subjects with many labeled

trials.

2. Data set IIa-BCI competition IV This data set was

constructed by EEG recording from nine subjects who

carried out left hand, right hand, foot and tongue MI

tasks. The signals were recorded using 22 EEG

channels, sampled with 250 Hz and bandpass filtered

between 0.5 and 100 Hz with Notch filter on. Only the

data of left and right hands MI were used for the

present study. Each subject participated training and

testing sessions, both of which containing 72 trials for

each class. The given data were also divided into

training and testing parts by the competition

organizers.

Data processing

The same preprocessing was applied for all the data sets.

The EEG signals were band-pass filtered with a fifth order

Butterworth filter in the range 8–30 Hz, which contained

the main frequencies involved in MI (Ramoser et al.

2000), and time interval ranging from 0.5 to 2.5 s were

applied used after the visual cue instructing the subjects

to perform the assigned motor imaginary tasks (Lotte and

Guan 2011).

We used RCSPTL to extract features from the data sets.

In order to investigate the impact of the weights as defined

in (10), we chose two ways to implement the RCSPTL

method: (a) Introduced the weights bst into the penalty

term, which we called RCSP based on transfer learning

with weighted sources (RCSPTLw), and (b) considered

that all the source subjects had an equal role in the

weighting. Furthermore, we considered a transient trans-

form version of CSP (tvCSP), which was formed by

dropping out the penalty term in RCSPTL. In order to show

the effect of the subject-to-subject transfer, we performed

the classification by using the original CSP method, which

had been trained only on the target subject’s own training

data. In addition, three existing CSP-based transfer learn-

ing methods (i.e., CCSP, SSRCSP, CLTCCSP) were

applied to give more comparisons with the results of the

proposed algorithm. The relevant settings of the methods

mentioned above were summarized in Table 1. For

example, in the experiment for subject A1, all 168 training

trials of subject A1 were used as the training data when

performing the traditional CSP. In contrast, while per-

forming the RCSPTLw for subject A1, the training data

consisted of his/her own training data as well as the 392

(i.e., 224 ? 84 ? 56 ? 28) training trials from the other

four source subjects. To investigate further the role of the

transfer strategy, we varied the size of the training trials of
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the target subject from zero to the complete set of all

training trials.

The parameter a in the RCSPTL method was selected by

using the technique of ten-fold cross-validation on the

training trials. Then, the spatial filters were learnt on the

training trials, which contained the training trials of the

source subjects and the trials from the training part of the

target subject. In our experiments, the first three pairs of

spatial filters (Lotte and Guan 2011) were used for

extracting features. Finally, the log-variances of the spa-

tially filtered EEG signals were used as input features for

linear discriminant analysis (LDA) so as to classify the

remaining trials of the target subject.

Results

Classification performances on data set one

The classification accuracies on data set one were reported in

Table 2. In this experiment, the number of training trials

associated with each subject was set as in the description of the

‘‘EEG data sets’’ subsection. Although all three methods (i.e.,

tvCSP, CSPTL, and CSPTLw) borrowed data from the other

subjects, the classification results obtained by RCSPTLwwere

significantly higher than that of tvCSP (p\ .05) for every

target subject, and also greater than that of RCSPTL. Notably,

the RCSPTLw gained a respectable recognition rate

Table 1 The settings of CSP, CCSP, SSRCSP, CLTCCSP, tvCSP, RCSPTL and RCSPTLw

Training trials Testing trials Data from other subjects Penalty Weighted

CSP Training trials of target subject Testing trials of target subject No No No

CCSP Training trials of source subjects

(? training trials of target subject)

Testing trials of target subject Yes No Yes

SSRCSP training trials of source subjects

(? training trials of target subject)

Testing trials of target subject Yes No Yes

CLTCCSP training trials of source subjects

(? training trials of target subject)

Testing trials of target subject Yes No Yes

tvCSP training trials of source subjects

(? training trials of target subject)

Testing trials of target subject Yes No No

RCSPTL training trials of source subjects

(? training trials of target subject)

Testing trials of target subject Yes Yes No

RCSPTLw training trials of source subjects

(? training trials of target subject)

Testing trials of target subject Yes Yes Yes

For the six latter methods, the size of the training trials of the target subject ranged between zero and the complete set of all training trials

Table 2 Classification rates (%) of CCSP, SSRCSP, CLTCCSP, tvCSP, RCSPTL, and RCSPTLw, which used data from other subjects, as well

as the traditional CSP, for every target subject tested on the data set IVa of BCI competition III

Training trials Target subject CSP CCSP SSRCSP CLTCCSP tvCSP RCSPTL RCSPTLw

Training trials of all source subjects A1 NaN 54.46 59.63 61.84 58.04 54.46 65.18

A2 NaN 63.57 64.57 63.32 33.93 48.21 82.14

A3 NaN 60.71 61.23 62.53 49.49 51.53 63.27

A4 NaN 61.61 60.87 65.24 49.55 51.79 75.89

A5 NaN 64.68 65.33 66.82 63.49 48.41 86.90

Mean NaN 61.01 62.33 63.95 50.90 50.88 74.68

Std. NaN 3.56 2.22 1.83 10.01 2.34 9.24

Training trials of all source subjects ?

training trials of target subject

A1 66.07 66.96 71.32 76.23 53.57 71.43 74.11

A2 91.07 96.43 91.07 96.84 85.71 92.86 94.64

A3 53.57 53.06 59.63 61.81 49.49 58.67 64.79

A4 71.88 71.88 71.88 72.79 51.79 58.04 74.11

A5 52.78 75.42 78.96 78.64 61.51 65.08 87.30

Mean 67.07 72.75 74.57 77.26 60.41 69.22 78.99

Std. 14.05 14.07 10.32 11.36 13.28 12.78 10.61
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(74.68 ± 9.24), while tvCSP and RCSPTL had performance

merely around the chance level when only using the training

data from the source subjects. The classification rate of

RCSPTLw (78.99 ± 10.61) was much greater than that of the

traditional CSP (67.07 ± 14.05) when the training trials of the

target subjectwere added.Besides, comparedwith the results of

the previous regularized algorithm (i.e., CCSP, SSRCSP,

CLTCCSP), the classification accuracies ofRCSPTLwshowed

superiority. Especially, in the condition without the targets’

own training data, the result of RCSPTLw was statistically

higher than that of CCSP, SSRCSP, and CLTCCSP (p\ .05),

such as, RCSPTLw (74.68 ± 9.24) versus CCSP (61.01 ±

3.56). Moreover, the classification rate of RCSPTLw (78.99 ±

10.61) was significantly higher than that of SSRCSP (74.57 ±

10.32) (p\ .05), when the training trials of the target subject

were added.

In view of the above results, we varied the training sam-

ples of the target subjects and looked for more convincing

results. The classification performances with varying num-

bers of training trials of the target subjects, as used in (Wang

and Xu 2012), were plotted in Fig. 1, where the means and

standard deviations over ten repetitions were depicted. Note

that all the training trials of the source subjects were used in

this figure. We point it out that, when none training trials of

the target subject are used, the covariancematricesC1 andC2

are calculated using the training trials of the source subjects,

Cs is calculated as the average covariance matrix of the

training trials of the source subject and Ct the average

covariance matrix of the testing trials of the target subject.

Classification performances on data set two

We proceeded to investigate the performances of all seven

methods mentioned above (CSP, CCSP, SSRCSP,

CLTCCSP, tvCSP, RCSPTL, and RCSPTLw) on data set

two. For each target subject, we evaluated the cases that none

or all of the training trials of the target subject were used in

the training procedure. Furthermore, we considered the case

of random selection of one-third of the training trials. The

average results of the four methods over ten repetitions for

each target subject were recorded. All the classification

results were reported in Table 3. The classification rate of

RCSPTLw (75.81 ± 13.86) was significantly higher than

that of the traditional CSP (67.36 ± 15.54) (p\ .05) and

that of RCSPTL (68.52 ± 13.41) (p\ .05) in the cases of

random selection of one-third of the training trials.

Discussion and conclusion

According to the size of the training trials of the target

subject used, our experiments were broadly performed in

three conditions: the target subject without own training

trials, with a few own training trials, and with mild size of

own training trials. For the case of data set one, the number

of training samples was not held constant. When the

training trials of the target subject were contained in the

training procedure, the results showed roughly that the

promotion of classification accuracies by RCSPTLw was

more apparent in the cases with fewer training trials, as

shown in Table 2. Specifically, in the situation of the least

own training samples (A5), RCSPTLw led to dramatic

increase in performance, attaining a score as high as 35%,

while the subject’s performance by CSP was close to the

chance level. Compared with the three CSP-based transfer

learning methods (i.e., CCSP, SSRCSP, CLTCCSP), the

relatively higher accuracies of the proposed RCSPTLw

approach were also shown in this case. On the other hand,

the encouraging results achieved in the cases without

training data from the target subject demonstrated the

effectiveness of our strategy of transfer learning. Gener-

ally, the transfer learning imparted more benefits for cor-

rect classification in case of subjects with few or no

training samples. This improvement in the efficiency of the

BCI system through the use of existing data allowed

reduction of the required recording time, sometimes to

zero.

The effect of the weights in RCSPTLw stood out

prominently in almost all cases, regardless of the variety of

the size of the training trials of the target subject, as shown

in Fig. 1. In particular, the recognition rate gained by

RCSPTLw remained relatively stable across a varying

number of training trials. The results showed that the novel

RCSPTLw approach was better than tvCSP and the tradi-

tional CSP methods in almost all cases. By comparing

RCSPTLw with the traditional CSP, the best improvement

(up to 40%) was evident for the particular case of the

minimum number of training trials of the target subject.

This substantial improvement confirmed that combining all

the source subjects with different weights did substantially

improve the quality of transfer information from the other

subjects. Exception occurred in the cases that subject A1

and A2 had relatively many own training trials. There, the

CLTCCSP method produced the highest classification

accuracies. Nevertheless, the RCSPTLw approach

demonstrated its advantage when the target’s own training

data reduced to few.

On data set two, the recognition was also successful for

the nine subjects when using only the training trials of the

source subjects. Further, the results for the less demanding

task indicated that when the training trials of the target

subject were cut to one-third, the RCSPTLw approach still

outperformed some other methods (i.e., the traditional

CSP, RCSPTL) in nearly all cases, which was consistent

with the results of experiment one. In other words, the

fewer training samples there were for the target subject, the

178 Cogn Neurodyn (2017) 11:173–181
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Fig. 1 Average classification rates (%), as well as standard devia-

tions, with varying numbers of training trials of the target subject for

the five subjects on data set IVa of BCI competition III. a subject A1,

b subject A2, c subject A3, d subject A4, e subject A5. In each panel,

the first column denotes the case that none training trials of the target

subject were used while the last column is the accuracy in the case of

using all the training trial of the target subject in the training process.

Each point represents the mean (±SD) of multiple determinations
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better the improvement that was obtained by RCSPTLw.

Compared with the existing three CSP-based transfer

learning methods (i.e., CCSP, SSRCSP, CLTCCSP),

RCSPTLw gained competitive classification accuracies.

Ultimately, these four methods were all regularized CSP

based on transfer learning strategy but with different

improvement ideas.

In order to obtain satisfied BCI performance, it is pre-

scriptively required to collect approximately 40 training

trials per class, as suggested in (Blankertz et al. 2008a). In

our study, RCSPTLw obtained satisfactory performance in

data sets I and II with only 20 or so training trials, and even

in the absence of any samples per class. The task of

developing an effective BCI system for analysis of EEG

signals has long been a matter of research interest. Gen-

erally speaking, a large number of labeled EEG trials are

needed to train the filters of the ordinary CSP approach.

This is an onerous requirement, requiring considerable

investment of time. In order to shorten the preparation time

of a BCI system, and aiming to maintain or even increase

the recognition rate of the system, we investigated in this

paper the performance of a novel RCSPTLw approach by

using existing trials available on two public data sets.

Comparing with the traditional CSP and tvCSP, the novel

Table 3 Classification performances of CSP, CCSP, SSRCSP, CLTCCSP, tvCSP, RCSPTL and RCSPTLw on data set IIa of BCI competition

IV

Training trials Target

subject

CSP CCSP SSRCSP CLTCCSP tvCSP RCSPTL RCSPTLw

Training trials of source subjects C1 NaN 75.25 75.63 76.42 74.31 77.78 78.47

C2 NaN 58.72 58.89 58.61 58.33 59.03 59.03

C3 NaN 90.36 89.53 90.11 90.27 88.89 91.34

C4 NaN 58.89 58.74 57.61 59.03 56.94 59.03

C5 NaN 54.69 55.67 55.32 56.25 57.64 57.64

C6 NaN 62.89 61.59 61.73 50.69 60.42 59.03

C7 NaN 73.39 73.54 73.61 73.61 63.89 75.63

C8 NaN 94.44 94.36 93.98 94.44 89.58 94.44

C9 NaN 65.86 63.69 62.97 58.33 59.03 61.81

Mean NaN 70.50 70.40 70.26 68.36 68.13 70.37

Std. NaN 13.34 13.15 13.42 14.80 12.75 13.88

Training trials of source subjects ?

training trials of target subject

C1 86.11 87.53 86.76 88.11 80.56 83.33 83.33

C2 57.64 56.91 59.51 58.33 58.33 58.33 59.03

C3 96.50 97.22 95.72 93.75 95.83 93.75 95.14

C4 70.10 70.14 70.84 67.36 61.81 63.89 71.81

C5 60.42 60.26 60.95 59.93 63.89 55.56 63.89

C6 70.14 66.58 66.93 68.28 63.89 68.06 63.89

C7 82.64 80.29 80.81 81.25 75.00 68.75 85.00

C8 93.00 94.64 95.22 95.75 97.22 93.06 97.22

C9 93.75 93.06 93.06 90.19 65.28 69.44 91.53

Mean 78.92 78.51 78.87 78.11 73.53 72.69 78.98

Std. 13.92 14.60 13.83 13.93 13.87 13.32 13.79

Training trials of source subjects ?

1/3 randomly chosen training trials

of target subject

C1 61.11 71.25 73.64 77.72 77.78 79.86 79.86

C2 50.00 61.54 63.52 61.85 60.41 56.25 60.42

C3 70.14 94.44 90.27 92.36 95.14 85.42 93.06

C4 68.06 61.53 60.47 62.58 65.28 59.03 64.42

C5 54.17 54.86 61.35 60.57 55.56 52.08 64.42

C6 49.30 63.76 63.97 62.61 63.19 63.89 59.03

C7 68.06 74.31 72.54 71.96 70.14 66.67 74.31

C8 97.22 95.83 94.12 96.83 93.75 93.06 96.14

C9 88.19 91.58 92.65 93.06 92.36 60.42 90.67

Mean 67.36 74.34 74.73 75.50 74.85 68.52 75.81

Std. 15.55 14.88 13.20 14.17 14.58 13.41 13.86
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RCSPTLw approach depended on the regularization of

CSP by means of transfer learning with weighted sources.

This procedure substantially increased the recognition

accuracy, especially when few or no training samples were

available from a given new BCI user. We find that

implementation of the, RCSPTLw approach enables

reduction (even complete omission) of the training sample

collection for a new subject, and thus greatly improve the

efficiency of BCI system.

Acknowledgements The authors would like to thank the anonymous

reviewers for their thoughtful comments and suggestions. This work

was supported in part by the National Basic Research Program of

China under Grant 2015CB351704 and the National Natural Science

Foundation of China under Grant 61375118.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Human and animal rights All procedures followed were in accor-

dance with the ethical standards of the responsible committee on

human experimentation (institutional and national) and with the

Helsinki Declaration of 1975, as revised in 2008 (5).

Informed consent Informed consent was obtained from all patients

for being included in the study.

References

Blankertz B, Müller KR, Krusienski DJ, Schalk G, Wolpaw JR,
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