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Abstract To investigate the abnormal brain activities in

the early stage of Parkinson’s disease (PD), the electroen-

cephalogram (EEG) signals were recorded with 20 chan-

nels from non-dementia PD patients (18 patients, 8

females) and age matched healthy controls (18 subjects, 8

females) during the resting state. Two methods based on

the ordinal patterns of the recorded series, i.e., permutation

entropy (PE) and order index (OI), were introduced to

characterize the complexity of the cortical activities for

two groups. It was observed that the resting-state EEG of

PD patients showed lower PE and higher OI than healthy

controls, which indicated that the early-stage PD caused the

reduced complexity of EEG. We further applied two

methods to determine the complexity of EEG rhythms in

five sub-bands. The results showed that the gamma, beta

and alpha rhythms of PD patients were characterized by

lower PE and higher OI, i.e., reduced complexity, than

healthy subjects. No significant differences were observed

in theta or delta rhythms between two groups. The findings

suggested that PE and OI were promising methods to detect

the abnormal changes in the dynamics of EEG signals

associated with early-stage PD. Further, such changes in

EEG complexity may be the early markers of the cortical

or subcortical dysfunction caused by PD.

Keywords Parkinson’s disease � EEG � Complexity �
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Introduction

As a common neurodegenerative disorder, Parkinson’s

disease (PD) presents with a series of symptoms and signs

known as parkinsonism (Kalia and Lang 2015). In clinics,

the symptoms of PD are predominantly characterized by

motor dysfunction, such as gait disturbance, bradykinesia,

rigidity, resting tremor, and postural instability (Kalia and

Lang 2015; Valls-Solé and Valldeoriola 2002; Jankovic

2008). These symptoms could bring about serious disabil-

ity and a reduction in the quality of life for the patients.

More than that, most of PD patients may suffer from

autonomic dysfunction, cognitive impairments or psychi-

atric disturbances (Moore et al. 2005; Lindgren and Dun-

nett 2012). Nowadays, about 7–10 million individuals

worldwide suffers from PD, and most of them are over

50 years of age (Bowman et al. 2016). This degenerative

disorder has become not only a medical but also a serious

social problem.

The clinical diagnosis for PD is usually based on the

patient history and physical examination. There is no

standard diagnostic test for PD. Usually, the presence of

both cardinal motor dysfunction and response to levodopa

are features that support a diagnosis of PD. In this proce-

dure, one of the challenges is to distinguish typical PD

from the atypical parkinsonism (Darbin 2012), such as age-

related parkinsonism or multiple system atrophy. That is

because some of the cardinal signs of parkinsonism are not

usually specific to PD. Especially, the motor symptoms are

very easily confused with the bodily functions of normal

aging, i.e., age-related parkinsonism (Darbin 2012; Kalia

and Lang 2015; Valls-Solé and Valldeoriola 2002; Janko-

vic 2008; Savitt et al. 2006; Miller and O’Callaghan 2015).

This makes an accurate diagnosis of PD difficult, particu-

larly in the early stages of PD. Even if carefully examined,
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the diagnostic accuracy of typical PD in clinics is only

around 80–90 % (Miller and O’Callaghan 2015; Gómez

et al. 2011). Therefore, it requires new approaches to

improve PD detection, especially in its early stages. This is

important for the efficient treatment of such degenerative

disorder of the nervous system.

Electroencephalogram (EEG) is a commonly used non-

invasive technique, which is able to depict brain electric

activity with high temporal resolution. The recorded EEG

waves have been shown to reflect the functional state of

cortical layers and their subcortical driving structures,

especially the cortical dysfunction of some etiologies

(Freeman and Quiroga 2013; Akar et al. 2015, 2016;

Bowman et al. 2016; Keller et al. 2014). In clinical and

basic research, EEG has been widely used to investigate

the potential markers of neuropsychiatric disorders,

including PD, schizophrenia, autism, major depressive

disorder, Alzheimer’s disease, epilepsy, and so on (Miller

and O’Callaghan 2015; Han et al. 2013; Gandal et al. 2012;

Klassen et al. 2011; Hampel et al. 2010; Kheiri et al. 2012;

Leuchter et al. 2009). Nowadays, it has become a common

tool of auxiliary diagnosis used in neurology and psychi-

atry (Kalia and Lang 2015; Miller and O’Callaghan 2015;

Freeman and Quiroga 2013), which is critical for the early

intervention and timely treatment of relevant disorders.

Many studies have focused on the spectral analysis of

brain activity in PD patients. The corresponding methods

were usually linear measures. Because they belonged to the

theory of random process, and the EEG signal was gener-

ally considered as a linear stochastic process in this case

(Pezard et al. 2001). With spectral analysis, several

pathological brain rhythms associated with PD have been

identified, especially in beta band. By characterizing the

local field potentials (LFPs) recorded in the subthalamic

nucleus (STN) or globus pallidus internus (GPi), it was

shown that the motor symptoms in PD patients were related

to an increased activity in alpha band and more importantly

in beta band (Beuter et al. 2014; Brown et al. 2004). By

analyzing the resting EEG signals, it was found that there

was a decrease of resting beta power (Stam et al. 1994;

Pezard et al. 2001) and a remarkable increase in theta and

low alpha powers in non-demented PD patients relative to

controls (Stoffers et al. 2007; Tanaka et al. 2000). Our

previous study (Han et al. 2013) found that such abnor-

malities in EEG sub-bands already occurred in the early

stages of the disease. Further, a number of studies con-

cluded that the most common abnormality of EEG in PD

patients was the generalized slowing of brain activity. For

instance, Serizawa et al (2008) showed that PD patients

exhibited a diffuse slowing in their quantitative EEG in

comparison to age-adjusted normal controls; Bosboom et al

(2006) found that the PD was characterized by a slowing of

resting-state brain activity involving theta, beta and gamma

bands, and dementia in PD was associated with a further

slowing of resting-state brain activity; Stoffers et al (2007)

further confirmed that the slowing of oscillatory brain

activity was a stable characteristic of PD without dementia.

They also made clear that the widespread slowing of brain

activity already occurred in the earliest clinical stages of

untreated PD patients (Stoffers et al. 2007). Apart from

spectral analysis, there were also investigations that

focused on the functional interaction between brain

regions. Here the brain was described as a complex net-

work, and graph theory was used to characterize the

structure and dynamics of relevant networks. With such

methods, Stoffers et al (2008) observed that the increased

resting-state functional connectivity in alpha range was a

feature of PD from the earliest clinical stages, and the

increases in theta or beta bands appeared later in the dis-

ease; Utianski et al (2016) recently found that the network

alteration and breakdown was the robust attribute of the

pathophysiology of PD cortical dysfunction.

Further, nonlinear analysis of brain activity has also

revealed reliable information about the underlying dynamics

related to cognitive process and brain pathology (Akar et al.

2015, 2016; Chenxi et al. 2016; Bhattacharya and Lee 2016;

Gao et al. 2011). One common method was to characterize

the complexity of the recorded neurosignals, since it carried

important information about the cortical or subcortical

dynamics (Akar et al. 2015, 2016; Chenxi et al. 2016). Such

nonlinear methods were different from spectral analysis,

since they belonged to information theory or dynamical

system theory (such as, chaos or fractal). Thus, the com-

plexity of neural signals was usually regarded as the result of

nonlinear deterministic dynamics, possibly a chaotic pro-

cess. With complexity measures, it has been offered valuable

predictions about the abnormal dynamics in neurosignals

produced by PD (Gómez et al. 2011; Stam et al. 1994, 1995;

Darbin et al. 2013; Müller et al. 2001). For example, Stam

et al (1994, 1995) used correlation dimension (D2) to

investigate the dynamics of resting EEG in the patients with

PD and dementia, and found a decreased complexity in both

patient groups compared to controls. They also observed that

the demented patients had significantly lower D2 and largest

Lyapunov exponent (L1) compared to controls, and simul-

taneously L1 was lower in dementia than that in PD patients

(Stam et al. 1995). Contrary to resting state, Müller et al

(2001) found that PD patients during the performance of a

complex motor task showed higher dimensionality than

controls, which indicated more complexity was contained

within the EEG recording. The calculation of above com-

plexity measures, i.e., D2 or L1, often requires long, sta-

tionary and noiseless signals to obtain meaningful results.

However, such condition is usually unable to be achieved for

EEG data (Gómez et al. 2011; Eckmann and Ruelle 1992).

Recently, Gómez et al (2011) applied another complexity
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measure, i.e., Lempel-Ziv complexity (LZC), to study the

MEG activity of PD, and found that the early-stage PD

patients showed lower complexity than controls for all MEG

channels. Nevertheless, LZC is based on a coarse-grained

measure of the recording. Then, it is possible that some

important information from the recorded signal might have

been lost with limited symbol conversions (Gómez et al.

2011). These earlier studies suggested that a reduced com-

plexity in resting-state EEG/MEG may be associated with

the cortical dysfunction produced by PD.

One alternative approach to determine the complexity of

neurosignal is the measure based on the ordinal patterns of

recorded times series. Two common methods are permuta-

tion entropy (PE) (Bandt and Pompe 2002) and order index

(OI) (Ouyang et al. 2010). The former measures the unpre-

dictability of time series (Li et al. 2010; Yi et al. 2014), while

the latter measures the predictability of the series. That is, a

recorded data with high complexity corresponds to a larger

PE and lower OI, whereas a low complexity leads to a lower

PE and larger OI. Earlier studies have shown that this kind of

complexity measures is particularly suitable for non-sta-

tionary time series (Cao et al. 2004; Keller et al. 2014). They

have been successfully applied to analyze epileptic and

anesthetic EEG data (Ouyang et al. 2010; Cao et al. 2004;

Keller et al. 2014; Li et al. 2007, 2008, 2010). In our previous

study (Yi et al. 2014), we have also used them to detect the

complexity changes of EEG activity associated with manual

acupuncture at acupoint ST 36 in healthy subjects. These

earlier studies demonstrate that the ordinal pattern based

measures, i.e., PE or OI, offer some distinct advantages over

classical complexity index. Such as, simplicity, robustness,

fast calculation, artifact resistant, and invariance with

respect to nonlinear monotonous transformations.

In this study, we examine the performances of both PE and

OI in differentiating the complexity of EEG rhythms of early-

stage PD patients from that of healthy controls. Our aim is to

use EEG to detect the early signs of abnormal brain dynamics

produced by this disorder. To our knowledge, this is the first

study to apply two methods to investigate the abnormal EEG

background activity in the early stages of PD. Based on pre-

vious studies mentioned above (Stam et al. 1995; Gómez et al.

2011), we hypothesized here that there would be a reduced PE

and increased OI values, i.e., reduced complexity, in the

patients in comparison with healthy controls.

Methods

Subjects

The whole recording procedure was performed with the

approval of the local ethics committee. 18 patients with a

clinical diagnosis of idiopathic PD (10 men, 8 women;

mean age 61.1 ± 7.7 years) and 18 age- and sex-matched

healthy subjects (10 men, 8 women; mean age

60.8 ± 8.6 years) participated in our study. All the sub-

jects were right handed and without deficits in hearing.

They were introduced to the nature of the investigation,

and their written informed consent was obtained according

to the declaration of Helsinki before EEG recording.

For PD patients, the disease diagnosis was based on the

medical history, neurological and physical examinations as

well as response to levodopa drugs. The exclusion criteria

included atypical parkinsonism, neuroleptic drug use,

antidepressants, dopamine blocking agents, alcohol abuse,

presence of other neurological or psychiatric conditions,

and any other severe illness. The mean duration of PD was

4 ± 2.2 years (range 1–7 years). The Hoehn and Yahr (H–

Y) stage was 1–2. Specifically, 8 of them were in stage 1, 6

were in stage 1.5, and 4 were in stage 2. Their scores on the

Mini-Mental-Status examination (MMSE) were 28.9 ± 1.7

(range 27–31), which were within normal limits. To reduce

the heterogeneity in the medication, the PD patients were

receiving levodopa drugs (i.e., Sinemet), and all of them

withdrew from levodopa for at least 12 h before the study.

For control group, the age-matched subjects were heal-

thy and intellectually, with no symptoms or history of any

neuropsychiatric disorder. All of them were normal on

neurological examination, and their scores of the MMSE

were 29.3 ± 1.1 (range 28–31).

EEG recording

EEG recording was performed in a quiet and dimly illu-

minated room shielded from outer electrical or magnetic

fields. The EEG data was recorded on a Neuroscan system

using 20 Ag–AgCl electrodes set on the scalp according to

the international 10–20 system. The position of relevant

electrode was as shown in Fig. 1a. Linked ears were used

as references, and EEG impedances were kept below 5 kX.

The EEG signals were recorded at a sampling rate of

256 Hz and then bandpass filtered at 0.25–75 Hz.

The subjects were seated upright in a comfortable re-

cliner with their eyes closed to attain a state of relaxed

wakefulness. During the recording, all the subjects in either

group were instructed and coached to be relaxed and alert.

For each subject, the EEG data was recorded for 5 min.

After that, 80 s (i.e., 20,480 data points) of multichannel

EEG signals free of signs of muscle artifact, ocular

movement and other artifacts were selected for further

analysis by an experienced technician, who was blind to

the diagnosis of PD. Figure 1b gives the examples of the

raw EEG for channel C4 and F3 respectively recorded from

PD patients and healthy controls.
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Data analysis

PE and OI

PE was a common complexity measure for continuous time

series, which was calculated by mapping signal onto a

symbolic sequence. The process was summarized as fol-

lows. For a given scalar series fx1; x2; x3; . . .; xi; . . .; xNg, a

vector Xi = [x(i), x(i ? s), …, x(i ? (m - 1)s] was

formed by embedding the original series to a m-dimen-

sional phase space. Here m was the embedding dimension

and s was the lag time. By arranging Xi in decreasing or

increasing order, we obtained m! possible permutations,

which was indicated by p. Using pjðj ¼ 1; 2; . . .;m!Þ to

denote the probability distribution of permutation pj, the

PE for this scalar series was defined as (Cao et al. 2004; Li

et al. 2010; Yi et al. 2014)

HpðmÞ ¼ �
Xm!

j¼1

pj ln pj ð1Þ

Based on this definition, the relevant normalized PE of

the series can be written as (Cao et al. 2004; Li et al. 2010;

Yi et al. 2014)

PE ¼ HpðmÞ
�

lnðm!Þ ð2Þ

This index was first proposed by Bandt and Pompe

(2002). Like other entropies, PE was a measure of the

unpredictability in the frequency distribution of a given

time series (Li et al. 2010; Yi et al. 2014). The more regular

the series, the smaller the PE was. Once all permutations

had the same probability, the value of PE was 1. In this

case, the relevant series was completely random.

OI was proposed by Ouyang et al (2010) to quantify the

degree of the order of EEG signals. Given a recorded scalar

series fy1; y2; y3; . . .; yi; . . .; yNg, we used a simple algo-

rithm to form a surrogate series fs1; s2; s3; . . .; si; . . .; sNg by

randomly shuffling it (Dolan and Spano 2001). Then, all of

the original data were included in a completely random

order. Although the surrogate data exactly preserved the

distribution of the original series, its ordinal patterns were

destroyed. After that, we applied embedding procedure to

both original and surrogate data to generate two vectors,

which were Yi = [y(i), y(i ? s), …, y(i ? (m - 1)s] and

Si = [s(i), s(i ? s), …, s(i ? (m - 1)s]. For vector Yi, we

computed its probability distribution pyðpiÞ ði ¼
1; 2; . . .;m!Þ for permutation pi, and then re-sorted it in the

order of descending frequency. In this way, a rank-fre-

quency distribution pyðpRiÞ ði ¼ 1; 2; . . .;m!Þ was formed.

The same process was performed on vector Si. Then, the OI

of the original series was defined by (Ouyang et al. 2010)

OIm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m!

m!� 1

Xm!

i¼1

pyðpRiÞ � psðpRiÞ
� �2

vuut ð3Þ

Here ps(pRi) was the rank frequency of the surrogate

data. To simplify the calculation of OI, Ouyang et al (2010)

proposed to assume that each permutation had identical

probability of occurrence in surrogate data, and simulta-

neously not to consider the finite length of the series. Under

these conditions, the ps(pRi) in surrogate data was a uni-

form distribution. Then, Eq. (3) became

OIm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m!

m!� 1

Xm!

i¼1

pyðpRiÞ � pe
� �2

vuut ð4Þ

where pe ¼ 1
m! ;

1
m! ; . . .;

1
m!

� �
. Unlike PE, a large value of OI

indicated that the time series contained more pre-

dictable information. When there were more random and

unpredictable components in the recorded series, the rele-

vant OI will be lower.

Fig. 1 a Location of 20 EEG channels used for analysis. b Examples

of EEG series recorded at C4 and F3 channels from one PD and one

healthy subject (referenced to linked ears)
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Before we performed complexity analysis on two

groups, the moving window of size 4 s with a shift step of

1 s was used to partition the recorded EEG into blocks of

data sets of short length 1024 points. To track the transient

changes of complexity within the recording, we computed

the PE and OI for each data subset. By taking the average

PE and OI values over all the windows corresponding to

each channel, we obtained two complexity measures per

channel and subject.

Further, the calculation of each complexity measure was

dependent on the embedding dimension m and lag s
(Ouyang et al. 2010; Cao et al. 2004; Keller et al. 2014; Li

et al. 2008, 2010). In our previous study (Yi et al. 2014),

we have systematically investigated how the values of

dimension m, lag s, and data length L influence PE and OI.

It was shown that m = 5 and s = 1 was suitable for length

L = 1024 when detecting the changes of PE or OI of EEG

series. We took these values in the following analysis.

Wavelet packet transform

We used wavelet packet transform (WPT) proposed by

Coifman et al (1990) to extract five rhythms in relevant

frequency band from the original EEG signals. The process

of decomposition was a recursive filter operation, which

was performed by a low-pass filter l(k) and a high-pass

filter h(k). The result of decomposition formed a WPT tree

of time series x(t) (Han et al. 2013; Sun and Chang 2002),

as shown in Fig. 2 (here level is j = 3). Since the WPT

contained the complete decomposition at each level, it was

able to achieve a higher multi-resolution for non-stationary

EEG data. Using filter l(k) and h(k), the wavelet packet

function can be obtained by the following recursive rela-

tionships (Han et al. 2013; Sun and Chang 2002; Akansu

and Haddad 2001);

w2i�1
jþ1 ðtÞ ¼

ffiffiffi
2

p Xþ1

k¼�1
lðkÞwi

jð2t � kÞ

w2i
jþ1ðtÞ ¼

ffiffiffi
2

p Xþ1

k¼�1
hðkÞwi

jð2t � kÞ
ð5Þ

Here w(t) was the so-called mother wavelet function. The

recursive relations of the wavelet packet component signals

between the jth level and the (j?1)th level can be written as

(Han et al. 2013; Sun and Chang 2002; Akansu and Haddad

2001)

x2i�1
jþ1 ðtÞ ¼

Xþ1

k¼�1
lðkÞxijð2t � kÞ

x2i
jþ1ðtÞ ¼

Xþ1

k¼�1
hðkÞxijð2t � kÞ

ð6Þ

For more details about WPT, please see Akansu and

Haddad (2001) or Sun and Chang (2002).

The EEG series recorded from two groups were

decomposed by five levels in our study, and there were 32

frequency bands at the 5th level. The frequency resolution

was estimated by (Han et al. 2013)

Df ¼ 1

2

fS

25
ð7Þ

Since the sampling rate was fS ¼ 256Hz in our study, the

relevant frequency resolution was Df ¼ 4Hz. In this case,

the range for each frequency band was f1: [0 Hz, 4 Hz], f2:

[4 Hz, 8 Hz], f3: [8 Hz, 12 Hz], f4: [12 Hz, 16 Hz], ……,

f31: [120 Hz, 124 Hz], and f32: [124 Hz, 128 Hz]. As a

result, the delta band of the original EEG was f1, the theta

band was f2, the alpha band was f3, the beta band was

f4 - f8, and the gamma band was f9 - f16.

Autoregressive burg method

To further appreciated whether the EEG rhythm extracted

by WPT was in the frequency band of interest, we used

autoregressive (AR) Burg method (Kay and Marple 1981)

to determine the power spectrum of each EEG segment.

This was a model-based method. For a given series

y(n) (0 B n B N), its AR model can be expressed by

yðnÞ ¼ �
Xq

i¼1

ciyðn� iÞ þ dðnÞ ð8Þ

where q = 10 was the model order, which was determined

by using Akaike information criterion (Akaike 1974). ci
was the AR coefficient and d(n) was the white noise with

variance r2. We referred {c1, c2, c3, …, cq, r
2} as to AR

parameters. The power spectral density (PSD) for y(n) was

(Yi et al. 2013; Han et al. 2013).Fig. 2 Third-level WPT of a time series
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PARðf Þ ¼
r2

1 þ
Pq

i¼1

cie�j2pfi

����

����
2

ð9Þ

We used Burg method to estimate the coefficients of the

AR model. Then, the PSD estimation became (Yi et al.

2013; Han et al. 2013; Kay and Marple 1981; Kay 1988)

P̂BURGðf Þ ¼
êq

1 þ
Pq

i¼1

ĉqðiÞe�j2pfi

����

����
ð10Þ

Here êq was the total least square error.

In the following study, the relative powers in delta,

theta, alpha, beta and gamma bands were obtained by

dividing the power in relevant sub-band by the total power.

Statistical analysis

The statistical analysis of the results was performed by a

Mann–Whitney U-test to evaluate the differences between

PD and control groups. For multiple comparisons, the

Bonferroni correction was applied to the P values. The

results were considered as significant at the level of

P\ 0.05/m. Here m was the factor of Bonferroni correc-

tion, which referred to the number of outcomes being

tested.

Results

PE and OI of the EEG series for PD and control

subjects

In this section, the complexity analysis was carried out

separately for each EEG channel. Figure 3a, b respectively

gave the values of PE and OI versus time for the sample

EEG data shown in Fig. 1b. It was observed that channel

C4 and F3 for PD patient were both characterized by lower

PE and higher OI most of the time compared to healthy

control. Figure 3c, d showed the statistical analysis of two

measures over all the windows for either channel. It was

indicated that the difference of PE or OI between two

groups were both statistically significant (P\ 0.05, Mann–

Whitney U-test with Bonferroni correction).

Figure 4 summarized the average PE and OI values

estimated for 18 PD patients or 18 control subjects at all

EEG channels. One can find that the PD patients displayed

lower PE for all EEG channels and higher OI for most

channels (except Fp2 and P3) compared to healthy con-

trols, as shown in Fig. 4a. The differences of PE values

between two groups were statistically significant for

channel Fp1, Fp2, F3, F8, C3, Cz, C4, T5, P3, T6 and O2

(P\ 0.05, Mann–Whitney U-test with Bonferroni correc-

tion). For OI values, the significant differences between

two groups occurred at less channels (P\ 0.05, Mann–

Whitney U-test with Bonferroni correction), which were

respectively F7, Fz, T3, C3, C4, Pz, P4 and O1. We also

calculated the average values of applied complexity mea-

sure (i.e., PE and OI) over 20 EEG channels for either

group. Figure 4b, c respectively gave the corresponding

boxplots at the whole brain level for PE and OI values. One

can find that the differences of PE and OI values between

PD and control subjects were both statistically significant

(P\ 0.05, Mann–Whitney U-test with Bonferroni correc-

tion). These results revealed that the complexity of cortical

EEG activity was reduced in the early-stage PD patients

than that in control subjects.

Complexity of five EEG rhythms for PD patients

and control subjects

Here we applied two complexity measures to five EEG

rhythms extracted by WPT, which were respectively in

delta, theta, alpha, beta, and gamma bands. Figure 5

showed the sample EEG waveform in each sub-band

decomposed from C4 channel as shown in Fig. 1b for two

groups. The right panels gave the corresponding PSD of

each rhythm estimated by AR Burg method. With PSD, we

further identified the relevant rhythm in the left side was in

the frequency band of interest.

Figure 6 summarized the average PE values of each

EEG rhythm estimated for 18 PD patients and 18 healthy

controls at all channels. The statistical results for average

OI values were summed up in Fig. 7. The average number

of EEG channels for PD group with decreased PE or

increased OI in each sub-band was given in Table 1.

Compared with controls, the gamma, beta and alpha

rhythms displayed lower PE value and higher OI value at

most EEG channels for PD patients. The differences of PE

and OI in three sub-bands between two groups were sta-

tistically significant for some channels (P\ 0.05, Mann–

Whitney U-test with Bonferroni correction), which were

marked by blue dots in the right panels of Figs. 6 and 7.

This indicated that the complexity of gamma, beta and

alpha rhythms was lower in PD patients than that in control

subjects. However, there were no obvious and consistent

differences between two groups for theta or delta rhythms.

One can observe that for some EEG channels, the com-

plexity measure (i.e., PE or OI) of either rhythm in PD

patients was higher than controls, which will be lower for

other channels. The significant differences between two

groups occurred at very few channels.

The statistical results in Fig. 8 confirmed the conclu-

sions shown in Figs. 6 and 7. Compared to controls, the

gamma, delta and alpha rhythms for PD patients were
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Fig. 3 a, b Respectively give

the time course of PE and OI

values of the EEG recorded at

C4 and F3 channels (as shown

in Fig. 1b). c, d Are the relevant

PE and OI values of either

channel averaged over all the

windows. Standard errors are

represented with vertical lines.

Asterisk indicates that the

difference between two

conditions is significant

(Bonferroni adjusted P\ 0.05)

Fig. 4 a Topographical

distribution of PE and OI values

for PD patients (left) and

healthy controls (center). The

right panels show the significant

differences of corresponding

measure between two groups

(Bonferroni adjusted P\ 0.05),

which are marked by blue dots.

The label of each channel has

been indicated in Fig. 1a. b,

c Are the boxplots of the PE and

OI values between two groups

averaged over 20 channels. The

notches in the box are a graphic

confidence interval (95 %)

about the median of a sample.

The lower and upper lines of the

‘‘box’’ are the 25th and 75th

percentiles of the sample, the

distance between the top and

bottom of the box is the

interquartile range, and the line

in the middle of the box is the

sample median. Outliers (red

plus sign) are cases with values

that are more than 1.5 times the

interquartile range. (Color

figure online)
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characterized by reduced PE value and increased OI value

at the whole brain level. The differences of relevant com-

plexity measure between two groups were all statistically

significant for three EEG rhythms (P\ 0.05, Mann–

Whitney U-test with Bonferroni correction). However, no

obvious and statistical differences of either complexity

measure between two groups were observed in theta or

delta sub-bands.

Fig. 5 a, b Give the examples

of five EEG rhythms in gamma,

beta, alpha, theta and delta

bands for PD and control

subjects. They are the

component signals of the fifth-

level WPT for the original EEG

series recorded at C4 channel

(as shown in Fig. 1b). The right

panels are the PSD of relevant

rhythm in the left side
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Finally, we investigated the relation of the complexity of

EEG rhythm to its power between conditions. Figure 9

showed the relative power in each sub-band at the whole

brain level for either group. Compared with controls, an

increase in the relative power of delta, theta and alpha

bands was observed for the patients, while the relative

power of beta or gamma bands was reduced. The differ-

ences of the relative power between two groups were sta-

tistically significant in theta, alpha and gamma bands

(P\ 0.05, Mann–Whitney U-test with Bonferroni correc-

tion). It was indicated that increasing the power of the EEG

rhythm would not be associated with the increased com-

plexity. Then, we were unable to predict a relation between

the oscillation and the irregularity of EEG from our

recorded data.

Discussion

Complexity is a common measure used to understand the

nature of cortical dynamics. There have been several

studies on the complexity of EEG/MEG signals in PD

patients, whereas it is still a controversial issue. Pezard et al

(2001) showed that the local entropy of EEGs was

increased in PD patients comparatively to healthy controls.

On the contrary, Stam et al (1994) found that the D2 and

the L1 of EEG in PD patients were significantly lower than

controls; Vaillancourt and Newell (2000) observed that the

resting EMGs exhibited lower approximate entropy in PD

patients compared to healthy subjects; Gómez et al (2011)

reported that the LZC of the resting-state MEG from early-

stage PD patients was lower than healthy controls. The last

Fig. 6 Topographical

distributions of PE values in

each sub-band for PD (left) and

control (center) subjects. The

right panels are the significant

differences of PE between two

groups (Bonferroni adjusted

P\ 0.05), which are marked by

blue dots. (Color figure online)
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three studies are in accordance with our predictions

obtained by PE or OI measures, which demonstrate that the

resting EEG/MEG activities in PD patients present an

overall loss of complexity compared to controls. Such

predictions also provide further support for the proposal

that a loss of complexity appears when the nervous system

becomes functionally impaired (Stam et al. 1994, 1995;

Akar et al. 2015, 2016; Chenxi et al. 2016; Gao et al. 2011;

Darbin et al. 2013; Müller et al. 2001; Keller et al., 2014).

In addition to above literatures, there have also been

studies on the complexity of EEG rhythms in different sub-

bands. Chen et al (2010) used LZ estimator to show that the

Fig. 7 Topographical

distributions of OI values in

each sub-band for PD (left) and

control (center) subjects. The

right panels are the significant

differences of OI between two

groups (Bonferroni adjusted

P\ 0.05), which are marked by

blue dots. (Color figure online)

Table 1 Number of EEG

channels (mean ± standard

deviation) with decreased PE

and increased OI in five

frequency bands for PD patients

compared to controls

Sub-band Number of channels

with decreased PE

Number of channels

with increased OI

Delta 9.3751 ± 3.1577 8.9687 ± 2.8764

Theta 10.0265 ± 2.1897 9.4599 ± 1.7455

Alpha 17.0682 ± 1.7106 16.1647 ± 1.2879

Beta 17.8473 ± 1.0944 17.7554 ± 0.1716

Gamma 16.1245 ± 2.0931 17.1463 ± 1.6648
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oscillatory activity in beta band had a reduced complexity.

Our group previously found that the wavelet packet

entropy in alpha or beta bands was both lower in PD

patients than healthy controls. In present study, the results

of PE and OI in alpha and beta bands are in accordance

with these earlier findings. A reduced complexity of the

oscillatory activity in beta band has been shown to be

associated with the akinesia and rigidity of PD (Chen et al.

2010; Rosin et al. 2007). Then, the reduced PE or increased

OI values in PD group observed by our recorded EEG data

may be regarded as potential markers for the motor

impairments of the patients.

It has been reported that the non-dementia PD patients

displayed an increased synchronization in alpha and beta

Fig. 8 Boxplots of the PE (left)

and OI (right) values of the

EEG rhythm in a delta, b theta,

c alpha, d beta, and e gamma

bands averaged over 20

channels between two groups.

The value of P labeled in each

panel has been adjusted by

Bonferroni correction

Cogn Neurodyn (2017) 11:147–160 157

123



bands by resting-state EEG/MEG study, especially in alpha

band (Palmer et al. 2010; Silberstein et al. 2005; Stoffers

et al. 2008). The reduction of complexity in either sub-band

observed in our study may underlie their increased syn-

chronized oscillations. Further, the oscillatory activity of

gamma band in basal ganglia has been hypothesized to play

a pro-kinetic role and to contribute to movement generation

(Brown 2003; Brown and Williams 2005; Crone et al.

1998). The abnormal changes in this sub-band have been

suggested as a possible basis for the symptoms of

bradykinesia and bradyphrenia in PD patients (Brown

2003; Jenkinson et al. 2013; Rowland et al. 2015). Then,

the gamma band activity becoming more predictable in our

study may be considered as a reflection of the reduced

motor and the cognitive decline in PD patients. Although

these interpretations are still speculative, they indicate that

resting EEG background activity could be available for

distinguishing PD patients from elderly healthy controls.

By using Mann-Whitney U-test with Bonferroni cor-

rection, we observed that the significant changes in com-

plexity measures between two groups were limited to some

specific brain regions, especially at C4, C3, and Cz chan-

nels. It is known that C3 and C4 channels are over sen-

sorimotor cortex, and Cz channel is over supplemental

motor area. The brain rhythms, such as beta, gamma, or

alpha, recorded in these cortical areas are tightly related to

the motor action and ability. The abnormities of the

oscillatory activity in relevant frequency band have been

shown to be associated with both the motor symptoms and

the disease progression of PD (Marsden et al. 2001;

Rowland et al. 2015). Then, the changes of PE or OI at C3

or C4 channels may be developed into a potential marker of

the dyskinesia caused by PD. However, it should be noted

that our complexity analysis of cortical activity is per-

formed by a sensor-based approach, which makes the PE or

OI results from different EEG channels highly correlated

(Stoffers et al. 2007; Olde Dubbelink et al. 2013; Gómez

et al. 2011). Then, the changes observed in the regions of

sensor space may not directly reflect the physiological

changes in relevant regions underlying the sensor. One

alternative method for this issue is the source modeling

technique (Stoffers et al. 2007; Olde Dubbelink et al.

2013), which allows one to analyze the distribution of

reconstructed sources over the cortical areas.

There were no statistically significant differences of two

complexity measures in delta or theta bands. However,

several spectral studies with EEG/MEG (Olde Dubbelink

et al. 2013; Stoffers et al. 2007; Neufeld et al. 1994; Han

et al. 2013) have observed an increase in theta or delta

powers for PD patients compared to controls. Our results of

relative power in Fig. 9 are in accordance with these earlier

predictions. Further, our group has used wavelet packet

entropy to show that the complexity of delta and theta

rhythms is both reduced in PD patients (Han et al. 2013).

These findings suggest that the abnormities caused by PD

also occur in two low-frequency rhythms even if we were

unable to observe significant changes in the PE or OI

values of EEG activities in either sub-band.

Finally, we included in the present study only 18 non-

demented patients in the early stages of PD. The findings

require further supports in a large clinical cohort of the

patients. Meanwhile, the reduced complexity has been seen

in many neurological disorders. Although the exclusion

criteria in our study have included atypical parkinsonism,

neuropsychiatric condition and any other severe illness, it

is still required longitudinal study to identify whether the

observed changes in PE or OI are specific to PD rather than

age-related parkinsonism or multiple system atrophy.

Moreover, it has been shown that the dopaminergic

replacement therapy has long effects on sensory-motor

circuitry (George et al. 2013; Herz et al. 2014). All the

patients in our study have received levodopa drugs.

Although they were off medication for at least 12 h before

the recording, it is still unable to exclude the long term

effects of treatments. In fact, earlier studies (Ziemann et al.

1997; Dalrymple-Alford et al. 1995) have shown that such

drug does not appear to significantly affect electrophysio-

logical indices as well as cognitive ability in the early

stages of PD. Then, our predictions are more likely related

to the effects of PD than drug.

Conclusion

The present work successfully applied PE and OI methods

to detect the abnormalities in the complexity of resting

EEG background activity in the early-stage PD patients. It

was demonstrated that PD patients showed a widespread

decrease in the complexity of cortical activities compared

to controls. We also observed that the gamma, beta and

Fig. 9 Relative powers in each sub-band for PD patients and healthy

controls averaged over 20 channels. Standard errors are represented

with vertical lines. Asterisk indicates that the difference between two

conditions is significant (Bonferroni adjusted P\ 0.05)
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alpha rhythms of the patients were characterized by a

reduced complexity. These abnormities may be some very

early and probably preclinical features of PD, which may

be related to the presence of subtle cortical or subcortical

dysfunction caused by the disease. The findings suggested

that the ordinal pattern based complexity measures may

have the potentials to become the markers of the dyskinesia

and cognitive decline in PD. The following studies on a

large clinical case of PD patients are necessary to confirm

that the reduced complexity of resting-state cortical activity

is indeed a stable feature for PD. Meanwhile, the longitu-

dinal follow-up of our PD patients will enable us to further

identify whether such markers of brain cortical dynamics

are specific to the early PD.
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Pezard L, Jech R, Růzicka E (2001) Investigation of non-linear

properties of multichannel EEG in the early stages of Parkin-

son’s disease. Clin Neurophysiol 112(1):38–45

Rosin B, Nevet A, Elias S, Rivlin-Etzion M, Israel Z, Bergman H

(2007) Physiology and pathophysiology of the basal ganglia-

thalamo-cortical networks. Parkinsonism Relat Disord 13:S437–

S439

Rowland NC, De Hemptinne C, Swann NC, Qasim S, Miocinovic S,

Ostrem JL, Knight RT, Starr PA (2015) Task-related activity in

sensorimotor cortex in Parkinson’s disease and essential tremor:

changes in beta and gamma bands. Front Hum Neurosci 9:512

Savitt JM, Dawson VL, Dawson TM (2006) Diagnosis and treatment

of Parkinson disease: molecules to medicine. J Clin Investig

116(7):1744–1754

Serizawa K, Kamei S, Morita A, Hara M, Mizutani T, Yoshihashi H,

Yamaguchi M, Takeshita J, Hirayanagi K (2008) Comparison of

quantitative EEGs between Parkinson disease and age-adjusted

normal controls. J Clin Neurophysiol 25(6):361–366
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