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Abstract Electroencephalogram shortly termed as EEG is

considered as the fundamental segment for the assessment

of the neural activities in the brain. In cognitive neuro-

science domain, EEG-based assessment method is found to

be superior due to its non-invasive ability to detect deep

brain structure while exhibiting superior spatial resolutions.

Especially for studying the neurodynamic behavior of

epileptic seizures, EEG recordings reflect the neuronal

activity of the brain and thus provide required clinical

diagnostic information for the neurologist. This specific

proposed study makes use of wavelet packet based log and

norm entropies with a recurrent Elman neural network

(REN) for the automated detection of epileptic seizures.

Three conditions, normal, pre-ictal and epileptic EEG

recordings were considered for the proposed study. An

adaptive Weiner filter was initially applied to remove the

power line noise of 50 Hz from raw EEG recordings. Raw

EEGs were segmented into 1 s patterns to ensure station-

arity of the signal. Then wavelet packet using Haar wavelet

with a five level decomposition was introduced and two

entropies, log and norm were estimated and were applied to

REN classifier to perform binary classification. The non-

linear Wilcoxon statistical test was applied to observe the

variation in the features under these conditions. The effect

of log energy entropy (without wavelets) was also studied.

It was found from the simulation results that the wavelet

packet log entropy with REN classifier yielded a

classification accuracy of 99.70 % for normal-pre-ictal,

99.70 % for normal-epileptic and 99.85 % for pre-ictal-

epileptic.

Keywords Electroencephalogram � Entropy � Recurrent
Elman neural network � Wavelet packets � Log energy

entropy � Norm entropy

Introduction

Electroencephalogram shortly referred as EEG is used as a

physiological indicator to assess the continuous neuronal

activities of the brain. Of specific, epileptic seizures are

considered as a chronic neurological disorder that occurs

due to abnormal excessive or synchronous neuronal

activity in the brain of patients suffers from epilepsy

(Fisher et al. 2005; Gao et al. 2011; Pippa et al. 2016).

Continuous monitoring of EEG is essential for the recog-

nition/detection of seizures and such a procedure is tedious

for the neurologist through qualitative visual inspection.

Designing an automated system to detect epilepsy on time

would be helpful and time-saving for the neurologist.

Lately, numerous mechanized frameworks have been pro-

posed for the forecast and recognition of epilepsy with

distinctive time and frequency domain features, non-linear

features with pattern classifiers (Gotman and Deng 1991;

Acharya et al. 2012a, b, c; Bajaj and Pachori 2013; Wang

et al. 2013; Venkataraman et al. 2014; Samiee et al. 2015;

Faust et al. 2015; Du et al. 2016).

It is well known that the computerized seizure detection

merely relies on the selection of appropriate EEG feature.

Time domain, frequency domain, time–frequency, non-

linear domain features were applied for deriving these

feature from EEG recordings. Specifically, entropy based
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related studies have shown significant specificity and sen-

sitivity quantitative measures for the recognition of

epileptic seizures. Any EEG-based quantitative study

towards epileptic seizure detection requires the appropriate

application of filtering, segmentation, features selection

and pattern classifier techniques. Although several attempts

have been made by make use of entropy as a feature pattern

to detect epileptic seizures from EEG recordings (Aydin

et al. 2009; Pravin et al. 2010; Guo et al. 2010; Wang et al.

2013), there are still unsolved issues related to computa-

tional complexity and overall performance. The appropri-

ate selection of feature and pattern classifier by considering

its relative performance will confirm its suitability for the

real time seizure detection. This specific research study

makes use of wavelet packet based log and norm entropies

along with recurrent Elman neural network (REN) for the

classification of normal versus pre-ictal, normal versus

epileptic and pre-ictal versus epileptic. The proposed work

makes use of the University of Bonn, Germany, database

(Andrzejak 2001) and three different entropies, log energy

entropy, wavelet packet log energy and norm entropies

were applied to extract entropy features from EEG

recordings. The time–frequency characteristic of the EEGs

and its non-linear nature is well exploited by making use of

wavelet packet based on Haar mother wavelet with 5th

level decomposition and entropy measure respectively. It

has been reported that the physiological signals with dis-

orders (abnormality) tend to yield high entropy values

(Natwong et al. 2006; Wang et al. 2011; Das and Bhuiyan

2016). The features considered in our work were based on

energy present in the signal which relatively increases the

magnitude of the entropy value and shows a distinguish-

able difference between normal, pre-ictal and pure

epileptic EEG. Further relative performance in terms of

classification accuracy and computational complexity

confirms the suitability of this proposed scheme for real-

time seizure detection compared to the other techniques

reported in the literature (Srinivasan et al. 2007; Pravin

et al. 2010; Wang et al. 2011; Acharya et al. 2012a; Xiang

et al. 2015).

Figure 1 shows the proposed approach schematic

diagram.

During the visual inspection by the local specialist, the

presence of line noise in the Bonn database was observed

and same was evident through the periodogram and spec-

trogram analysis. An adaptive least mean square (LMS)

algorithm was applied to remove the power line noise from

the raw EEGs and then wavelet packet based entropies

were estimated. The best basis was confirmed by the sta-

tistical analysis and the identified features were then

applied as the input to REN classifier to perform the binary

classification: normal-pre-ictal, normal-epileptic and pre-

ictal-epileptic. The performance of the WPE- REN was

compared with log energy entropy feature with REN

classifier.

Related literature review

In early 1980’s, Gotman initiated an automated procedure

for long duration EEG recordings (Gotman 1982). In 2007,

Srinivasan et al. showed an attainment of 100 % classifi-

cation accuracy by making use of approximate entropy

(ApEn) with a REN classifier. A study proposed by Pravin

et al. (2010) making use of sample, spectral and wavelet

entropies with REN network showed a classification

accuracy of 94.5 %. Zhou et al. (2013) have applied

Lacunarity feature with Bayesian linear discriminant

analysis (BLDA) classifier for epileptic seizure detection

and showed a classification rate of 96.25 %. Samiee et al.

(2015) introduced rational discrete short time Fourier

transforms (DSTFT) with multilayer perception (MLP)
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Fig. 1 Block diagram of the proposed epileptic detection system
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neural network for classification of epileptic seizures from

normal EEGs. Bajaj and Pachori (2013) have applied the

Hilbert transformation of intrinsic mode functions to detect

the focal temporal lobe epilepsy. Kumar et al. (2014) have

investigated the discrete wavelets transform (DWT) based

ApEn and multilayer back propagation neural network to

discriminate normal and epileptic seizures. Koren et al.

(2015) have done a detailed clinical investigation towards

the recognition of non-convulsive seizures and non-con-

vulsive status epileptics. Venkataraman et al. (2014) pro-

posed an automated seizure detection algorithm by making

use of adaptive short-term maximum Lyapunov exponent

and adaptive Teager energy. Kelly et al. (2010) have made

use of scalp based electrodes for the assessment of epileptic

seizures. Three significant features, pattern-match regula-

tion static, local maximum frequency and amplitude vari-

ation were used to quantify the seizures.

Pippa et al. (2016) proposed a clinical study to investi-

gate the effect of psychogenic non epileptic seizures and

vasodepressor syncope. Several time and frequency

domain features with different pattern classifier were

employed. The study revealed a classification accuracy of

95 % was achieved. Abualsaud et al. (2015) have proposed

an EEG-based epileptic seizure framework that makes use

of compressed sensing phenomenon and encoding tech-

nique for transmission of data followed by automated

detection of seizure at the receiver side using linear and

non-linear classifier. An attempt has been made by making

use of smoothed pseudo-Wigner-Ville distribution to rec-

ognize the seizure from normal EEGs (Tzallas et al. 2007).

Zeng et al. (2016) have employed compressive sensing

principle for recognizing inter-ictal, pre-ictal and ictal

EEG-based epileptic seizures. Sample and permutation

entropies with Hurst index features were applied along

with four variant classifiers. The performance results

obtained were quite promising and confirm it’s suitable for

tele-monitoring of epileptic patients. Best result was

achieved using discriminant analysis (DA) for compressed

sensing structure similarity feature (CS-SSIM). A focused

study that makes use of four entropies namely ApEn,

sample entropy (SampEn), phase entropy 1 (S1), and phase

entropy 2 (S2) for automated detection of normal, pre-ictal

and ictal conditions derived from EEGs was proposed.

Seven different classifiers were employed and an overall

accuracy of 98.1 % was achieved (Acharya et al. 2012a). A

specific work that makes use of fuzzy entropy for epileptic

seizures recognition was reported (Xiang et al. 2015). The

fuzzy entropy was estimated based on the working prin-

ciple of ApEn and the results were compared with the

sample entropy. A grid optimization method was proposed

to train the features using support vector machine (SVM)

classifier. Gajic et al. (2014) have proposed classification

algorithm using wavelets and statistical pattern recognition

for the detection of epileptic seizures. Wang et al. (2010)

have applied principal component analysis for dimension

reduction to the décorrelation of epileptic and normal EEG.

Then DWT combined with ApEn is performed and found

distinct difference between the ApEn values of epileptic

and normal EEG.

Faust et al. (2015) reported a detailed review of wavelet

based technique for epileptic seizure detection. The study

included wavelet decomposition followed by non-linear

dynamic based entropy features. The importance of

supervised and unsupervised pattern classifiers were also

reported. Acharya et al. (2012c) have applied two entropies

namely ApEn and SampEn along with fractal dimension

and Hurst exponent as features with fuzzy classifier for the

classification of normal and epileptic seizures from EEG

recording. It was shown classification accuracy of 99.7 %

attained using combined non-linear features. Srinivasan

et al. (2007) and Pravin et al. (2010) have applied ApEn

and SampEn, achieved 100 and 94.5 % classification

accuracy respectively. It can be inferred that all such pro-

cedures yields good classification rate with high classifi-

cation cost. Acharya et al. (2012c) make use of wavelet

packet decomposition to extract Eigen values from the

wavelet coefficient using principal component analysis.

Significant features were selected using ANOVA test and

99 % classification accuracy was obtained using Gaussian

mixture model (GMM) classifier with tenfold cross vali-

dation. Aydin et al. (2009) make use of log energy entropy

with a multilayer neural network for distinguishing

epileptic EEGs from normal. Our work makes use of WPT

followed by log energy entropy to explore the low-fre-

quency components during epileptic EEG signal and

recorded best results compared to work done by Aydin

et al.

It can be observed from the recent literature (Srinivasan

et al. 2007; Pravin et al. 2010; Acharya et al. 2012a; Kumar

et al. 2014) that the time–frequency domain features

ensures good classification accuracy at extreme computa-

tional cost. Specifically, approximate entropy (Srinivasan

et al. 2007) and sample entropy (Pravin et al. 2010) fea-

tures showed a good classification accuracy but their

computational cost related to feature estimation found to be

very high and hence had its own limitation for real-time

seizure detections. One can infer from the literature that the

entropy-based features ensure good classification results

compare to the other time–frequency domain features,

there is a need to perform detailed research study to

determine the trade-off between classification accuracy and

computational complexity by making a selection of

appropriate entropy-based features.

While considering the University of Bonn database for

the experimental study, there is a symptom of the presence

of line noise and to the best of authors knowledge, attempts
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have not been made for the removal of line noise as a

preprocessing procedure.

To solve the above mentioned issues, the proposed

approach make use of an adaptive filter, wavelet packet

transform, log energy entropy, norm entropy, REN

classifier and relative performance methods. The major

contribution of this research work is the removal of line

noise in the EEGs with appropriate recognition of the

statistical variations during normal, pre-ictal and

epileptic activities through wavelet based log and

entropy features. Then, the relative performance in terms

of classification accuracy and computational complexity

ensures the suitability of the proposed method for real-

time automated seizure detection.

Materials and methods

EEG dataset

For the proposed study, EEG datasets were obtained from

University of Bonn, Germany. Three conditions, normal

(set A), pre-ictal (set C) and epileptic seizures (set E) were

considered and corresponding datasets were used. For

further details, one can refer the work reported (Andrzejak

2001). Figure 2 shows the sample recording of sets A–C–E

respectively. As reported earlier (Andrzejak 2001; Srini-

vasan et al. 2007; Kumar et al. 2014) the entire datasets

were divided into 100 single channel segments with a total

duration 23.6 s with a sampling rate of 173.6 Hz.

Line noise removal

It is well-known fact that the artifacts such as 50 Hz power

line noise are added during EEG recordings. Such artifact

leads to the wrong diagnosis during the clinical inspection

by a specialist. In the proposed study, line noise was

observed during the clinical interpretation by the specialist,

which was also in evident through periodogram and spec-

trogram analysis. To eliminate the line noise, an adaptive

Weiner filter was employed. (Tan and Jiang 2008). The

filter removes the 50 Hz power line noise from the raw

EEGs by making use of LMS algorithm (Haykin 1996).

Figure 3 shows the structure used for the current study.

The LMS algorithm is defined as below:

The corrupted EEG signal can be expressed as (Tan and

Jiang 2008)

d ½n� ¼ s ½n� þ n ½n� ð1Þ

An error signal is expressed as

e ½n� ¼ d ½n� � y ½n� ð2Þ

An error signal is approximately equal to desired line

noise free EEG signal.

Output of the filter is
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Fig. 2 Sample recordings of a Normal EEG b Pre-ictal EEG

c Epiliptic EEG
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y ½n� ¼ wT ½n� x ½n� ð3Þ

And filter coefficients by LMS algorithm is given by

(Tan and Jiang 2008)

wnþ1 ¼ wn þ 2 l e ½n� x ½n� ð4Þ

where n = sample index; s[n] = Actual signal (EEG

signal); n[n] = Noise signal (power line noise);

d[n] = Corrupted signal (EEG ? power line noise);

e[n] = Error signal (desired signal); x[n] = Reference

input (50 Hz sinusoidal signal); y[n] = Adaptive filter

output; l = Convergence factor (step size); wn = Filter

coefficients.

Step size lcontrols how fast and how well the algorithm

converges to the optimum filter coefficients so it needs to

be selected properly to reach the best performance of the

adaptive filter. If lis too larger, the algorithm will not

converge, if l is too small the algorithm converges slowly.

Wavelet packet decomposition

The wavelet packet transform (WPT) is considered as a

classical derivative of wavelet transform (WT). Both sat-

isfy the orthogonality condition. Given a non-stationary

signal applying these transforms emphasizing the low pass

and high pass filtering operations yields the sub-band tree

decomposition to some desired level. It is well-known fact

that the WT decomposes only approximation coefficients

of the signal and successive detail are never considered and

taking information located at higher frequency will be lost

on the other hand WPT decomposes successive details and

approximation, taking good and adjustable frequency res-

olutions at high frequencies (Adeli et al. 2003; Yang et al.

2006; Ocak 2009). It retains the key information located in

higher frequency than WT for certain applications. The

bottom level of WPT has better frequency resolution,

whereas top level is considered as the time representation

of the signal.

A typical 3-level WPT decomposition sub-band tree is

depicted in Fig. 4. The two infinite filters shown

correspond to wavelet, i.e. a low pass filter h(k) and high

pass filter g(k) (Han et al. 2013). Using these two filters the

wavelet packet function can be defined as (Mallat 1989)

w2i�1
jþ1 ðtÞ ¼

ffiffiffi

2
p X

1

k¼�1
hðkÞwi

jð2t � kÞ ð5Þ

w2i
jþ1ðtÞ ¼

ffiffiffi

2
p X

1

k¼�1
gðkÞwi

jð2t � kÞ ð6Þ

where w(t) is the mother wavelet function. The recursive

relation between jth level and the (j ? 1)th level for signal

s(t)are (Mallat 1989)

s2i�1
jþ1 ðtÞ ¼

X

1

k¼�1
hðkÞ sijð2t � kÞ ð7Þ

s2ijþ1ðtÞ ¼
X

1

k¼�1
gðkÞ sijð2t � kÞ ð8Þ

Thus, wavelet coefficients ck
j at position k of level j can

be expressed as (Mallat 1989)

ckj ¼
Z

1

�1

sðtÞwi
jðtÞ dt ð9Þ

In our study, wavelet packet transform is implemented

by using Haar function as mother wavelet with 5th level

decomposition from the previous study (Raghu et al. 2015).

Feature extraction

Log energy entropy

Entropy is a common in many fields, mainly in signal

processing and communication. In biomedical signal pro-

cessing, lengthy EEGs recording needs more time to do

analysis and these lengthy data or signals can be viewed as

entropy to differentiate seizures from normal EEGs.

Entropy gives a measure of signal disorder or complexity

and provides distinctive features about the signal (Shannon

1948). There are many types of entropy such as Shannon

Adaptive filter
y(n) = w x(n)

LMS algorithm
wn+1=wn  + 2 u e(n) x(n)

+
Raw EEG signal

    Reference
    input 50Hz
 line noise x(n)

d(n) = s(n) + n(n)

y(n)

+
-

e(n) = d(n) - y(n)
   Error signal

Fig. 3 Structure of adaptive filter using LMS algorithm
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entropy, log energy entropy, norm entropy, threshold

entropy, fuzzy entropy and approximation entropy that are

employed in estimating information from signals. The two

entropies, log energy and norm entropy investigated in this

proposed study were not based on concept of a probability.

These two entropies are estimated based on the energy

present in the signal and entropy may result in higher

values. The normalization of the signals is not performed in

the case of wavelet entropy and this fact is well exploited

in this proposed work.

EEG signal can be defined as the variation in amplitude

w.r.t. time. The best way to acquire entire information from

the signal is to square the signal. Squaring the EEG time

series doesn’t lead to a decrement of signal energy instead,

it results in higher values (Selik et al. 2001). s = (s1,

s2, s3,….., sn), where s is a wavelet packet decomposed

EEG signal with n samples, energy of the signal is calcu-

lated in following way

The log energy entropy is defined as (Coifman et al.

1990),

E1ðsiÞ ¼ logðs2i Þ ð10Þ

E1ðsÞ ¼
X

n

i¼ 1

logðs2i Þ ð11Þ

E1(s) gives a log energy entropy value for a 1 s segment.

The same procedure was employed for rest of the EEGs to

estimate log energy entropy.

Norm entropy

The norm entropy neither uses normalization nor log

function and it is based on the value ofpin the power. The

norm entropy is defined as the concentration inlpnorm

entropy with p C 1

E2ðsiÞ ¼ sij j p ð12Þ

E2ðsÞ ¼
X

n

i¼1

sij j p ¼ sk kpp ð13Þ

In this work, p value is chosen as 1.

Artificial neural network classification

Recurrent Elman neural network (REN) also referred as

Elman neural network found to be a potential candidate

for the pattern classification problems (Elman 1990;

Srinivasan et al. 2007; Tang and Li 2011; Sriraam 2013).

The typical architecture of that has been considered for

the proposed study is shown in Fig. 5. The neural nodes

1-90-90-1 were considered with three additional context

nodes for establishing feedback from hidden to input

layers. Two hidden layers with ninety hidden neurons

were found to be sufficient to train the network for

attaining the convergence during the experimental study.

For the input hidden layer, tan-sigmoidal activation

function and hidden output layer, log sigmoidal activation

function was employed. A resilient back-propagation (RP)

learning algorithm with an adaptive learning rate of 0.6

was used to train the REN network. Table 1 shows the

recurrent Elman neural network setting parameters.

Nguyen- Windrow algorithm was employed during the

initialization of hidden layer weights.

The classification performance of REN classifier was

evaluated by in terms of four parameters namely, speci-

ficity (SP), sensitivity1 (SE1), sensitivity2 (SE2) and

classification accuracy (CA) (Srinivasan et al. 2007).

SPð%Þ ¼Totalnumber of correctlydetected normalpatterns

Totalnumber of actuallnormalpatterns

� 100 ð14Þ

SE1ð%Þ

¼ Total number of correctly detected pre�ictal patterns

Total number of actuall pre�ictal patterns

� 100 ð15Þ

SE2ð%Þ

¼ Total number of correctly detected epileptic patterns

Total number of actuall epileptic patterns

� 100 ð16Þ

CAð%Þ ¼ Total number of correctly detected patterns

Total number of applied patterns

� 100 ð17Þ

Three cases were considered for classification purpose.

Case A: Normal-Pre-ictal

Case B: Normal-Epileptic

Case C: Pre-ictal-Epileptic

Performance evaluation

For the experimental study, set A, set C and set E reflecting

normal eye open, pre-ictal and epileptic seizure EEG

recordings were considered from University of Bonn

database (Andrzejak 2001). An adaptive filter reported

earlier was applied to remove line noise from raw EEGs.

The convergence factor l = 0.005 and order N = 3 was

selected for adaptive filter implementation. The estimation

of periodogram clearly reveals the presence and removal of

noise as depicted in Fig. 6a–d respectively.

The spectrogram analysis also ensures the presence of

line noise as shown in Fig. 7a–c. The spectrogram shows
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the time–frequency components of the EEG signal using

short-term Fourier transform.

In order to preserve the stationarity for non-linear EEGs,

a 1 s windowing was introduced to the filtered recordings.

For each 1 s segmented time series (say, EEG pattern)

three entropies namely, log energy entropy (LogEn),

wavelet packet log energy entropy (WPLogEn) and

wavelet packet norm entropy (WPNormEn) were esti-

mated. In this proposed study, Haar wavelet with 5th level

decomposition has been applied to decomposed EEG

(Raghu et al. 2015). Figure 8a–c show the pattern

distribution for the different conditions using three entropy

features.

It can be observed from Fig. 8a–c that the entropies

provide significance variation under the three conditions.

LogEn values are higher in epileptic states than in normal

and pre-ictal states. But these values are in same range for

normal and pre-ictal states, it would be difficult to achieve

good classification accuracy (refer Fig. 8a). A good dis-

crimination was obtained by applying wavelet decompo-

sition on EEGs before estimating entropy values. The

influence of wavelet packet decomposition on EEG signals

can be seen in Fig. 8b. Among the three features, WPLo-

gEn feature shows a clear band difference compared to

other features.

To recognize the importance of selected feature for its

significance for the pattern classification, statistical analy-

sis using ANOVA and Wilcoxon model was employed.

Since EEG signal is a non-stationary signal, the Wilcoxon

non-parametric test was applied for the analysis. Further

Box plot analysis demonstrates the median value with

interquartile distances with skewed distribution. The

Z-1 Z-1Z-1

LogEn / WPLogEn/
WPNormEn features

Input layer

Hidden layers

Output layer

Normal /Pre-ictal
Normal / Epileptic
Pre-ictal / Epileptic

Binary classification

Context layer

......

......

......

Fig. 5 Recurrent Elman neural network architecture

Table 1 REN training parameters

Training parameters Value

Initial learning rate 0.6

Learning rate increase (LRI) 1.06

Learning rate decrease (LRD) 0.8

Performance goal (MSE) 0.01

Cogn Neurodyn (2017) 11:51–66 57

123



typical box plot has lines at the upper median and lower

quartile values. Further Boxplot analysis (refer Fig. 9)

confirms the suitability of the feature for pattern classifi-

cation. The significance of wavelet packet decomposition

on EEGs for WPLogEn gives good discrimination between

normal and pre-ictal (refer Fig. 9a, b).

The interesting observation made from Table 2 is that

the mean value for pre-ictal EEGs is lower than normal

EEGs for all three types of entropies. The WPLogEn is

lower than LogEn due to the influence of wavelet packet

decomposition on EEGs. Standard deviation is an

increasing quantity for LogEn and WPLogEn from normal

to pre-ictal to epileptic EEGs, whereas standard deviation

for WPNormEn in pre-ictal is lesser than in normal EEGs.

A p value is used for testing statistical hypothesis and it

found to be less than 0.01 for all combinations of EEG

cases except for Case B for LogEn. Decomposition of

EEGs using wavelet packet transform results in p value

lesser than 0.01 for Case B.

In order to introduce the automated seizure detection

procedure, REN classifier was employed with entropy

features as input. By considering the typical generalization

characteristics of the artificial neural network, only 58 % of

the patterns were applied for training using the REN

architecture. With the available 2360 patterns (for each

condition), 1360 were used for training and 1000 for test-

ing. Figure 10a–d show the performance of REN classifier

and Tables 3, 4 and 5 shows the overall classification
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Fig. 6 Power spectral density of a Normal EEG with line noise b Normal EEG without line noise c Epileptic EEG with line noise d Epileptic

EEG without line noise
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results using REN classifier with LogEn, WPLogEn, and

WPNormEn. The REN classifier gives high CA rate of

99.70 % using WPLogEn with less time and number of

iterations as compared to other two features for Case A

(refer Table 3). The CA was found very less i.e. 67.10 %

using LogEn and maximum CA obtained using WPLogEn

for Case B (refer Table 4). For Case C the best accuracy

recorded using WPLogEn and it uses less time and

(a) 

(b) 

(c) 

Fig. 7 Spectrogram of a Normal EEG b Pre-ictal EEG c Epileptic

EEG
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Fig. 8 Entropy values for normal, pre-ictal and epileptic EEGs using

a Log En features b WPLogEn features c WPNormEn features
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iterations to train REN classifier. Among all three entropies

WPLogEn shows best results for all the cases.

Discussion

The time varying behavior and non-linear characteristics of

EEG signals is well exploited for the studies related to

epileptic seizure detection (Adeli et al. 2003; Srinivasan

et al. 2007; Tzallas et al. 2007; Panda et al. 2010). The

proposed study makes use of log energy, wavelet packet

based log energy and norm entropies for the seizure

detection. Following were the inference derived from the

proposed study.

1. Although several works using the University of Bonn,

Germany, database for EEG-based seizure detection

was reported (Andrzejak 2001; Srinivasan et al. 2007;

Pravin et al. 2010; Kumar et al. 2014; Chaurasiya et al.

2015), none of the work emphasize on the removal of

power line noise from raw EEGs. The application of

adaptive LMS algorithm showed a 2 % improvement

in terms of classification accuracy compared to the raw

EEGs without removal of line noise.

2. Entropies based detection of an epileptic seizure using

EEGs have been studied and well reported in the recent

past (Srinivasan et al. 2007; Pravin et al. 2010; Aydin

et al. 2009; Wang et al. 2011; Gopan et al. 2015).

Srinivasan et al. (2007) have employed ApEn feature

with REN network as a classifier and have achieved

100 % CA. The computation cost for estimating ApEn

by varying the parameters m, r and N were found to be

very high and thus had constraints for real-time seizure

detection. For REN, Gradient descent learning algo-

rithm was applied to train the network. The proposed

study makes use of RP algorithm and it was found to

yield better results in terms of computation time.

Attempts have been made using Gradient descent

learning algorithm for training REN network and it

was observed during the experimental study that the

computation time was large compared to RP learning
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Fig. 9 Box plot for normal, pre-ictal and epileptic EEGs using

a LogEn features b WPLogEn features c WPNormEn features

Table 2 Range (mean ± standard deviation) of entropy features and p value for normal, pre-ictal, and epileptic EEGs

Normal Pre-ictal Epileptic p value

Case A Case B Case C

LogEn 1245.01 ± 135.31 1154.32 ± 171.51 1726.23 ± 197.34 \0.01 \0.05 \0.01

WPLogEn 991.12 ± 125.45 711.79 ± 164.32 1367.01 ± 242.31 \0.01 \0.01 \0.01

WPNormEn 7076.43 ± 2400.9 4329.53 ± 1879.01 29362.22 ± 15835.02 \0.01 \0.01 \0.01
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Fig. 10 REN classifier output for a LogEn for Case A, Case B, Case C b WPLogEn and WPNormEn for Case A c WPLogEn and WPNormEn

for Case B d WPLogEn and WPNormEn for Case C

Table 3 Classification results

using LogEn, WPLogEn and

WPNormEn for Case A

Training Testing

No. of iterations Time (s) SP (%) SE1 (%) CA (%)

LogEn 1296 17 0 34.20 67.10

WPLogEn 65 5 100 99.40 99.70

WPNormEn 168 14 99.30 99.40 99.35

Table 4 Classification results

using LogEn, WPLogEn and

WPNormEn for Case B

Training Testing

No. of iterations Time (s) SP (%) SE2 (%) CA (%)

LogEn 961 13 99.40 100 99.70

WPLogEn 53 9 100 99.40 99.70

WPNormEn 101 16 99.55 99.30 99.42
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algorithm. Similarly, Pravin et al. (2010) have shown

the influence of spectral, sample and wavelet entropies.

3. In the proposed study, the application of wavelet

packet based log and norm entropies found proven for

seizure detection due to the nature of WPT and its

ability to detect varying component at a lower

frequency. Figure 8a–c confirms these results. Further,

the efficiency of wavelet packet based entropy found to

show band variation compared to log entropy.

4. During the experimental study, it was observed that

LogEn and norm entropy yielded the same result.

Hence comparison analysis was given only with

LogEn.

5. A preliminary study on the wavelet packet decompo-

sition levels (Raghu et al. 2015) on trial and error basis

provided the optimal selection of wavelet basis and

decomposition level. The proposed study makes use of

Haar wavelet basis with 5th level decomposition.

6. To confirm the suitability of the proposed features for

classification problem, Wilcoxon non-linear statistical

model was employed. Both p value and Box plot

results show the significance of the wavelet packet

features than log entropy features.

7. The selection of pattern classification is very important

for the development of automated medical expert

system. The proposed study makes use of the REN for

classification. Being the feedback network, REN

ensures effective training with early convergence and

then ensuring the low computational requirement.

With the MATLAB R13 environment, the network

further yielded less computational time compared to

the work reported earlier (Srinivasan et al. 2007;

Pravin et al. 2010; Sriraam 2012, 2013). It can be

inferred from the results shown in Fig. 10a–d show the

wavelet packet entropy with REN proven to be

excellent pattern recognition compared to the other

neural network including SVM where computational

burden found to be large.

8. The performance of the proposed method was evalu-

ated in terms of new index parameter called relative

(a) 

(b)

Fig. 11 a Total computation

time b Relative performance of

the proposed method

Table 5 Classification results

using LogEn, WPLogEn and

WPNormEn for Case C

Training Testing

No. of iterations Time (s) SE1 (%) SE2 (%) CA (%)

LogEn 76 11 98.30 95.10 96.70

WPLogEn 38 4 100 99.70 99.85

WPNormEn 68 8 100 99.30 99.60

62 Cogn Neurodyn (2017) 11:51–66

123



performance (RP), which is defined as (Sriraam and

Eswaran 2008; Sriraam and Shyamsunder 2011):

RP ¼ Classification accuracy CAð Þ
Total coomputation time in secondsð Þ ð18Þ

The computation time was calculated based on the

preprocessing, feature extraction, training and testing

phase of the REN classifier. Higher the RP value

shows the efficiency of the technique. Figure 11a–b

show the plots for computational time and relative

performance index using all the three feature parame-

ters employed in the proposed study.

It can be inferred from Fig. 11a–b that the RP clearly

indicates the overall performance of the feature

extraction parameter along with recurrent Elman neu-

ral network. Among the three entropies, WPLogEn

outperforms compared to the other two techniques.

The study reported by Srinivasan et al. (2007),

Acharya et al. (2012a, c) have employed ApEn and

SampEn where the computational cost of feature esti-

mation were found to be high. The proposed technique

overcomes such limitations (computational complexity

and classification accuracy.

9. A similar work reported using non-normalization

based Shannon entropy features obtained from best

basis wavelet packet decomposition (Wang et al.

2011). The study was based on wavelet packet entropy

computations using the Eq. (18) (Shannon 1948).

EðsÞ ¼ �
X

i

s2i logðs2i Þ ð19Þ

where si is coefficient of a signal in an orthonormal

basis.

Compared to the results obtained using Shannon

entropy, the proposed wavelet packet log energy and

norm entropies found to be superior in terms of

Table 6 A Comparison of overall classification accuracy obtained by proposed method and other’s method for EEG classification problems

Author (s) Year Features Classifier EEG Bonn

Data

CA

(%)

Panda et al. 2010 Wavelet based energy, Standard deviation and entropy SVM A–E 91.2

Srinivasan et al. 2007 ApEn REN A–E 100

Ocak 2009 WT based relative wavelet energy Surrogate data analysis A–E 98

Guo et al. 2010 DWT based relative wavelet energy MLP A–E 95.2

Pravin et al. 2010 Wavelet entropy REN A–E 99.75

Wang et al. 2011 Best basis wavelet packet entropy K-NN A–E 100

Acharya and Molinari et al. 2012 ApEn, SampEn, phase entropy 1, phase entropy 2 Fuzzy A–E 98.1

Acharya and Sree et al. 2012 Eigen values GMM A–E 99

Acharya and Alvin et al. 2012 ApEn, SampEn, fractal dimension

Hurst exponent

Fuzzy A–E 99.7

Zhou et al. 2013 Lacunarity BLDA A–E 96.25

Kumar et al. 2015 One-dimensional local binary pattern K-NN A–E 98.33

Samiee et al. 2015 DSTFT MLP A–E 98.1

Chaurasiya et al. 2015 Hilbert huang transform SVM A–E 96.25

Alotaiby et al. 2015 Original common spatial pattern SVM A–E 93.15

Gopan et al. 2015 Entropy Fuzzy

K-NN

A–E 89.8

Zeng et al. 2016 CS-SSIM DA A–E 76.7

Pippa et al. 2016 Time and frequency domain features Bayesian network A–E 95

Proposed work 2016 WPLogEn REN A–C

A–E

C–E

99.70

99.70

99.85

WPNormEn REN A–E

A–C

C–E

99.35

99.42

99.60

Set A refers normal, Set C refers pre-ictal and Set E refers epileptic EEG
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computational complexity. The Shannon entropy based

wavelet packet coefficients possess large value and due

to this computational time were found to be large. The

proposed technique overcomes this problem.

10. An overall comparison of the work proposed in the

literature with the proposed study is shown in Table 6.

All the work has made use of the University of Bonn,

Germany, database for the seizure detection. From the

Table 6, it can be observed that the proposed technique

outperforms results reported by Srinivasan et al.

(2007), Pravin et al. (2010).

But due to the excellent computational processing

facilities (Intel� core TM i5) with R2013a MATLAB

version, the proposed algorithm required less compu-

tational time with an overall classification accuracy of

99.70 %. It can be concluded that the proposed wavelet

packet entropies with recurrent Elman network classi-

fier classifier can be considered as the potential

candidate for epileptic seizure detection problems. As

a future step multi-classification will be considered

between normal, pre-ictal and epileptic as future work

with different mother wavelets and classifiers. The

entire methodology will be implemented using SCI-

LAB platform due to its open source availability

option for clinical implementation.

Conclusion

The proposed research study suggested a combinational

variant feature, wavelet packet log energy and norm

entropies that possess time–frequency domain and non-

linear domain characteristics to investigate the EEG time

series. In order to distinguish normal, preictal and epileptic

seizures, wavelet packet log energy and norm entropies

based feature were deployed and its performance was

compared with log energy entropy. Periodogram and

spectrogram techniques were employed on EEG to test the

presence of line noise and it was eliminated by applying

Weiner adaptive filter. A recurrent Elman neural network

classifier was employed to perform binary pattern classi-

fication. From the experimental study, ANNOVA test,

Wilcoxon statistical test and Box plot results showed the

distinguishable variation using the wavelet packet entropy

features for normal, pre-ictal and epileptic conditions. It

was found from the simulation results that the wavelet

packet log entropy with REN classifier yields a good

classification accuracy of 99.70 % for normal-pre-ictal,

99.70 % for normal-epileptic and 99.85 % for pre-ictal-

epileptic respectively. The overall effectiveness of the

proposed technique was evaluated in terms of relative

performance index which proved wavelet packet log

energy entropy feature with recurrent Elman network as the

potential candidate for epileptic seizure classification from

normal EEG as compared to the earlier methods reported in

the literature.
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