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Abstract There exists a dynamic interaction between the

world of information and the world of concepts, which is

seen as a quintessential byproduct of the cultural evolution

of individuals as well as of human communities. The

feeling of understanding (FU) is that subjective experience

that encompasses all the emotional and intellectual pro-

cesses we undergo in the process of gathering evidence to

achieve an understanding of an event. This experience is

part of every person that has dedicated substantial efforts in

scientific areas under constant research progress. The FU

may have an initial growth followed by a quasi-

stable regime and a possible decay when accumulated data

exceeds the capacity of an individual to integrate them into

an appropriate conceptual scheme. We propose a neural

representation of FU based on the postulate that all cog-

nitive activities are mapped onto dynamic neural vectors.

Two models are presented that incorporate the mutual

interactions among data and concepts. The first one shows

how in the short time scale, FU can rise, reach a temporary

steady state and subsequently decline. The second model,

operating over longer scales of time, shows how a reor-

ganization and compactification of data into global cate-

gories initiated by conceptual syntheses can yield random

cycles of growth, decline and recovery of FU.

Keywords Feeling of understanding � Knowledge
networks � Neural vectors � Dynamic neural models

Introduction

We have been witnessing an incredible expansion of

information processing and delivery in all domains of life

since the arrival of the World Wide Web around 1990. This

sustained growth has escalated to amazing levels with the

development of very fast and extensive networks of com-

munication. In the sciences, investigators must constantly

prepare themselves to review and bring up to date their

technical information in briefer intervals of time. This

reality confers a dramatic importance on the urgent need to

analyze the impact of this expansion of information on the

individual’s sense of understanding, which include, among

other things, the emotions, insights and knowledge that

each conscious intelligence associates with this experience.

One of the reasons for this urgency is the desire to

understand in what sense the nature of individual actions

may be conditioned by the information flow that surrounds

us. It is necessary at this point to emphasize that the feeling

of understanding does not in any way validate that which it

pretends to understand. Peter Lipton has clearly expressed

some of the notable differences between ‘‘feeling of

understanding’’, ‘‘understanding’’ and ‘‘knowledge’’: ‘‘To

understand why a phenomenon occurs is a cognitive

achievement, and it is a greater cognitive achievement than

simply knowing that the phenomenon occurs—we all know

that the sky is blue, but most of us do not understand why.’’

and ‘‘I will go on to consider a fifth and rather different

consequence that consumers of good explanations enjoy.

This is the distinctive and satisfying feeling of under-

standing, the ‘‘aha’’ feeling. I will suggest that although the
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‘‘aha’’ feeling is not itself a kind of understanding, it may

play an important role in the way understanding is

acquired.’’ (Lipton 2009). In fact, this ‘‘feeling of under-

standing’’ or FU from now on, can be characterized as the

intellectual and emotional process we submit to while

attempting to assemble the pieces of evidence that would

let us obtain an understanding of an event. As such, it

depends as much on the extraordinary variety of cultural

and ideological contexts imbedded in science and ethics, as

on the most irrational superstitions transmitted through

generations of believers.

Let us take as an example, a biochemist in 1950’s, who

is an expert in enzymology. He holds a clear understanding

of the experimental and theoretical methods of classical

enzyme kinetics. This knowledge has allowed him to keep

abreast of scientific progress in the field while, at the same

time, publish original research. However, in a few years’

time the biochemist notices that current efforts to under-

stand enzyme function and dynamics require, as indis-

pensable tools, the techniques of molecular biology and

structural X-ray analyses that he has not been trained for.

By noticing that the traditional views of enzyme kinetics

are no longer the focus of research in this rapidly

advancing field, his FU of what constitutes a meaningful

research path to follow is dramatically reduced in the new

context. If the biochemist does not embrace and learn the

new ideas and techniques, the focus of research becomes

muddled and the absence of understanding creates an

emotional block, thus hindering efforts to create new

knowledge in the field. This would not be a major problem

if the shifting basis of knowledge occurs once in the life-

time of a scientific career. But this is no longer true in the

XXI century, when the accelerated rate of scientific pro-

gress brings about a paradigm shift in each field of

knowledge within few years’ time. The assertion ‘adapt or

fall behind’ reminds us of the necessity to constantly

update our knowledge. This learning process forces us to

challenge all previous levels of conceptual comprehension

against the current feeling of understanding caused by the

inflow of new information.

The FU is a subjective cognitive process that poses a

great deal of challenge when we try to examine it from a

scientific point of view. Fortunately, after several decades

of building theoretical models of cognitive activities,

researchers are beginning to develop scenarios that would

make possible translating the ‘‘subjective into objective’’.

As an example, the elusive concept of consciousness has

been the focus of theoretical models (Edelman 1989;

Reeke and Edelman 1987; beim Graben 2014). In addi-

tion, some of these models are potentially useful to make

contact with brain activities revealed by modern imaging

techniques (Damasio 1999; Friston 1995, 2011; Sporns

2010).

The purpose of this work is to support recent research

by experts in the field (de Regt et al. 2009). We propose a

simple mathematical model that provides a kind of for-

malized representation of this ‘‘feeling of understanding’’,

one that evolves with the growth of personal knowledge

or community-based information. Our first objective is to

define a measure for FU that would be consistent with

current ideas on neural codification of cognitive events.

Once defined, we will develop a basic model that will

show how this measure evolves in time with an individ-

ual’s acquisition and subsequent conceptualization of

information.

Modeling knowledge

Knowledge networks

Let us represent a knowledge system (KS) by means of a

network consisting of objects of knowledge (nodes) and

directional connections that establish interactions among

these objects (edges). This is an extremely simple repre-

sentation. It does not convey the importance of each node,

how strong or essential is an edge in the overall functional

pattern of the network or the influence of an ‘outside

environment’. Nonetheless we propose this model as a

preliminary approach, one that would allow us to frame the

problem more precisely, with the later objective of

achieving some insight into the dynamic behavior of the

system.

In Fig. 1 we represent a cluster of KS’s that can be

generated by three objects. In the upper panel we illustrate

a situation where all possible connections among the three

objects are known. In the lower panel we outline a series of

diagrams showing different degrees of partial knowledge.

GLOBAL PATTERN

PARTIAL KNOWLEDGE

3T2T1T

Fig. 1 A variety of knowledge systems generated from three virtual

objects and their potential links
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One way to measure the size of KS on graphs of this type is

by using the simple but nontrivial concept of ‘‘variety’’ or

V(x), as proposed by Ashby (1956). In this approach, all

relevant elements x-defined according to a set of criteria—

in each category of network G, in a partial or total KS are

enumerated as follows,

VðKS;GÞ ¼ VðnodesÞ þ VðarrowsÞ ð1Þ

As an example, the three partial graphs T1, T2 and T3 of

Fig. 1 have varieties

VðKS;T1Þ ¼ 1þ 1 ¼ 2

VðKS;T2Þ ¼ 3þ 2 ¼ 5

VðKS;T3Þ ¼ 3þ 5 ¼ 8

and the global pattern of three nodes has variety

VðKS; 3Þ ¼ 3þ 9 ¼ 12

In general, the global variety of a KS with N nodes will

be

VðKS;NÞ ¼ Nþ N N� 1ð Þ þ N½ � ¼ N Nþ 1ð Þ: ð2Þ

We clarify that in this approach ‘‘knowledge’’ and ‘‘in-

formation’’ are taken as having comparable meanings.

Ashby (1956) associated this measure of variety with the

subset of distinct elements in a set of possibilities as per-

ceived by an observer able to discriminate among these

choices. Variety is only one measure of complexity. It will

be used later as an example on how to quantify the modulus

of a neural vector when we discuss the cognitive aspects of

FU. Relational structures represented by graphs are espe-

cially well-adapted elements to be implemented in neuro-

computational models (for a discussion refer to Kohonen

1988, Section 8.2.3).

It is fair to say that a KS network increases in com-

plexity when new objects appear that are able to interact

with the elements of the previous network. One such

occurrence is by means of technical advances in instru-

mentation that open the door to the detection of previously

inaccessible events. An example is the Hubble Space

Telescope, which has achieved a resolving power 10–20

times better than ground-based telescopes. With this

instrument, scientists have been able to study the evolution

of irregularly shaped galaxies in the early epochs of our

universe and provide evidence for an expanding universe

that is currently accelerating, reveal the existence of

supermassive black holes and analyze the atmosphere of

newly discovered exoplanets (Hubblesite.org).

The emergence of new objects creates a KS with

increasing number of edges in the network. Let us take as

an example, the upper panel of Fig. 1 and bifurcate an

object into two distinct objects. The diagram of the new KS

system is shown in Fig. 2.

The global complexity of the new network can be easily

calculated to be V(KS, 4) = 20. In general, the change in

variety from N to N ? 1 nodes is,

DV KS; N ! Nþ 1ð Þ ¼ V KS;Nþ 1ð Þ � V KS;Nð Þ: ð3Þ

or

DV KS; N ! Nþ 1ð Þ ¼ 2 Nþ 1ð Þ: ð4Þ

When the number of nodes increases from N to N ? k, the

increment in complexity could reach (in the case of max-

imal connectivity),

DV KS; N ! Nþ kð Þ ¼ k 2Nþ kþ 1ð Þ: ð5Þ

In naturally complex systems with large N, when new

objects appear either through novel instrumentation,

experimental techniques, theoretical or computational

ideas, the complexity of KS can increase dramatically.

Cognitive reorganization of knowledge

The human brain may be able to store one or several KS’s,

some of them in steady state while other ones in states of

continuous expansion or decay. Technical and cultural

evolution has brought us to the level where we can codify

and save knowledge in non-biological media, usually in

books and digital storage devices. All this information can

be accessed and decodified by the brain and then repro-

cessed and synthesized to produce new knowledge. The

human brain sustains many types of memories; each

memory is codified according to a specific category of

knowledge or information content. A fundamental type of

knowledge is one that depends on the conceptual edifice

that the cognitive brain processes at each instant of time.

This type of codification can be dramatically reconfigured

and compacted during epochs of great creativity.

A known example is the quadratic equation

ax2 þ bxþ c ¼ 0. The real roots of this equation initially

were found by a graphical method, that is, by looking at the

intersection of the parabola ax2 with the straight line

�bx� c. We can imagine that the roots xi were given as a

list including the coefficients ðai; bi; ciÞ ; i ¼ 1; . . .;Q,
and thereafter stored in large tables of data. With the

NETWORK EVOLUTION

Fig. 2 Emergence of new links after the division of one of the objects
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progress of mathematical knowledge in the area of algebra,

all previous information can be easily reduced to a single

formula, x1;2 ¼ � b=2að Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b=2að Þ2� c=að Þ
q

, that not only

include the real solutions obtained by graphical methods

but also the previously inaccessible complex solutions.

This and other examples eloquently demonstrate that con-

ceptual models created during periods of scientific progress

lead to reconfigurations and reductions of previously stored

information.

Neural codes for knowledge and understanding

Transforming the subjective into objective

The cognitive performance of individuals can be compared

to the performance of models of Artificial Intelligence (AI)

(Newell and Simon 1972) and neurocomputational models

(Arbib 2003; Brown 2013; Érdi 2015). These performance

comparisons provide ways to channel subjective experi-

ences into objects that can be tested by scientific methods.

Classical AI behavior reproduces with surprising efficiency

symbolic strategies (e.g. reasoning) that are very similar to

the behavior displayed by humans. On the other hand,

neurocomputational models achieve competent perfor-

mances during complex pattern recognitions and at infor-

mation processing in uncertain environments. These

approximations establish a kind of correspondence between

unobserved (subjective experiences) and measurable

events—formally represented by computational or mathe-

matical models. The rite of passage for these representa-

tions are other observables: direct comparison of the

behaviors of a formal system with human actions as can be

seen in strategies for simple (tic-tac-toe) to complex games

(chess), or in the interpretation and generation of texts

written in the natural language, etc. Even more dramatic

are efforts aimed at understanding the neurological basis of

such subjective phenomena as consciousness (Edelman

1989; Dehaene 2014).

Models of neural networks are especially interesting

because they have the capacity to build approximate link-

ages between model predictions and the biophysical, bio-

chemical and physiological interactions of the human brain

in action. The parallel processing of information, one of the

trademarks of distributed and modular network models,

find a similar correspondence in the behavior of real brains

(McClelland et al. 1986; Kohonen 1988). The techniques

of functional magnetic resonance imaging (fMRI), coupled

with traditional tools of exploration, are opening new

avenues for the objective analysis of subjective experiences

(Friston 1995, 2011). The triad pattern of interactions

{subjective events, neurocomputation, neuroimaging}

promises to unlock fruitful avenues for research and dis-

covery (Valle-Lisboa et al. 2014).

In neurocomputational models, ‘‘neural vectors’’ in a

high dimensional vector space represent groups of neurons,

and matrix operators acting on these vectors describe the

interactions among groups of neurons during cognition.

Therefore, the response dynamics of neural vectors (e.g.

the time dependence of large sets of firing rates) can be

seen as processes operating within a specific time window

(Anderson 1972, 1995; Kohonen 1972, 1988). The spatial

and temporal dynamics of neural vectors can also be ana-

lyzed by means of extended neural fields (Cowan 2014;

beim Graben and Rodrigues 2014; Wright and Bourke

2014). These fields are intimately connected to actual data

of neural images.

We want to mention that one of the targets of research is

the establishment of relations between the brain and the

semantic web of any individual. This is important to our

argument because a semantic web is an information network

that is structured around categories (concepts) with verbs as

categorized actions. The work by Huth et al. (2012), shows

the existence of continuous representations of semantic webs

on the cortical surface. This topographic map also shows the

existence of word clusters associated to topics (e.g. a web

may display in the same cluster the words, ‘‘vehicle’’,

‘‘boat’’ and ‘‘car’’, among others). The neural process that

generates this structure is a fascinating open problem and

may be the outcome of a dynamic neural field. As is well

explored in many formal theories, the cortical neurons have

the capacity to produce a territorial organization of neuronal

networks (Kohonen 1988; Coombes et al. 2014).

In the theory of associative memories, large matrices

with elements proportional to synaptic weights represent

memory modules that store information in the brain. The

versatility of this approach together with the plausibility of

anatomical and physiological counterparts (Mizraji and Lin

2011, 2015), are the main advantages of this vector rep-

resentation. Hence, the actions of a neural module can

always be encoded in a neural vector and sequences of

neural vectors can represent sensory perceptions—inputs

transported by the optical nerve—or cognitive processes

associated with the elaboration of conceptual entities.

It is important to highlight that the degree of similarity

between two patterns represented by neural vectors can be

measured by their scalar product (Anderson 1995; Koho-

nen 1988). Pattern identification is not dependent on the

length of a vector but on its direction, which is defined by

the structure of its components. In these models, it is

common but in no way necessary to assume neural vectors

as normalized. Figure 3 shows two digitalized images of a

well-known face.

These images can be coded into vectors. Each component

of a vector is represented by a pixel with gray tones between
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0 (white) and 1 (black). The length of the vector on the left is

smaller than the one on the right, but we identify the same

person in the two faces. The pattern we identify depends on

the direction of the neural vector. We remark that this is not a

general characteristic of neural functions. Many important

processes of self-organization or feature detection are

dependent on vectors with dominant lengths (Kohonen 1988).

We proceed by assuming that it is possible to compare

patterns by comparing angles between multidimensional

neural vectors. We review some basic definitions. A col-

umn vector of dimension r,

U ¼ U1 U2 � � � Ur½ �T; T ¼ Transpose

has length

Uk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
1 þ U2

2 þ � � � þ U2
r

q

A measure of the angle between two real vectors U and

V is the scalar product,

cos dU;V
� �

¼ U;Vh i
Uk k � Vk k ; U,Vh i ¼

X

r

i¼1

UiVi ð6Þ

The Euclidean distance d(u, v) between the normalized

vectors u ¼ U= Uk k and v ¼ V= Vk k would then be

dðu; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1� u ; vh ið Þ
p

ð7Þ

For parallel vectors we have dðu; vÞ ¼ 0, and for

orthogonal vectors, dðu; vÞ ¼
ffiffiffi

2
p

(this is the maximum

distance for u and v with non-negative components). This

simple example shows that the angle between two nor-

malized vectors may be an appropriate measure that

quantifies the distance between patterns encoded in vectors.

Managing knowledge and understanding

by the brain

Our intention is to establish a very simple model that

partially captures the feeling of understanding (FU) by

associating knowledge as a form of data and understanding

as an acquisition of concepts. This is an extreme

oversimplification, but it is a first step towards the solution

of a difficult problem that aims at capturing the cognitive

foundations of FU. Lipton (2009) has analyzed in detail the

differences between explanation and understanding and in

de Regt (2009) there is an epistemological analysis of FU.

As discussed before, many cognitive abilities in neural

modules emerge from activities of extensive networks of

neurons and codified in neural vectors. We will assume that

FU results from the confrontation of two types of neural

vectors, vectors that encode data with vectors that encode

conceptual categories.

Data vectors evolve dynamically in at least two

modalities. In one of these modalities, data vectors VS
D are

refreshed according to the evolution of themes a person is

interested in learning and theses updates rest on informa-

tion stored in the memory or on information stored outside

the person (books, data in computer memories, the World

Wide Web, etc.). In the other modality, vectors VS
D map

onto other vectors VD that encode singular topics. It is

possible to update VD by advances in conceptual under-

standing that compact information into broader categories.

Examples would be, 1) reuniting in Newton’s law of

gravitation diverse phenomena such as free fall, projectile

motion and planetary motion, etc. or 2) using quantum

concepts to explain the photoelectric effect, discrete spec-

tral lines of atoms and molecules and electron diffraction in

crystals, etc.

Vectors VS
D may contain huge number of components.

We simplify our argument by taking information about

certain points of knowledge (topics) codified in VS
D that are

packaged into clusters, each cluster of data—graphs in

Fig. 1—forming a subspace that is locally dense but with

enough spacing between clusters to make the total vector

sparse. Let the elements in each cluster map onto a reduced

data vector VD. This is a projection of VS
D over an abstract

space, which collapses all relevant data from a cluster into

a single binary topic marker. In this simplified represen-

tation we envision a point of knowledge to be defined by 1

at the specific position of a cluster and by 0 when data is

absent (the 0 may indicate that a knowledge point exists but

it is unknown to the individual or it is inexistent). As an

example, a 1 in position 7 of a vector VD may indicate that

a person has partial information about engines and brands

of sports cars even though he/she may not be knowledge-

able about formula one racing scores, e.g. a 0 in another

location of the neural vector.

In a way similar to what happens to data vectors, the

conceptual vectors VS
C are mapped onto binary processed

topic vectors VC. In the example mentioned above, a 1 in

position 7 indicates that the individual have accumulated

the necessary concepts to partially understand the workings

of the engine of a sports car—including items such as

Fig. 3 The two images of Winston Churchill are correctly identified

even though their intensities are very different
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driving conditions, the functioning of thermal combustion

engines and design aerodynamics, etc. The same individual

may have a 1 in position 243 of VD in relation to data

related to polymeric materials used in the chassis, but

having a 0 in the same position in VC may indicate a total

ignorance concerning the nature of the chemical compo-

sition, synthesis and strength properties of these materials.

In this context, we may say that a person understands how a

car works but does not understand the properties of poly-

meric materials used in the chassis. On account of the

intense processing of factual information it is natural to

assume that in general, vectors VD will have many more

1’s than vectors VC. We remark in passing that the simple

codification scheme outlined above is similar to methods of

data mining (Berry and Browne 2005). An interesting

example with cognitive implications is the Latent Semantic

Analysis (LSA), which detects thematic clusters in several

documents and codifies them in components of a vector

(Deerwester et al. 1990; Landauer and Dumais 1997;

Valle-Lisboa and Mizraji 2007). The vectors VD and VC

are deliberate simplifications to help us represent the

complex neurophysiological events at the root of the cor-

relations between vectors VS
D and VS

C.

The anatomical connectivity of neural networks in the

human brain constrains neural vectors to have finite but very

large dimensions. We will assume that both simplified

vectors, VD and VC, have equal dimensions as information

in VD contain only data that specifically matches the con-

ceptual content of VC. We can consider that the short-term

dynamics of VS
D allow for rapid modifications of its com-

ponents, the result of exploratory activities of a brain that

continuously searches for data stored in its own memories or

in external databases. The time scales of short-term

dynamics are the typical turnover times of knowledge

acquisition in the natural sciences. The detection of data is

like a moving window, selecting finite-dimensional vector

components that build, at every moment in time, vectors VS
D.

Note that the screening or projection on databases—be-

longing to the brain or to external sources as in Wikipedia—

are constantly refreshed from one instant to another by a

working memory. In the medium time scale, data vectors are

mapped on topic vectors VD. The evolution of the binary

nature of VD may transform 0 into 1 as the subject acquires

information on a topic it did not know. Conversely, the

existence of unifying concepts that compresses information

of several categories into one (e.g. examples in ‘‘Cognitive

reorganization of knowledge’’ section) may substantially

reduce the quantity of 1’s in VD by reorganizing data.

An analysis of the mutual influence among data and

concepts in simple models require a definition of these

conceptual and data vectors. Since antiquity it has been

known that conceptualizing has to do with condensing data

from the external world into patterns. In James (1911) we

find a clear description of this process and Cooper (1974)

outlines a neural network interpretation of data condensa-

tion. Along these lines, we shall assume that quantities of

topics in data vectors VD are larger than quantities of topics

in conceptual vectors VC. One way to express this differ-

ence is to assume that the moduli of vectors VD are usu-

ally greater than the moduli of vectors VC,

jjVDjj ¼ md; jjVCjj ¼ mc; md � mc: ð8Þ

The feeling of understanding (FU)

Finding a measure of feeling

Humans possess a wide repertoire of neural structures,

especially those related to the limbic system, that are

associated with the detection of pleasure or displeasure

(Kandel and Schwartz 1985, Ch. 47). A significant part of

our behavioral patterns are guided by these subjective

perceptions. As an example, the software behind robots

trying to emulate human behavior attempts to simulate by

means of artificial neural networks, sensations associated

with presence or absence of pleasure by training them to

act autonomously (Edelman 1989).

Following the previous discussion, we shall assume that FU

is a cognitive event, including emotional reactions, which we

associate to pleasurable sensations. The brain has well defined

structures that establish the functional links between the cor-

tical cognitive processes, the limbic system and the hypotha-

lamus, thus explaining the almost continuous ‘‘translation’’ of

cognitive activities into emotional reactions, including plea-

sure and displeasure sensations (for a classical description, see

Kandel and Schwartz 1985, Chap. 46). We attempt here to

develop a theory of pattern detection, where interacting neural

vectors VD and VC are capable of measuring quantitatively

FU. Once recorded, this parameter will be transmitted to other

neural modules that process pleasurable sensations.

A measure of FU would be the angle between neural

vectors VD and VC. If the angle were small FU would be

large and if the angle were close to 90� FU would be small.

The association between data and concepts will be of

paramount importance. Therefore, we measure FU by

means of a correlation coefficient K between two un-nor-

malized vectors,

K ¼ VD ; VCh i
md : mc

� 1 ð9Þ

There are different pairs of vectors VD and VC in dif-

ferent neural modules and each pair may store information

with a different value of K. A historian may have K = 0.87

when the subject refers to the history of Renaissance and

K = 0.05 when the subject is differential topology.
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In the simplest case, we will assume that every con-

ceptual category corresponds to some well-defined data

category. There may be cases where valid data may support

false, misguided scientific theories or unsupported beliefs.

We will analyze not only cases supported by logic and truth

values but also cases based on beliefs, rational or otherwise

(de Regt et al. 2009). We will leave aside the philosophical

debate about a priori categories. Even if they exist (e.g. in

linguistics) they may still require data vectors to process

them as categories.

The connection between a sense of well-being when

understanding ensues and the percolation of the correlation

coefficient K in Eq. (9) along neural structures, can be

expressed as a matrix operator that joins patterns

E ¼ zVT
C ð10Þ

The operator E evaluates how well a conceptual vector

VC matches a neural vector VD, z being a neural vector that

channels conceptual information to the limbic system. This

is a simple Anderson—Kohonen memory matrix. When

applied to a data vector it registers

EVD ¼ z VC ; VDh i ¼ z cK; ð11Þ

with c ¼ mcmd.

In general, FU will be proportional to EVD and there-

fore to K. A conceptual category reduces the factual

information by an amount that scales as

VD ; VCh i �
X

10s in vector VCð Þ
h i

¼ VC ; VCh i
¼ mcð Þ2

There may be cases where the data encoded in VD do

not match certain concepts, but in almost all cases the

concepts that are encoded in vectors VC have their corre-

sponding data stored in VD. Data are not restricted only to

facts but may also be data derived from scientific theories.

The correlation coefficient, K � ðmcÞ2
.

ðmd mcÞ; and

the measure of FU will thus be approximately equal to

FU � K ¼ mc

md

: ð12Þ

Dynamics of the feeling of understanding

We would like to study the time evolution of the interac-

tion between neural vectors VD and VC. The dynamics is

emergent and very complex. We only hope to capture some

of the essential features of this interaction by means of

simple models. One of the major difficulties in modeling

this interaction is the absence of empirical data in support

of the neural events involved in this process. Consequently,

we interpret our models as heuristic estimates of the

growth, structure and interaction of data volumes and their

associated concepts. We will describe two models, each

one on their own scale of time. In the first, short-time scale,

the process may last weeks to years and it is associated

with the acquisition of information and the growth of

conceptual understanding leading to rapid growth in FU.

This is followed by an approximate steady state followed

by a decay of FU. The second, long-time scale refers to

processes occurring after FU decays to a level requiring

new conceptual reorganizations of data that give rise to

rapid upswings and downswings of FU. In both models, we

evaluate the correlation coefficient K—a measure of FU in

the correlation of patterns—as defined in Eq. (12). To

measure the quantity of data and the diversity of concepts

we use modules md and mc. These measures can also be

interpreted as measures of ‘variety’, e.g. graphs in

‘‘Knowledge networks’’ section. Our models operate on

discrete time and take the form of dynamical systems with

the two modules interacting with each other,

md tþ 1ð Þ ¼ F md tð Þ ; mc tð Þ½ � ð13Þ
mc tþ 1ð Þ ¼ G md tð Þ ; mc tð Þ½ � ð14Þ

The functions F[…] and G[…] determine the dynamical

interactions between data and concepts. As we show in

what follows, the shape of these functions are dependent on

the time scale considered.

Vector dimensions

The physical dimensions of vectors VD and VC are nec-

essarily identical by the way relevant data are matched to

concepts and the correlation coefficient K is defined in

this subspace. However, the amount of information coded

by VD and VC ought to be extremely different. This is

due to the fact, previously mentioned, that large amounts

of data are condensed onto the conceptual vectors VC.

Consequently, we shall consider the existence, aside of

real physical dimensions, of a maximum amount of

information encoded in each type of neural vector, e.g.

the maximum variety in the knowledge networks dis-

cussed in ‘‘Modeling knowledge’’ section. For vectors VD

and VC these numbers correspond to the maximum values

S and M of moduli md and mc, respectively. In the case

of vectors VD we shall assume that S coincides with their

physical dimension. In the case of VC we shall assume

that M 	 S. Hence, concept vectors VC are restricted to

mc �M. We are going to assume that inside the time

window in the evaluation of the model, M does not

change, even if it is not a strict invariant and can suffer

changes at different moments always satisfying M 	 S.

The plausibility of this inequality between dimensions can
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be illustrated by the relationship among semantic webs

installed in an individual human brain and real data

accessible to this individual. Imagine the relation between

names and the variety of information covered by single

names. In a geographical context, the word ‘‘country’’

refers to a large and variable number of countries defined

by past and present political divisions of the planet. The

word ‘‘France’’ labels a huge variety of information found

in the cultural, social or political histories of that country.

We illustrate some of these ideas by means of a mini-

malist example in ‘‘Appendix’’.

Short-term dynamics

The model is based on the following assumptions:

A1: At time t = 0, modulus md has a non-vanishing

value but mc can be zero.

A2: The value of mc is bounded and increases

monotonically with md.

A3: The value of md increases with time and in the short-

time scale may reach a large but undefined finite

value md 
 mc (for neurobiological reasons).

There is a correspondent mutual influence between data

and conceptual vectors; only the rapid saturation of mc

makes a qualitative difference. The following model cap-

tures the spirit of these assumptions (there may be many

other models that satisfy the same assumptions),

md tþ 1ð Þ ¼ min S; md tð Þ 1 þ amc tð Þ½ �½ � ð15Þ

mc tþ 1ð Þ ¼ min M; md tð Þ½ � md tð Þb

Rþmd tð Þb
ð16Þ

As explained before, the dimension M of conceptual

vectors is significantly smaller than the dimension S of data

vectors. The other parameters of the model are arbitrarily

chosen and positive. The growth of md depends on both,

md and mc. On the contrary, mc explicitly depends only on

md but implicitly on itself after a certain delay. Its growth

and saturation is modulated by a Hill curve. The parameter

R is the constant that ensures saturation.

Figure 4 displays the logarithmic growth of md and mc

as functions of time for S ¼ 108, M ¼ 103, a = 0.002,

b = 1, R = 1, md 0ð Þ ¼ 20 and mc 0ð Þ ¼ 0.

Figure 5 shows the evolution of the correlation coeffi-

cient in this model.

Placing upper bounds on md and mc, and limiting their

growth causes a precipitous decay of FU in Fig. 5. We

must be aware that in many cases data keep on accumu-

lating at a dizzying pace and after a collapse, FU recovers

on a longer time scale.

Long-term dynamics

The ‘‘long-term dynamics’’ refer to a scale of time involving

a succession of several cycles of conceptual reconfigura-

tions. Here we pretend to capture the idea that cultural and

scientific advances, by accumulating new concepts, reorga-

nize and compact information in novel ways. The reorgani-

zation is a consequence of a crisis promoted by the addition

of excess data and catalyzed by the conceptual structures

already in place. We have discussed some examples of

constructive crises giving rise to emergent, theoretical or

practical insights. Although the reconstruction efforts and

the compactification of data are in general collective efforts,

in the final outcome, this progress is incorporated in the

cognitive systemof individuals. In ourmodelwewill assume

that crises occur when the volume of data in md reaches

certain random threshold U that may exceed by far the bound

M of the conceptual vector VC. To address this issue let us

add another assumption:

A4: Each time md tð Þ exceeds a threshold U, the

conceptual structures included in mc tð Þ induce a

reorganization of data in expanded classes,

drastically reducing the size of md tð Þ:

In the following model, the threshold is stochastic with

lower bound M added to a random number RND (t)

Fig. 4 Logarithmic growth of

md and mc
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between 0 ; aM½ � where a is a relatively large

adjustable coefficient, U = M ? RND (t). We modify the

previous model as follows,

md tþ1ð Þ¼ min S; md tð Þ 1 þ amc tð Þ½ �½ � if md tð Þ�U

M if md tð Þ[U

�

ð17Þ

mc tþ 1ð Þ ¼ min M; md tð Þ½ � md tð Þb

Rþmd tð Þb
ð18Þ

As formulated, the model assumes that md tð Þ never

reaches a value below M, implying that there are no con-

ceptual categories without background information. Inclu-

ded in these categories are abstract mathematical concepts

based on other formal structures that are able to transfer

information from concepts to data.

Figure 6 illustrates the temporal evolution of md and mc

using the same parameter values as the previous simulation

with a = 100. Figure 7 displays the correlation coefficient

K.

We mention that while mc remains bounded, md oscil-

lates wildly around the lower bound M. For parameter

values other than the ones we have chosen mc may also

oscillate close to M. This apparent reduction of information

is not inconsistent with the sustained growth of information

in the community. Individual cognition may undergo a

substantial ‘decongestion’ every time a new synthesis

collapses information into new classes.

For high values of U we observe oscillations with longer

periods. Figure 8 depicts two examples: a ¼ 104 and

a ¼ 106.

Discussion

Our civilization has built a magnificent body of knowledge

during the last few millennia at an approximate steady rate

only to see this rate accelerated to an incredible level over

the last few decades as new scientific discoveries and

technological innovations shape the landscape of infor-

mation flow in our culture. More than ever individuals are

challenged to keep up with this knowledge and to under-

stand its role in the world we inhabit. In this work we have

assumed that understanding is not necessarily connected to

Fig. 5 Growth, stabilization and decay of the correlation coefficient

K (or FU) as a function of time

Fig. 6 Graphs of the logarithms

of md and mc as functions of

time in model (17)–(18)

Fig. 7 Evolution of the correlation coefficient K. Please notice the

rapid oscillations developing after the initial decay of K. The reason

for these rapid cycles is that each new cycle reinitiates with an

elevated conceptual volume near M
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rational discourse or finding the appropriate information.

We suggest it is more about correlating streaming data to

categories of conceptual patterns. However, the correlation

as described in Eq. (12) operates as an important measure

that facilitates the acquisition of a rational image of the

world. Consequently, it has influence on all forms of

inquiry, e.g. the creation of novel and effective medical

procedures, the design and implementation of useful and

usable technologies, or the understanding of global threats

to the fabric of our society.

The models proposed in ‘‘Dynamics of the feeling of

understanding’’ section pretend to capture two categories

of phenomena. First, the growth, stabilization and subse-

quent weakening of FU caused by the incessant growth of

the amount of data that an individual experiences (Fig. 5).

Second, the reconstruction and renewed growth of FU that

follows a compression of factual information in synthetic

categories induced by conceptual innovations (Figs. 6 and

7). These models are heuristic in nature and may take many

other mathematical forms, but most of them will probably

exhibit similar qualitative behaviors. One common char-

acteristic of these models is the existence of close inter-

actions between accessible empirical data and the

conceptual interpretations induced by these data. It may

also include the reconfiguration of information generated

by novel conceptual creations. The correlation described in

our dynamic model by the dot product between data and

concepts vectors, Eq. (9), can be produced by transitory

memories maintained by information coming from differ-

ent neural fields: one related to concepts and the other—

less structured and more transient-related to data. It is

necessary to point out that these vectors can have noisy

components (0’s in the binary representation) and bursts of

action potentials (1’s in the binary representation). Bursts

can be the result of synchronized responses of a neuron

cluster in the assembly (Robinson et al. 1998). The activity

of these neural fields may come from associative memories

operating on longer scales of time, which recreate con-

ceptual vectors.

One may wonder at the origin of the bound M of the

conceptual vector. As we explained before, the human

cognitive process has a natural tendency to extract common

characteristics of different objects or events, group them

into patterns and then represent these patterns as unitary

concepts. The processing of patterns may be achieved

through associative memories that project them onto neural

vectors that encode an average representation (Cooper

1974, 1980). The propensity to conceptualize will depend

on each individual history; consequently, the size of the

bound M is a reflection of that history. An innate or trained

conceptualizer will likely try to minimize the value of M

without missing on the power of organization that these

concepts provide on the surrounding world. From the lit-

erary viewpoint, Jorge Luis Borges famously explored in

‘‘Funes the Memorious’’ (Borges 1964) the fundamental

importance of conceptualization in generating reenactment

thoughts by examining accurately what would happen if

these conceptualizations were absent.

We may also consider the interesting possibility of an

expansion of the physical dimensions of vectors VD and

VC. In this case, the operator E ¼ zVT
C in Eq. (10) would

represent a structure sustained by short-term memories that

on successive instants of time replenish the vector VC with

new sources of information by integrating VD, which is

updated in the previous step with other concepts. This way

of looking at knowledge expansion would generate at each

step new correlation coefficients K. The final result would

be the creation of a sequence of correlations K that forms a

vector generalization of the scalar FU:

FU
�! ¼ KT1 ; KT2; . . .; KTn½ �

Once generated, this vector may be processed by

another neural module and the physical dimensions of

vectors VD and VC will expand by incorporating new

information in each cycle, after being computed by tran-

sitory memories. Consequently, in each cycle the size of

processed information may attain effective bounds, nS for

data vectors and nM for concept vectors.

Fig. 8 The correlation K as a

function of time t for a ¼ 104

and a ¼ 106
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Perhaps in the initial coding of data and conceptual

vectors VS
D and VS

C, their respective dimensions are quite

dissimilar. Is there any neurobiological mechanism that

couples data vectors VS
D (of very large dimensions) to

concept vectors VS
C (of smaller dimensions)? A suggestion

inspired by Kohonen (1988, p. 54) is to project VS
D onto

one of the many subspaces of the same dimension as VS
C,

VS
D = VS

C þ v, where v is orthogonal to the subspace VS
C

and then choose the subspace that gives the minimum jjvjj.
This process can be naturally implemented with associative

memories acting as projection operators. We may think of

these memories as installed temporarily in working mem-

ories, not permanent ones.

One may also ask, why is md in Eq. (17) set to M after it

reaches the threshold? Our model assumes that crises occur

when the volume of data in md reaches a random threshold

U that may far exceed the bound M of the conceptual

vector VS
C. To address this issue we have added assumption

A4, that each time md tð Þ exceeds threshold U, the con-

ceptual structures included in mc tð Þ induce a reorganization
of data in expanded classes, drastically reducing the sub-

sequent size of md.

Darwin’s theory of evolution is a dramatic example of a

conceptual reinterpretation of available evidence that is

capable of reuniting in a logical structure the extraordinary

diversity of life on this earth. Another recent and inter-

esting example of information reconfiguration can be found

in the theory of networks with the notions of ‘‘small-

world’’ (Watts and Strogatz 1998) or ‘‘scale-free’’ inter-

actions (Barabási and Alberts 1999). These new theories,

originally applied to the Internet and the World Wide Web,

have developed a set of measures (clustering indexes, web

sizes, shortest pathways, controllability, etc.) that are pro-

gressively applied to a variety of other fields such as neural

networks, biochemical cycles, ecological food webs,

infectious diseases, semantic webs and social media. All

these explorations have uncovered universal features of

certain patterns of connectivity and topological behaviors

that are common to all networks. These new contributions

are revealing surprising conceptual unifications to many

areas that previously were thought to be unrelated (New-

man et al. 2006).

Human beings inhabit a physical world rigorously con-

strained by physical laws and another world populated by

data streams that conscious brains process along several

modes according to their cultural inheritance and their

beliefs. Our central purpose has been to show the linkage

between the information flow we experience and the neural

processing that transforms available data into cognitively

processed and subjectively evaluated information. These

subjective evaluations are in large part responsible for our

psychological well-being and have been studied by many

people, from Aristotle to Saint Augustine, and from Wil-

liam James to Sigmund Freud, to name a few. In the last

decades, research on the human brain has provided sig-

nificant insights into the biochemistry, biophysics and

behavioral responses from single neurons to clusters of

hundred of thousands of them. New functional neu-

roimaging techniques are beginning to discriminate and

select distinct neurocomputational models for specific

cognitive activities. We believe that the neural modeling of

FU, although still an exploration without definite para-

digms, deserves our close attention.
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Appendix

Let us illustrate how FU evolves with a minimalist

example.

1. In the first step we have a large data vector VS
D = (…,

A, …, B, …, C, …), where A, B and C are clusters of

data associated with singular topics. This data vector

induces a concept vector VS
C = (…, Ca, …, Cb, …,

Cc, …) with clusters of concepts Ca, Cb and Cc. In the

binary model, clusters A, B, C, Ca, Cb and Cc are

mapped onto 1’s and the inter-cluster spaces are

mapped onto 0’s, giving vectors VD and VC. Let us

then imagine a miniature 12-dimensional space where

VD = (001000100100) and VC = (001000100100). In

this ideal situation the initial correlation coefficient K

is equal to 1.

2. The subsequent accumulation of data increases the

number of 1’s in VD = (011101100111) but leaves VC

temporarily unchanged. This activity is similar to the

process of augmenting the number of nodes in the

knowledge graphs illustrated in ‘‘Knowledge net-

works’’ section and Fig. 2. Therefore, the value of K

decreases (K\ 1). The dynamics of this scenario for

high-dimensional vectors are modeled by Eqs. (15)–

(16) and their behavior are depicted in Figs. 4 and 5.

3. To simplify to the maximum the complex interactions

between data and concepts, let us imagine that

concepts are enriched and data are reconstituted. Then

we may have, VD = (001101100110) and

VC = (001101100110). In this stage, the correlation

K will reach again a maximum value of 1. After this

process, we follow a new path to the first step (1) with

reconfigured vectors. The evolution of high-dimen-

sional vectors follow Eqs. (17)–(18) and their behavior

are sketched in Figs. 6 and 7.
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In real situations the sparseness of data and concept

vectors create new filling niches of 1’s while maintaining

the clusters distant from each other.
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