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Abstract This paper deals with the problem of delay-in-
terval-dependent stability criteria for switched Hopfield
neural networks of neutral type with successive time-
varying delay components. A novel Lyapunov—Krasovskii
(L-K) functionals with triple integral terms which involves
more information on the state vectors of the neural net-
works and upper bound of the successive time-varying
delays is constructed. By using the famous Jensen’s
inequality, Wirtinger double integral inequality, introduc-
ing of some zero equations and using the reciprocal convex
combination technique and Finsler’s lemma, a novel delay-
interval dependent stability criterion is derived in terms of
linear matrix inequalities, which can be efficiently solved
via standard numerical software. Moreover, it is also
assumed that the lower bound of the successive leakage
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and discrete time-varying delays is not restricted to be zero.
In addition, the obtained condition shows potential
advantages over the existing ones since no useful term is
ignored throughout the estimate of upper bound of the
derivative of L-K functional. Using several examples, it is
shown that the proposed stabilization theorem is asymp-
totically stable. Finally, illustrative examples are presented
to demonstrate the effectiveness and usefulness of the
proposed approach with a four-tank benchmark real-world
problem.

Keywords Hopfield neural networks - Neutral type -
Leakage delay - Interval time-varying delay - Lyapunov—
Krasovskii functional - Four-tank benchmark

Introduction

Over the past decades, switched neural networks (SNNs)
have become a popular research topic that attracts
researcher’s attention, various delayed neural networks
such as Hopfield NNs, Cohen—Grossberg NNs, cellular
NNs and bidirectional associative memory NNs have been
extensively investigated. Switched systems are an impor-
tant class of hybrid dynamical systems which are com-
posed of a family of continuous-time or discrete-time
subsystems and a rule that orchestrates the switching
among them. Switched systems provide a natural and
convenient unified framework for mathematical modeling
of many physical phenomena and practical applications,
such as autonomous transmission systems, computer disc
drivers, room temperature control, power electronics, chaos
generators, to name but a few. In recent years, considerable
efforts have been focused on the analysis and design of
switched systems. In this regard, lots of valuable results in
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the stability analysis and stabilization for linear or non-
linear hybrid and switched systems were established (see
Liberzon and Morse 1999; Song et al. 2008; Zong et al.
2008; Hetel et al. 2008 and references therein).

Within the last few decades, many researcher’s have
well-focused on the dynamic analysis of Hopfield NNs,
which was first introduced by Hopfield (1982, 1984), has
drawn considerable attention due to their many applica-
tions in different areas such as pattern recognition, asso-
ciative memory and combinatorial optimization. Since, the
stability is one of the most important behaviors for the
NNs, a great deal of results concerning the asymptotic or
exponential stability have been proposed (see e.g., Xu
1995; Cao and Ho 2005; Cao et al. 2007, 2008, 2016;
Manivannan et al. 2016; Aouiti et al. 2016; Yang et al.
2006; Zhou et al. 2009 and the references therein). It is
well known that time delays are often encountered in NNs
which may degrade the system performance and cause
oscillation, leading to instability. Therefore, it is of great
importance to study the asymptotic or exponential stability
of NNs with time delay. Meanwhile, neutral time-delay
systems are frequently encountered in many practical sit-
uations such as in chemical reactors, water pipes, popula-
tion ecology, heat exchangers, robots in contact with rigid
environments (Zhang and Yu 2010; Niculescu 2001), and
so on. A neutral time-delay system contains delays both in
its state, and in its derivatives of state. Therefore, many
dynamical NNs are described with neutral functional dif-
ferential equations that include neutral delay differential
equations as their special case. These NNs are called
neutral type NNs or NNs of neural-type.

Since, we know that successive time-varying delay
model has a more strapping application background in
remote control and control system. For example, we
consider a state-feedback networked control, where the
physical plant, controller, sensor, and actuator are placed
at different places and signals are transmitted from one
device to another. Along with the delays, there are two
network-induced ones, one from sensor to controller and
the other from controller to actuator. Then, the closed
loop system will appear with two additive time delays in
the state. Thus, in the network transmission settings, the
two delays are usually time varying with dissimilar
properties. Therefore, it is of substantial importance to
study the stability of systems with two additive time-
varying delay components. Motivated by the previous
discussion, in this paper we are concerned with the
problem of stability analysis for SHNNs of neutral type
with successive time-varying delay components. In this
connection, recently a new form of NNs with two additive
time-varying delays has been considered in Zhao et al.
(2008), Gao et al. (2008) and Shao and Han (2011). In
Lam et al. (2007) and Rakkiyappan et al. (2015a, b), it
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was mentioned that in network controlled system (NCS),
if the signal transmitted from one point to another passes
through few segments of networks, then successive delays
are induced with different properties owing to variable
transmission conditions. That is, if the physical plant and
the state-feedback controller are given by z(¢) = Az(t) +
Bu(t) and u.(t) = Kx.(t), then it is appropriate to consider
time-delays in the dynamical model as
2(t) = Az(t) + BKz(t — hy(t) — hy(t)), where h(t) is the
time-delay induced from sensor to controller and /;(¢) is
the delay induced from controller to the actuator. There-
fore, the stability analysis of such system was earlier
carried out by adding up all the successive delays into a
single delay, that is h;(f) + hy(t) = h(z) to develop a
sufficient stability condition. Therefore, the problem of
stability analysis of NNs with successive time-varying
delays in the state has received more and more attention
and become more popular in recent years (see
Rakkiyappan et al. 2015a, b; Senthilraj et al. 2016;
Samidurai and Manivannan 2015; Dharani et al. 2015 and
the references therein).

Recently, the stability of systems with leakage delays
becomes one of the hot topics and it has been studied by
many researcher’s in the literature. The research about the
leakage delay (or forgetting delay), which has been found
in the negative feedback of system, can be traced back to
1992. In Kosko (1992), it was observed that the leakage
delay had great impact on the dynamical behavior of the
system. Since then, many researcher’s have paid much
attention to the systems with leakage delay and some
interesting results have been derived. For example,
Gopalsamy (1992), considered a population model with
leakage delay and found that the leakage delay can desta-
bilize a system. In Gopalsamy (2007), the bidirectional
associative memory (BAM) neural networks with constant
leakage delays were investigated based on L-K functions
and properties of M-matrices. Inspired by Gopalsamy
(2007), recently it is essential important to study the sta-
bility of delayed NNs with leakage effects have been
existing in Samidurai and Manivannan (2015), Sakthivel
et al. (2015), Li et al. (2011, 2015), Lakshmanan et al.
(2013), Li and Yang (2015), and Balasubramaniam et al.
(2012).

So far, recently Rakkiyappan et al. (2015a, b), estab-
lished the exponential synchronization of complex
dynamical networks with control packet loss and additive
time-varying delays. Currently, Senthilraj et al. (2016),
proposed the problem of stability analysis of uncertain
neutral type BAM neural networks with two additive time-
varying delay components. Very recently, robust passivity
analysis for delayed stochastic impulsive NNs with leakage
and additive time-varying delays have been established by
Samidurai and Manivannan (2015). Very recently,
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Rakkiyappan et al. (2015a, b), analyzed synchronization
for singular complex dynamical networks with Markovian
jumping parameters and two additive time-varying delay
components. More recently, new stability criteria for
switched Hopfield NNs of neutral type with additive time-
varying discrete delay components and finitely distributed
delay were studied by Dharani et al. (2015). Lakshmanan
et al. (2013), stability problem concerned with the BAM
neural networks with leakage time delay and probabilistic
time-varying delays was studied. Li and Yang (2015)
analyzed the leakage delay has significant impacts on the
dynamical behavior of genetic regulatory networks (GRNs)
and can bring tendency to destabilize systems. Recently, in
Li et al. (2015) considered stability problem for a class of
impulsive NNs model, which includes simultaneously
parameter uncertainties, stochastic disturbances and two
additive time-varying delays in the leakage term. Balasub-
ramaniam et al. (2012), deals with the problem of delay-
dependent global asymptotic stability of uncertain switched
Hopfield NNs with discrete interval and distributed time-
varying delays and time delay in the leakage term.

Very recently, Sakthivel et al. (2015), considered the
issue of state estimation for a class of BAM neural net-
works with leakage term. Fuzzy cellular NNs with time-
varying delays in the leakage terms have been extensively
studied by Yang (2014), without assuming the boundedness
on the activation functions. In Zhang et al. (2010), studied
a class of new NNs referred to as switched neutral-type
NNs with time-varying delays, which combines switched
systems with a class of neutral-type NNs. By using an
average dwell time method and new L-K functional to
assure the global exponential stability and decay estimation
for a class of switched Hopfield NNs of neutral type in
Zong et al. (2010). In Li and Cao (2013), proposed the
switched exponential state estimation and robust stability
for interval neural networks with the average dwell time.
Very recently, Li et al. (2014) concerned with a class of
nonlinear uncertain switched networks with discrete time-
varying delays, based on the strictly complete property of
the matrices system and the delay-decomposing approach.
In Ahn (2010) first time, proposed the H,, weight learning
law to study not only guarantee the asymptotical stability
of switched Hopfield NNs, but also reduce the effect of
external disturbance to an H,, norm constraint.

With the motivation mentioned above, a new delay-
interval-dependent stability criterion for SHNNs of neu-
tral type with successive time-varying delay components
is proposed in this paper. By fully using the available
information about time-delays and activation functions, a
novel L-K functional is constructed. Our main goal is to
establish the delay-interval-dependent stability criteria,
such that the concerned NNs are asymptotically stable.

Make use of new technique to estimate the lower and
upper bound information of the time-varying delay and
L-K functional with double and triple integral terms, we
apply WDII, introducing of some zero equations and
using the RCC technique and Finsler’s lemma, new
stability criteria for a class of SHNNs of neutral type is
obtained in terms of LMIs, which ensures the asymptotic
stability. Finally, four numerical examples are given to
demonstrate the effectiveness and applicability of our
theoretical results.

The main contribution of this paper lies in the following
aspects:

e A novel L-K functional is introduced which includes
more information about successive time-varying delays
and slope of the neuron activation function. Such type
of L-K functional has not yet been considered in the
previous literature on the stability of SHNNs of neutral
type with successive time-varying delay components
are introduced.

e Different from others in Dharani et al. (2015), Bala-
subramaniam et al. (2012), Zong et al. (2010), Li and
Cao (2013), Li et al. (2014), Cao et al. (2013) and Ahn
(2010); several numerical examples are presented to
illustrate the validity of the main results with a real-
world simulation. This implies that the results of the
present paper are essentially new.

e Inspired by the works in Kwon et al. (2014a, (2014b),
some zero equations which would include more
quadratic and integral terms are introduced. These
terms are merged with the time derivative of L-K
functional and combined with RCC approach, which in
turn can enhance the feasibility region of stability
criterion.

e  Moreover, WDII Lemma is taken into account to
bound the time-derivative of triple integral L-K
functionals, this gives more tighter bounding technol-
ogy to deal with such L-K functionals, this technique
has been never used in previous literature for the
stability of SHNNs of neutral type.

Notations Throughout this paper, the superscripts 7' and
—1 mean the transpose and the inverse of a matrix
respectively. R" denotes the n-dimensional Euclidean
space, R™" is the set of all n x m real matrices. For
symmetric matrices P and Q, P > Q (respectively, P = Q)
means that the matrix P — Q is positive definite (respec-
tively, non-negative). [,,0, and 0,,n stands for n x n
identity matrix, n X n and n X m zero matrices, respec-
tively and symmetric term in a symmetric matrix is
denoted by *, X denotes a basis for the null-space of X. If
the Matrices are not explicitly stated, it is assumed to
compatible dimensions.
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Problem formulation and preliminaries

Consider the following delayed Hopfield neural network
model Dharani et al. (2015) of neutral type with successive
time-varying delay components and distributed delay as:

¥(1) = = Dy(t — 01(1) — 62(1)) + Af (¥(1))

+ Bf (y(t = (1) = ha(1)))

o[ soensmsa-am+s Y
y(t) = o(1), te[-F0]
where y(1) = [y1(2),2(2), ..., ya(t)]" € R" is the state

vector of the network at time ¢, n corresponds to the
number  of newrons,  £(y(r)) = [ (v1 (1)), /(3 (1)),
o fam()]" € R"is the neuron activation function. The
matrix D =diag(d,d,...,d,) is a diagonal matrix with
positive entries d; > 0.A,B,C,E are the connection
weight matrix and coefficient matrix, the discretely
delayed connection weight matrix, the distributively
delayed connection weight matrix and coefficient matrix
of the time derivative of the delayed states, respectively.
J =, ...,J,JT is the constant external input vector.
¢;()(i € N) is a continuous vector-valued initial function
on [—7,0],7 =max{diy, Sw,huv,hu,t,0}. 1(t),02(t)
and hy(t),hy(¢) are leakage and discrete interval time-
varying continuous functions that represent the two delay
components in the state respectively, t(¢) and o(r) are
denotes the distributive and neutral time delays, and
which satisfies the following:

0<061.<61(t) <1y, e =01y — 1L, 5.1(l)§111,

0 <02 <6,(t) <oy, Sour = O2v — O2r, 5.2(l) <1,
0<0,<d(t) <oy, Oy =0y —2or, o)<,
0<hy<h(t)<hy, ho=hv—hg, ") <,
0<hy <hy(t)<hy, hwr=huv—hu, ht)<py,
0 < hy <h(t) <hy, hUL:hU—hL, h(t) < u,
0<t(t)<t, ()<tp, 0<oa(t)<o, o(t)<op,

(2)

where 6y > 611, 62u > 021, 0y > 61, hiy > hip, hoy > hyy,
hy > hp,t,0,11,1, U1, Uy, Tp and op are known real con-
stants. Note that 0y, d2, Or, bz, hor, by may not be equal
to 0. we denote

o(t) = 61(r) + 02(2), h(t) = h(t) + ha(p),
01 =01L+ 61w, hi=hi+hy,

0y = 0op + b2y, hy = hap + hoy,
n=m+ny u=u + .

@ Springer

Remark 2.1 The first term in the right side of (1) var-
iously known as forgetting or leakage term. It is known
from the literature on population dynamics [see Gopal-
samy (1992)] that time delays in the stabilizing negative
feedback terms will have a tendency to destabilize a
system. fi(-), j=1,2,...,n are signal transmission func-
tions. Furthermore, system (1) contains some data about
the derivative of the past state to further analysis and
model the dynamics for such complex neural responses.
Hence system (1) has been referred to as neutral-type
system, in which the system has both the state delay and
the state derivative with delay, the so-called neutral
delay.

Throughout this paper, it is assumed that each neuron
activation function f;(-) in (1) satisfies:

Assumption (H) (Liu etal. 2006) For any je€

{1,2,...,n}, £;(0) = 0 and their exist constants k; and k;"
such that
=~y

for all oy # op, where oy,0, € R. Then by Brouwer’s
fixed-point theorem Cao (2000) and Assumption H, it can
be proved that there exist at least one equilibrium point for
system (1). Let z* = [z1,25,...,2]" be one equilibrium
point of system (1). For convenience we shift z* to the
origin by making the following transformation: z(-) =
y(-) — y* and then system (1) can be rewritten as

i(t) = =Dz(t — 6(1)) + Ag(z(r)) + Bg(z(t — h(1)))
+ C/ g(z(s))ds + Ez(t — o (1)), (5)
t—1(1)
() = (1), tel-70]
where z(1) = [z1(),22(2), . .., za(1)]" is the state vector of

the transformed system, the initial condition ¢(¢) =
,8(20) = [81(21(1), 82(22(1)) - gulea ()], 8i(2(1))
= filz(0) +2) —£i(z), j=1,2,...,n. According to
Assumption H, function g;(-) satisfies the following
condition:

o(t) —

The switched Hopfield neural network of neutral type with
discrete and distributed delays are described as
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(1) = =Dynz(t — 8(1)) + Ag(8(2(t)) + By &(2(t — h(1)))
+ Cg(t) / g(z(s))ds + EQ(,)Z(I — O'(t)),
t—1(1)
z(t) = ¢(1),

t € [-7,0],
(7)

where ¢(7) is a switching signal which takes its values in
the finite set K = {1,2,...,m}. Define the indicator func-

inequality holds for all continuously differentiable function

in [a b] — R":
u)Mx(u)duds > (/ / duds>

duds) +20/M0O,.

(//

where

tion (1) = [y, (1), 72(8), -, 7,(1))", where

(1) = 1, when the switched system is described by the kth mode, Dy, Ay, By, Cy, Ex, (8)
M) = 0, otherwise,
and k € K. Thus, the model (8) can also be described by / / u)duds + —a / / / v)dvduds.

m

ZVk

+ Ck/tt (I)g(z(s))ds—i-Ekz'(t—a(t)) ) 9)

—Dyz(t—0(t)) +Arg(z(t)) +Brg(z(t — h(2)))

As (9) must be satisfied under any switching rules, it fol-
lows that ) ;" 7,(f) = 1. Next, we present some prelimi-
nary lemmas, which are needed in the proof of our main
results.

Lemma 2.1 (Gu 2000) For any positive definite matrix
M € R™", scalars hy > hy >0, vector function w:
[h1, hy) — R" such that the integrations concerned are well

defined, the following inequality holds:

= (=) /thl w'
o T
[l

Lemma 2.2 (Park et al. 2011) Let f1,f>,....fv : R" — R
have positive values in an open subset D of R™. Then, the
reciprocally convex combination of f; over D satisfies

min Z f, Zf,( +maxZg,J

(s)Mw(s)ds

{o]o >OZ o;=1} i 8ij(t
subject to

i'ZRm|—>R7 'ité (1), ﬁ(t) glJ(t):|>0}
{8,1 i, (1) g-J( ) |:gj,i(t) JS([) Z

Lemma 2.3 (Park et al. 2015) For a given matrix M > 0,
given scalars a and b satisfying a<b, the following

Remark 2.2 So far, very recently the WDII is proposed by
Park et al. (2015). Employing WDII is sure to get less
conservative criteria than applying the Jensen’s inequality.
Therefore, this integral inequality takes advantage of the
following information from three aspects: the first is to use
the information on the state such as x(#), the second is to
benefit information on the integral of the state over the
s)ds or f s)ds and

the third is to employ the mformatlon on the double inte-
gral of the state over the period of the delay such as

S flux(syds or [7,

the more 1nf0rmat10n about the plant states such as

x(1), [/ .x(s)ds or fr «(X(s)ds and fo Sl x(s
f?rm [/, x(s)ds. Hence, Lemma 2.3 may provide tighter

period of the delay such as [/ _x

1 . .
) Jiyu X(s)ds. Therefore, which gives

s)ds or

bound than the Jensen’s inequality.

Lemma 2.4 (Boyd etal. 1994) Let ¢ € R, ® = T ¢
R™" such that rank (B) <n. The following statements are
equivalent

i) oi<0, VBE=0, (#0,
(i) B ®BL<0, where B is a right orthogonal
complement of B.

Lemma 2.5 (Boyd et al.
A11,A12,A21,An with

1994) For a given matrices
appropriate dimensions,
Ay A
2120 <0, holds if and only if Ay <0,A; — A
Ay Axn
A AT, <0.

@ Springer
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Main results

In this section, we will propose a stability criteria for system (9).
For the sake of simplicity of matrix and vector representation,
e; € R (j=1,2,...,56) are defined as block entry
matrices  (for example el =1[0,, 0,, 0,, I,

Ony--eeeve..,0,]). The other notations are defined as
(o) =["(0) 2" (1= hp) 2" (£ = i (1) 2" (1 = o)
T (t—haor) 2" (t—a(2)) 2 (t — o) 2 (£ — Ip).

t t
ZT(t—h(t))zT(t—hU)/ zT(s)ds/ 7' (s)ds
t—hi t—hyp
t t—hy
zT(s)ds/ 7' (s)ds
hy t—hy (1)

t—hyp, t—ha (1)
7' (s)ds / 7' (s)ds / 7' (s)ds
t t—

11— h[U 71’!2([)

t—h(t)
77 (s)ds / 7' (s)ds

0
/ I s)dsdu / / s)dsdu
tHu hyp Jt+u
—hi
/ 7' (s)dsdu / / 7' (s)dsdu
tHu hy(t) Jt+u
h1 t) —hyy,
/ I s)dsdu / / s)dsdu
—hiy t+u t+u
—hy (1) t hL
/ I s)dsdu / / s)dsdu
hzu tHu

t—hy (1)

\~\

|
N
S

S >

\\\:\\\

—h(t t

) ! (s)dsdu g" (z(1)) g" (z(t — hy))
g (z(t— (1)) &" (z(t — hav)) &7 (2(t — ha(1)))
g (z(t—hy)) g" (z(t—h(1))) 2" (1) 2" (1 — v)

=01y l—(Sz(t) t—dy
N T
=9y, 1—9(1)
/ 7' (s)ds / 2 (s)ds 27 (1 — 0'([))]
1—9(1) t—dy

@ Springer

IT; =[e; — esoDyl],
IT, = [e3s — e1Dr + (1 — n)essDy],
I3 = 2(ex9 — kmel)A|e3T6 + Z(kpel — ezg)Ale; + 2(e30 — kme4)e3r7
+ Z(k,,e4 — 830)A2€3T7 + 2(esn — kme7)/\3@3T8 + Z(k,,e7 — 632)A3e3T8
+ 2(e34 — k,,lelo)A4e§9 + Z(kpem — 634)A4e§;,
Iy = es(T1 + T2 + Tg)e3T6 —eyT) e§7 - 633T263T8 — e39T3e3T97
5 = e1(Py + P3 + Py)e] +eqn(—(1 —n,)P2
+(1- ;11)P5)e§2 +eaa(—(1 —m)P3 + (1 - 112)P6)e§4
+ eas(—(1 = )Py — (1 —n)Ps — (1 — n)Ps)els

Pg
} ler ex]”

tler el
(3] €29 % Pg

el el Pl el

+ e ezg]{P:’ ﬁﬂ[el ex]”

= (1= m)les 633]{1)*]0 ?ﬂ[eé ex]’
t-me el Dl el
e el T e el
+ (1= m)les 933]{116 Ilzﬂ[es es]
e el e e

s = e1(Q1 + 02 + Q3 + Qs + Qo)el + eq1 (—01 + Qu)el,
+es3(—02 + Q3)ely + eas(—03 — Qs — Os)els
+ e1(Q7 + Qi0)esy + e20(Q0s + Q11)ely

+ler  ex) Q: gﬂ ley 629]T—[€4 e30) {Q: g;} les 630]T
+ [e1  ex] {(ig gi?} e 829]T*[67 e3) {Q: gi?} e7 Esz]T
+lea  e30] Q*|2 glj [e4 eSO}T
L 1
On O T
— [eio  e34] . Ou lero  e34]
+ler en) Q*IS 516} le7 ezz}T
L 17
_ 015 Qe T
le10  e3d] « 0 lero ea],
17

Iy = ey (83,U + 05,V + 61, W + 01, X + 53, Y + 03, Z)e]
—eq7Ues7 — e4gVeIS — e49WeZ9 — e50Xe5T0 — 2e50Xe5T1 —es lXeST1
—esp YeST2 — 2es YeST2 — es3 YeST3 - e54ZeST4 - 2e54ZeST5 - e5sze§5,
s = exhiurQies + ea(—hur Q1 + huQ2)es — eshiyrQael
+ eshayrQsel + es(—hayr Qs + hoyrQa)ef — erhoyrQael
+ eshyrOses + eo(—hyLQs + huyQs)es — erohurQsely,
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Iy =[e;  es6) (hle_] + thV + hiW + thLXJr h%ULY + h%]LZ) [e1 636}T7[€11 e —ey))Uler; e — ez]T

—lenn e1—eslVern e —es) —[ers e1—es]Wleis e —eg)

- [814 € —e3 €15 €3 — 64] = [614 € —€3 €15 €3 — 84]
* X
—leis es—es e7 es— eq] . 7 leie es—es e17 eg— e
zZ N
- [618 €g —€9 €19 €9 — 610] v« 7 [6’18 €g —€9 €19 €9 — 610] )

n W h h2,, — h2)? "2, —h2)? "2 — h2)?
Hm:e%&Rﬁ%RHZLRﬁ( o= W) OB BB O8I0 )

3 3 3 6
— e <§R1 + ERZ +§R3 + 3R4 + 3R5 + 3R6> e{ + 613R1€;0 — 6’113R161T1 + ellh—lLRle;O — ezo—Rle;O

6 18 6
+ 613R2€2Tl — 6]23R2€1T2 + 612—R2€2Tl — 621TR2€§1 + 6‘]3R3€§2 — 6133R3€{3 + 613—R3€§2
It 12, I

Riel e 18 Riel
- 5, 14 — €237 514
mo—hy 2 Py — )R

Riel, — e 18
hlU - hlL 4o 24(h1U — I’lIL)

N 6 o1 18
el IN\56H,s — €
1()hZU - h2L 2025 » (h2U — ZL)

18
— exs————Rselg + e13Reel; — eig3Reefy + e1g
(hay — har)

+ 613R6€2Tg — 6193R6€{9 + €9

18
_ ezthRsegz + 613R462T3 — 6143R461T4 + e
L

T T T T T
+ 613R4€24 - 6153R4€]5 + ei5 2R4€24 + 613R5€25 — 6163R5€16

6
2R5€§5 + 613R5€£6 — @173R5€{7 + @17f
U 2L
6
O Ryl — e
hy —hy "7 h
18
7R(,€T — 62371?661"
hy=h >y — )
11, = 6291251659 — 84()5163(0 + 636S2€3T6 — 656(1 — O'D)52€§6,
I, = 636(—H — HT)6‘3T6 - 2636HA1<616 + 2636HBk€2T9 + 26‘36HC](€§5 + 2636HD1<€£0 + 2636HEk€5T6,
I =— 61G1216‘1T + 261G1226§g — 629G1€gg — €3G221€3T + 263G222€§1 — 63]G26‘3T1 — €4G3Z]€Z
+ 2€4G322€§0 - 830G3€§0 — €6G421€6T + 2€6G422€§3 — 633G4€§3 — €7G521€7T + 2€7G522€§2

— 632G56‘§2 — €9G621€g + 2€9G622€§5 — 635G6€3T5 — 810G721€1T0 + 2810G722€3T4 — €34G7€§47
13
2 =PI + TLPIT) + ) 1T,

=3
K, = diag{ky k3 ,...... kY, K= diagl{ky ks ... kb
ki + ki ky 4+ kf k; +kF
S, = diag{ki ki kyki. ... koK), T, = diag{%, % ...... %}
On Fl On F2 On F3 On F4 On FS On
Fi= , Fa= , Fa= , Fa= , Fs= , Fe=
Fi 0, F, 0, F3 0, Fy 0, Fs 0, Fs

Fe
0, |
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Theorem 3.1 For given positive scalars
012,010, 021, O2u, hur, by, hor, hou, 01,62, h1, oy T, 0,1, 1,
U1, W, Tp, 0p and diagonal matrices K,,K,,, then the neu-
ral network described by (9) is globally asymptotically
stable, for any time-varying delay 6(t),h(t),t(t) and o(t)
satisfying (2), if there exist positive definite matrices
Pi(i=1,2,..,18) eR™ T;(i=1,2,3) e R"" Q;(i =
1,2,...,17) e R™"U, V,W,X, Y, Z <€ R™", Uc R
VG R2n><2n, WE R2"X2”7XE R2n><2n’ YG RZnXZn,Z_G R2n><2n’

R (i=1, 2, ...,6) e R™" S;(i=1,2) € R™", positive
diagonal matrices A; = diag{i;,n,..., n}, A =diag
{:ull).unv . -7:uln}7H € RnxnvGi(i = 1727 o 77) € Rnxn’

any symmetric matrices F; € R¥"(i=1,2,...,6), any
matrices L, M,N € R*?" such that the following LMIs
hold:

(rH" =21t <0, (10)
(X + F, L

>0, (1)
| * X+ F,
(Y +F; M

>0, (12)
| * Y+ Fy
[Z + Fs N

>0, (13)
| * Z-i-fe,_

Proof Let us consider the following Lyapunov—Krasoskii
functional candidate:

V(z(1),1) = Z Vi(z(1), 1), (14)

Vilele), 1) = (z(z) o f z<s>ds) " (zm of z<s>ds>,

:22{1“/2'(')@( )7kfs)ds+(51,‘/2'(1)(&.%7g,»(s))ds}
+2Z[M,/ o (ils) — k' s)ds +oz,/0 o (ks — &i(s ))d]
+2Z[M,/OMU ds+o3,/0 s —gi(s d}

i(t—hy) i(t—hy)
+ZZ A4,/ ) — ki sd3+()4,/ k*sfg, s
0

0

S

@ Springer

/ $)T1z(s ds+/
t—hyy t—hy

1
5)THi(s ds+/ T(5)T32(s)ds,
t—hy

/ PzZ dS + / PxZ
+

$)Paz(s

+

* /z ha( L’(ZZ((XA)»

1—h (1)
/h(t) [
t—hy(t) |:

z(s)
8(z(s))

g(z(s))

+

1—h(r)

+
/ QlZ var
+

/ N
-/l(’:‘ $)Psz(s)ds + _/lji.()lm 2" (s)Poz(s)ds
+/,,, [g(zz((ss))} [

]T[Pf oo Lo
I im] {gfj(ss)))]ds

o (5)Qaz(s)ds + / t; (5)0s2(s)ds

r—ég

-8y 1=,
/ 5)Qaz(s ds+/ , 27 (5)Qsz(s)ds
-0

+

Z
l hy z

+

Jr

o |
[ [ 0

-y L&(z(s))

/ g
O J1+0

+ (SZL/ / ZT(S)
=0y, J1+0
-0 ot

+5L/ / 2 (5)W:
—op Jt+0

=i
+ 51UL/ /
l)lu +0
+02UL/ /
+ 5UL/ /
+0

+h2L/ /
hor J 10
+hL/ /
S0
hir
+ hlUL/ /
—my J+0
+0

—har
+h2UL/
—hy

—hy,
+ hUL/ / E(s)
—hy J1+0

e
Ll

Q9 Qo

g(Z(S)] [ * Qu
} [le Q16

* Qn]
On O3

|—,l—l|—|

* Q7
5)dsd0

Vz(s)dsd0

Z(s)dsd0

$)Xz(s)dsd0

s)dsd0

5)Zz(s)dsd0,

Vi(z(1),1) = hlL/h éT() Ué&(s)dsd0

5)dsd0

s5)dsd0

5)dsd0

5)dsd0

$)dsd0,
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oo 0
) = L/ / / T (s)R1Z(s)dsdud
h t+u
hZ
2L / / / $)Ryz(s)dsdud0
hor t+u
+ ?/ / / 2T (s)R32(s)dsdud0
—hy JO t+u
h2 —h2 —hyr 0 pr
+M/ / / 2T (s)Ryz(s)dsdud0
2 —hyy JO t+u
h2 _h2 —hyy, 0 t
+ M/ / / " (s)Rsz(s)dsdud0
hy JO t+u
_ ]’12 —hy 0 pr
/ / / 2T (s)Rez(s)dsdud0,
t+u
/ / 5))S18(z
-1 t+0

/ e
& (1) = col{z(t), (1)}

Taking the time derivative of V(z(¢), t) along the trajec-
tories of system (9) yields

))dsd0

(15)

where

T

Vi(z(t), 1) Sz(Z(t) — Dy /_té()Z(S)dS> P (2(1)
—Dyz(1) + (1 — n)Dgz(t — 5(1))) < 20" ()T P T, {(1),

(16)

Va(2(1), 1) = 2[g(2(1)) = knz(t)]" A12(1) + 2[kp2(r) — g(2(1))]” Ar2 (1)
(2t = 1v)) = knz(t — h1o)] Ao2(t — hy)

+ 2[g (
+ 2[kpa(t — hiy) — 8(2(t — )] Agz(r — hiy)
+ 2[g(2(t — hav)) — kz(t — hov)]" Asz(t — hay)
+ 2[kpz(t — hou) — g(z(t — hzu))} Asi(t — hy)
+ 2[g(z(t — hy)) — knz(t — hy)]" Asé(t — hy)
+ 2[kpa(r = hy) = (2t = hv))] " Aai(t = hy)
= {T(nsL(),
(17)
Vi(2(t),1) = " ()[T1 + To + T3)2(1)
— 't — )T (1 — ho)
— 2"t = hay)Tod" (t — ha)
— 2Tt — hy) T3z (1 — hy)
= (L), (18)

2 (1)[P2 + P3 + Plz(1)
)= —=n)P2+ (1 —n,)Pslz(t — 61(1))

p=N
™~
PaN
=
Ly
~
=
‘\/\
Ny
—

+z (l 1(

+ (1= 82(0)) [=(1 = my)P3 + (1 = 1) PsJz(t — 6(1))
+ 2 (1= 8()[—(1 = n)Ps — (1 —n)Ps — (1 — n)Plz(t — 6(1))
2(1) P; Pg z(t)
- {g(Z( } { H (z(1)) }
|: Z(t /’l] :| |: 7 P3:||: Z(l*hl(l)) :|
2(t—=m ()] | = Pollg(z(t —m(1))
|: (1) } Py Pn}[ }
Py
— (- )_ Z(f () T Plo Py [ 2t — ha(1))
Bl et —mon] L+ PullsGe-m))
[ 2e—hi(r) 17 [Pz Pu][ zt—Mhi(r)
(=) Lg(z(t—mi(2)))] | * Pis] [g z(t — hi(2)))
(- )_ z(t — h(t)) T{Pls P14'[ 2t —h(1)) T
ler—nmn] [« PisllaGe—n))
[ z2(t=ha(t) 17 [Pis P 2(t=ha(2)) ]
R Y won] |+ Pm_[ddf—hxﬂﬁ_
—a- )' Z(t=h(1)) ] {Pm P17'[ Z(t = h(1)) T
Fleci—non] L« Pulleei—nm))
<{M(HNs¢(2),
(19)
Vs(2(1),1) = 2" ()[Q1 + Q2 + Q3 + Q6 + Qolz(1)

+ 27 (t = 61)[= 01 + Oulz(t — 61)
+ 21 (t = 82) [~ 02 + Os)z(t — &2) + 2" (t — 6)
X [—Q03 — Q4 — Oslz(t — 9)
+ 2 (D[Q7 + Quolg(z(r)) + ¢" ((1))[0s + Ciile(z(1))

L] 12 ol
L] 1% alleio]
i [g(zz((tl) } [Q g” (((?))
_[_g(zz((tt_—h;zl; } [Q*‘»’ gi?Hg(zz((tt_—h;:u)))}
o P e | P
[ de—hy) 1T[Qr Qi lt—hw)
:g(Z(f—hU))] T{ * QlJ L(Za—hu))]
i _gé(é—hifﬁ»} [Q*IS g::][gé((tr—}::;))]

-] [ Gl )

= ("L (7), (20)
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wZ)z(1)
ZT(S)UZ(S)dS — 0 /l(S 7 (s)Vz(s)ds

t =1L
— 5L/ ZT(S)WZ(S)dS — 51UL/ ZT
t—o =01y

t—do1 t—4g
— 52UL/ ZT(S)YZ(S)dS — 5UL/ ZT
t—d t—dy

Applying Lemma 2.1, we have
Vo(z(1),1) <

(8)Xz(s)ds

(8)Zz(s)ds.

(1) [5%LU + 5§LV + ()ZW + OIULX + a2ULY + 5ULZ} (1)

'
dsU/ z(s)ds
1=81(1)

- 01(1)
/ s)dsV / z(s)ds
r>z(f) = 52()
/ 2L (s)dsW z(s)ds
1—0(t 1—0(t)

1— bl,_ r =01,
(s a'sX/ z(s)ds
Ou(t =38, (t)

—diL 1—=01(1)
- 2/ zT(s)dsX/ 2T (s)ds
1—0,(1) t o.u

1— ol(t) =01 (1
s)dsX

—dy t=d1y
=051 =02
/ ZF (s dsY/
9 (1) 1—0, (x)
=8y
/ dS‘Y/
t oz(/) =0y

1—0,(1) t— o(z)
szdsY/
t

=y

/l o
1—0r, 1—0(t)

- / ZT(S)dSZ/ 7' (s)ds
1—0(1) t—du

1=0(1) 1=0(1)
—/ zT(s)dsZ/ z(s)ds
Jt—oy 1—0y
<),

l\)

Ve(z(1),1)
(1)

Inspired by the ideas in the works of Kwon et al.
(2014a, b), following six zero equalities with any sym-
metric matrices F;, i = 1,2,...,6 are introduced:

0 =hy {ZT(Z‘ — hlL)F1Z(t —hip) — ZT(t — hi(1))

Fiz(t — hy(1)) - 2 / )

(22)

t—h

! (s)Fy2(s)ds|,

@ Springer

0= o[ (¢ = () Fazlt = (1) = 2 (¢ = o)
F h 2 o Foz(s)d 2
2z7(t — hy) — /l_hw z' (s)F2z(s) s},
0= h2UL |:ZT(I — th)F3Z(l — hQL) — ZT(I — hQ(I))
t—hop (24)
F —h -2 T(s)F32(s)ds ,
cle—ma0) =2 [T o]
0= hyt [ZT([ — hz(l))F4Z(l — hg([)) — ZT(t — hzy)
t—hy (1)
Fuyz(t — hoy) — Z/rhzu ZT(S)F4Z'(S)de|, (25)
0= hu [zf(t — hy)Fsz(t — hy) — 28 (t — h(1))
t—hy, . ] (26)
Pete =) =2 [ Ts)Fc(oyis]
0= hu [2" (¢t = h(0)Fezlt = h(1) = 2 (t = ho)
) (27)
Foz(t — hy) — 2/7]1 ZT(s)Fﬁz'(s)ds].

By summing the above six zero equalities given in the
Egs. (22)-(27), it can be obtained

t—hiL

0= {"(nIsL(r) — 2h1UL/t 2! (s)F12(s)

7h1(l‘>
t—hy (1)
- 2hlUL/ ZT
t—hiy
t—hyr,
~ b [ Fls) ~ 2o, |
1=hy (1) '

—hyy
t—hy, t—h(t)
= b [ TR 2 [ 0PI
t—h(r) t—hy
Va(z(t),1) = E"(0) [}, 0 + 13,V + BiW + b}, X
R ¥+ R, ZIE() — By / &7 (5) UE(s)ds

t=hyy,

. / Ve — / W)

($)F2Z(s)ds

t—hy (1)
21 (5)F4z(s)ds

t—hig, t—hor,
[ T ORE — o | s
; hlLU 1—hyy
_hUL/h EN($)ZE(s)ds.
(28)

Using Lemma 2.1, the following inequalities hold
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Va(z(t),t) < E () [, 0 + B3,V + 2 W + 12, X
+h2ULY+h%JLZ_]é(t)

- T R
ft—hlL z(s)ds U]] U12:| t h]L ]
L2(t) —z(t—hw)] [ * Un ) —z(t — hyy)
- - T - = -
ftt,hn z(s)ds Vi V12] f oy 2 ]
Lz(t) —z(t—hay) ] | * Vool [2(t) —2(t — hor)
[, 2(s)ds Wi le} Sy, 2(s)d
L2(t) —z(t — hy) x  Wan | |z(t) —z2(t — hy)
t=hy, t— th ~
_ hlUL/ é ( )Xé( dS - h2UL/ Yé(s)ds
t—hiy t—hy

t—hy
— huL / EN(5)ZE(s)ds.

—hy
(29)

By considering integral terms in (29) with the equation
(28), if the inequalities in (11), (12) and (13) are holds, then
by utilizing Lemmas 2.1 and 2.2, it follows that

t—hi
- hlUL/
t—hyy
t—h (1)
T
t—hiy
t—=hy
= _hlUL/ er
t—hy (1)
t—h (1) .
- hlUL/ é
t—hiy
hiut /l_h‘L o
h(t) = hie Ji—n )
hiur

t—h (1) ’ P ,
_m/thm & (X + Fa}e(s)ds

t—hyL

& ()X E(s)ds — 2h1UL/ 7' (s)F1Z(s)ds

t—hy (1)
(8)FRZ(s)ds
(s){X + F1}E(s)ds

(s){X + Fr}&(s)ds

(){X + F1}E(s)ds

t—h

T
i () S(5)ds X+ F L
S —
! E(s)ds £ X+F
t—h
tfhll(Lt) &(s)ds 0
) 30
—h
! E(s)ds

and similarly, we have

—
- h2UL /
t—hyy

- 2hZUL

t—hay,
= —huyr / &
t—hy (1)
t—hy (1)
— hyr / &
t—hy

_ hZUL /t_hZL éT
1) = har Ji )

ho(
hy

t—hy(t)
_ 7/ éT
hav = ho (1) J 1y

< —

t—hyp
t—hy(t

t—hy (1)
t—hyy

t—hy,
- I’lUL/ éT(S>Z€(S)dS — 2hUL/

—h

t—h(r)
- 2hUL / ZT
t—hy

= _hUL

t—h(r)
- hUL/ éT
t—hy
_ L/Ih ér
t) —hy t—h(r)

B hur /t—h(z) éT
(1) Ji-ny

T - —
Z+Fs

hy —

t—hy,

1=h(?)

t—h(t)
t—hy

har,

t—hy (1)
t—hy

UL

t—hor,
t—hy (1)

E(s)ds

t—hy (1)

iy S(8)ds
) S(s)ds

E(s)ds

U

t—hy .
<
~/th(t)

’_hL &(s)ds
t—h(r)

—hy E(s)ds
&(s)ds

E(s)ds

EN(s)YE(s)ds — 2h2UL/

t—hyy,

t—hy (l)

(8)FaZ(s)ds
($){Y + F3}&(s)ds

($){Y + Fa}&(s)ds

Y+.7'-3 M

* Y+f4

1—h(r)

(8)Fez(s)ds
($){Z + Fs}é(s)ds

(s){Z + Fo}(s)ds

(s){Z + Fs}é(s)ds

(s){Z + Fo}é(s)ds
N

* Z+ Fe

From (30)—(32), it is concluded that

27 (s)F32(s)ds

($){Y + F3}&(s)ds

($){Y + F4}&(s)ds
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1= (1)
2L (5)Fa2(s)ds

t=hi

ZT(S)Fli(S) - 2h1UL/

t—hy

Va(2(6), ) — 2o /

t—hy (1)

t—hyp, 1=hy(t)
— 2h2UL/ ZT(S)F3Z(S) — 2h2UL/ ZT(S)F4Z.(S)dS
t t

—hy(1) —hyy
t—hy t—h(r)
— thL/ ZT(S)FSZ'(S) — 2hUL/ ZT(S)Fﬁz.(S)dS
1—h() t—hy
<EWO[MLU + WV + W + iy, X + Wy Y + hiy Z) (1)
[ S, 2s)ds ] "oy, 12] { S, x(s)ds ]
Lz(t) —z(t—h) | |+ OUn] |Lz(t) — 2(t — hip)

[ j;[*th Z(S)ds 1" _V“ ‘712_ [ Lﬁith Z(S)ds :|

Lz(t) —z(t—hu) | | * Voo [z(t) —2(t — har)
[ fL, 2(s)ds ] r {wll Wi [ [, <(s)ds }
Lz(t) = z(t — he) x  Wa | |z(t) —z2(t — hy)
[ ,:ZX(L,) z(s)ds r
Z([*/’lll‘)*z(l‘*hl(l‘)) X+-7'—1 L
S 2(s)ds x«  X+F»
_Z(t - h]( )) - Z(f — hlU)
1 :IlL ( )d&‘
Z(t — h]L) — Z(l — h] (t))
' :"U(t) z(s)ds
Z(t— hl( ) —z(t = o)
Dty 2(0)ds
(t—th) —Z(l‘—hz( Nl [Y+F M
ol 2(s)ds S £
Z(t — (1)) — z(t — hov)
ot 2(s)ds
2(t — ho) — 2(t — o (1))
frt :fb(t) z(s)ds
2(t = ha(t)) — 2(t — hav)
. h' ) 2(s)ds !
Ufhufza )| [Z+Fs N
,t::lft) z(s)ds * Z+Fe
2t — (f)) - Z(f —hy)

f h(t)

2t —hy) - Z(l - h(’))
j;[::y) z(s)ds

Z(t = (1)) — z(t — hy)
<Ol (t),

@ Springer

nt h hoo Wy — k)’

Vs(z(t),1) = 2 ()( iLR + ZLR2+ 4LR3+ 2 Ry
h2 _ h2 2 h2 _ h2
+( 2U ZL) QS"'( 7 L) RG Z()

h2 h3
—1L / / $)R1z(s)dsdu — 2L /
iy Jt+u 2 har,
/ #T(s)Raz(s)dsdu — —L/ / i (s)
t+ hL t+u

Wy —
dsR3z(s)du — —Y lL/ / (s)
hi(t) Jt4u

—h2 —hy (
dsR,z(s)dsdu — iy — by / / ZT(s)
t+u

hiy

U h%L e ' -T
Ryz(s)dsdu — 7 (s)
hz(t) t+u

hZ t
Rsz(s)dsdu — —2Y——2L / / I(s)
hzu t+u
RsZ(s)dsdu — u/ / (s)
h(t) Jt4u
h2 h(t) pt
Rez(s)dsdu — / / 27 (s)Rez(s)dsdu.
t+u

(34)

Applying Lemma 2.3, the integral terms in (34) can be
rewritten as

h2 0 t
- i/ / 7T (5)R12(s)dsdu <
2 —hy Jt+u
t T t
— (hle(t) —/ z(s)ds) R (hle(t) —/ z(s)ds)
t—hy t—hig
hip !
— 2 ——==z(r) — s)ds +— s)dsdu R1
2 t*hlL hlL t+u
ht !
x | ——==z(r) — s)ds + — s)dsdu
2 t—hlL —hiL l+ll

S CT(t)®l C(t)a
(35)

Similarly, we have

2 0 !
7%/;, /t+ ZT(S)Rzi(S)deMS CT(t)®2C(t)’ (36)
0 '

hiy _h%L/ e / (s)Ra2(s)dsdu < I (1)@4L (1),
(38)
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Ydsdu < (" (1)@®s( (1),

—_ K
lU 1L / / R4Z
hy t+u
(39)

2U - h%L o R d du T @
/ /; JRs2(s)dsdu < {7 (1)®el(1),

hz

(40)
h2 _ h2 —hy (1) t ,
—ii——é/‘ ./ T (s)Rsz(s)dsdu < (T (1)©(1),
2 —hy +u
(41)
h2 — h2
/ / (s)Rez(s )dsdu<C (1)Og{(1),
h(t) Jt+u
(42)
) —h(t) pt
vt / / 27 (5)Rez(s)dsdu < {7 (1)@l (2).
2 hy tHu
(43)
where
0, = —[hizer — en)Ri[hier —en]”
[ hig 3 i 3 T
_o| AL, 2 e | Ry 22 -~
|2 e; — ej) +hlL€20} 1 [ 5 e; — e +h|Le20}
0, = —[hyer — en]Ralhaer — enn]”
Y 3 har 3 77
_of 2L, 2o Ry | m 20, — =
2 e —en +h2L621} 2[ ) e —en +h2L€21} )
O3 = —[he; — ep3|R3[hLe; — 613]T
[ h 3 h 3 17
*2_ 2L€1 —en3 +h ezz}Ra{ 2L€ —e3 +h7Le22} ,
04 = —[hiyLer — ewa]Ralhiyrer — 814]T
h 3 h 37"
-2 _—%El — e+ mem_ R4 _—%61 — ey + meﬁ_ )
Os = —[hyLer — e1s|Ralhiurer — els]T
[y 37 [ hu 31"
-2 —%61 —ej5+ 57— Tnon 24_ Ry _—%6‘1 —ejs +-— e 24_ ,
Os = —[haurer — eislRs[hauer — erg]”
[ haur 3 7. hu I
) _ R<|— _
2 €] — €16 +h2UL€25_ 5 2 €] — €16 +h 25_ s
07 = —[haurer — erRs[hayer — er7]”
hour, 3 [ hour 3 T
) _ Re|— _
2 €| 617+h2UL€26_ 5 ™2 4 617+h2UL 26_ ,
O3 = —[hULel — eis]Re[hurer — els]T
[ hye 3 hur 3 T
_o| Zu, 2 o | Re | =2, — =~
2 €] — €8 +hUL€27] 6|: ) €] 618+hUL€27} )
0y = —[hyrer — ewo]Rs[hurer — ero]”
[ hyr 3 hur 3 T
— 2|2 — 1+ —ex| R |——Ler — €10 + ——ens| .
2 e — €9 +hUL€28] 6|: ) €] — €9 +hUL€23

From (34)—(43), it gives that

Vi (z(1),1) < ()0l (1),
Vo(z(1), 1) < °g" (2(1))S18(2(t))
I RCONECREERLOIAD
+ (1= a(0))(—(1 — 6p)T)i(t — (1))
Utilizing Lemma 2.1, we have

Vo(2(1),1) < g" (2(1)) [¢*$1] 8 (2(1))

+ (/{tm) g(z(s))ds)

vwn(llmg@@»w>
+7(1)822(1)

)
+ 21t —a())(—(1 — 6p)$2)2(t — 0 (1)),
<O L(r).

(44)

On the other hand, for any matrix H with appropriate
dimension, it is true that

HZVk {

— Diz(t — (1)) + Arg(2(1))

+Bg(z(t — h(t)))
t
+Ck/ 8(z(s))ds + Exz(t — U(f))]v
t—1(r)
=" (ML), (45)

From (6), the following inequality holds for any positive
diagonal matrices G;, i =1,2,...,7
0={[" () (=G1Z1)2(1) +22" (1)(G1 Z2)8(a(r)) +8" (2(1)) (= G1)g (2(1))]

+ [ (1=mi (D) (= GaZ0)z(t= i (1)) +22" (1=h1 (1)) (G2Z2)g (21— (1))
+&" (2(t=h (1)) (—Ga)g (21— (1)))]

+ [ (t=h1) (—G3Z1)z(t—hiw)+22" (t—h1u) (G3E2)g(2(t—T1v))
+&" (2(t=hw))(=G3)g(2(t—=h1v))]

+ [ (1= (1)) (= GaZ1)z (1= o (1)) +22 (1= ha (1)) (GaZ2)g (2(t—ha(1)))
+&" (2(1=ha (1)) (—Ga)g (2(1—a(1)))]

+ [ (t=haw) (—GsZ1)z(t—hav)

22 (1—ha ) (GsZ2)g(2(1—hav)) +&" (2(t—hav)) (—Gs)g(z(t—ha))]
+ [ (1=h(1)) (= G621 )z(1—h(1))+22" (1—=h(1) ) (GsZ2) g (2(1—h(t)))
+&" (2(1—h(1))) (= Ge)g(2(1—h(1)))]

+ [T (t—hy) (—G1Z1)z(t—hy)

+227 (1—hy)(G722) g (z(t—hy))+&" (2(t—hy)) (—G7)g(z(t—hv))] }
=" (ML (1)

(40)

From Egs. (16)-(46), by using S-procedure in Boyd et al.
(1994), if Egs. (11)—(13) hold, then an upper bound of
V(z(t),t) can be written as

V(z(1),1) < L(ELD). (47)
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Based on Lemma 2.4, {7(r) E {(r) <0 with T {(r) =0 is
equivalent to (I'")" Z I'" <0. Therefore, if the inequality
(10) holds, the equilibrium point of system (9) is asymp-
totically stable. This completes the proof

Remark 3.1 For the case of SHNNs without neutral term,
we let E; =0 in (9) and the following corollary can be
obtained with a proof similar to Theorem 3.1. In this case,
network (9) can be rewritten as

(1) =

-
g

0(1)| = Deale = 8(1)) + Axg (1)) + Brg (s

—h(1))) + Ci /tt Y g(z(s))ds}.
(48)

Corollary 3.1 For given positive scalars
011,010, 021, O2u, hir, My, har, oy, 61,62, 1, ha, Ty, 1,
U1, Mo, Tp, and diagonal matrices K,,K,,, then the neural
network described by (48) is asymptotically stable, for any
time-varying delay 6(t), h(t) and t(t) satisfying (2), if there
exist positive definite matrices P;(i=1,2,...,18) €
R™™ Ti(i = 1,2,3) € R™", Q; (i=1,2,...,17) €
R™"U,V,W,X,Y,Z € R Uc R Ve R W
c R2n><2n,X c R2n><2n7 Y c Ran2n7Z€ Ran2n’ Ri(i _ 17
2,...,6) € R™" 8§ € R™", positive diagonal matrices
A[ = diag{ill, /1[2, ceay )u[n}, A[ = diag{ull, Moy ey ,uln},
He R Gi(i=1,2,...,7) e R™", any  symmetric
matrices F; € R™"(i=1,2,...,6), any matrices L, M,
N € R¥™2" such that the following LMIs hold:

— I\T _
(rl) =T <0, (49)
X+ F L Y+F; M
>0, >0,
* X+ F> * Y+ Fy
Z+ Fs N
>0,
* Z+ Fs
(50)

where E is same as defined in Theorem 3.1 with E;, = 0.

Proof For the proof, consider the same Lyapunov—Kra-
sovskii functional (10) with S, = 0 in Vy(z(¢), ). Then by
following the same procedure in Theorem 3.1, we obtain &

with S =0. Then by defining T= {0" ...... 0, Ax

5 times 4 times 5 times 9 times

its right orthogonal complement by T’ we conclude the
proof similar to Theorem 3.1. O
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Remark 3.2 For the case of SHNNs without leakage and
neutral term, we let E; =0 in (9) and the following
corollary can be obtained with a proof similar to Theo-
rem 3.1. In this case, network (9) can be rewritten as

40 = 32 (0| = Destn) + Acgl0)
=l [ (51)
+Biglalr —h(0) + Co [ e(a(o)as].
t—1(1)

Corollary 3.2 For given positive scalars
hi, iy, hor, hou, by, hoy T, fy, o, Tp, and diagonal matri-
ces Ky, K,,, then the neural network described by (51) is
asymptotically stable, for any time-varying delay h(t) and
1(t) satisfying (2), if there exist positive definite matrices
Pi(i=1,7,..,18) e R™" T;(i=1,2,3) € R™", O;(i =
6,7,...,17) € R Ue R Ve R** We R*™,
Xe R ye R Ze R Ri(i=1,2, ...,6)
e R™", 8 € R™™", positive diagonal matrices A} =

diag{)ull,;blz, . ),[n}, A= diag{,u“, Upy ey ,uln},H S
R™" G;i(i=1,2,...,7) € R™", any symmetric matrices

F,e R™"(i=1,2,...,6), any matrices L, M,N €
R*" such that the following LMIs hold:
~\T =
(ri) =T <o, (52)
X+ F L Y+F; M
>0, >0,
* X+ F» * Y+ Fy
Z+Fs N
>0,
* Z+ Fe
(53)

where = is same as defined in Theorem 3.1 with E; = 0.

Proof For the proof, consider the same Lyapunov—Kra-
sovskii functional (10) with P; =0,i=2,3,...,6, Q;,i =
1,2,...,5, U=V=W=X= YZZ:O, S, =0in V4(Z
(1),1), V5(z(t),1), Ve(z(2),7) and Vo(z(t),t). Then by fol-
lowing the same procedure in Theorem 3.1, we obtain =
with P;=0,i=2,3,...,6,0,,i=1,2,..., 5 U=V =

W=X=Y=Z=0,5=0. Then by defining T =

—Dg On ...... On Ak On ...... On Bk On ...... On Ck and its
—— —— ———
27 times 5 times 4 times

right orthogonal complement by T’ we conclude the proof
similar to Theorem 3.1. [J

Remark 3.3 We may also consider the case of SHNNs
without leakage, distributed and neutral term, we let 6(7) =
Cy =E; =0 in (9) and the following corollary can be
obtained with a proof similar to Theorem 3.1. In this case,
network (9) can be rewritten as
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1) = i 7(O)[=Diz(1) + Arg(2(t)) + Brg (2(1 — h(1)))]-
k=1

(54)

Corollary 3.3 For given positive scalars
hip, iy, hor, hou, by, ho, 1y, s and  diagonal  matrices
K,, K, then the neural network described by (54) is
asymptotically stable, for any time-varying delay h(t) sat-
isfying (2), if there exist positive definite matrices P; (i =
1,7,..,18) e R™" T; (i=1,2,3) e R"" 0:(i = 6,7,

oy 17) e R Ue R Ve R We R Xe
R Ye R Ze R Ri(i = 1,2,...,6) € R™,
positive  diagonal — matrices  A; = diag{An, Ao, ...,
)Lln}a A= diag{,u“,/xm ) :uln}aH e R, Gi(i =1,2,

., 7) € R™", any symmetric matrices F; € R™"(i = 1,2,
...,6), any matrices L, M,N € R***" such that the fol-
lowing LMIs hold:

(vH" = ¥t <o, (55)
X+ F L Y+ F; M
20, 207
* X+ F, * Y+ F,
Z+ Fs N
>0,
* Z+ Fe
(56)

where Z is same as defined in Theorem 3.1 with
5([):Ck:Ek:0.

Proof For the proof, consider the same Lyapunov—Kra-
sovskii functional (10) with P; =0,i=2,3,...,6, Q;,i =
1,2,...5U=V=W=X=Y=2=0,5=5=0

in V4(z(t),1), V5(z(2), 1), Ve(z(2), t) and Vo(z(1),t). Then by
following the same procedure in Theorem 3.1, we obtain =
with P;,=0,i=2,3,...,6,0;,i=1,2,...,5,U =V =
W=X=Y=Z=0,5, =S5, =0. Then by defining ¥ =

—DgO0,...... 0,A:0,...... 0,B;0,...... 0, | and its right
—_— Y Y
27 times 5 times 4 times
orthogonal complement by W7 we conclude the proof
similar to Theorem 3.1. O

Remark 3.4 1In order to use more information about
neuron activation functions, in this paper terms on the
slope of neuron activation functions are introduced in the
L—K functional to study the stability of addressed NNs. In
Shao and Han (2011) have used the term.

n Zi
22/ 0igi(s)ds, where 6;>0, i=12,...,n
—7 Jo

in their L-K functional for the neuron activation function
2(z()). By utilizing the condition (4) about the slope of the

neuron activation functions into the L-K functional, the
term

n zi(t)
2 Zl [}vli\/o (g,(S) — k:S)dS + 51,’/0

has been introduced in Li et al. (2011). Recently, only few
authors have employed delay bounds into the slope of
neuron activation functions in the L-K functional, see
Kwon et al. (2014a, b). Inspired by these works, in this
paper, we consider a new V,(z(¢), ), which indicates that
more information about neuron activations has been used
and it has not been considered in any of the previous works
that deal with the stability of SHNNs with successive time-
varying delay components.

zi(1)
(ks - g,-<s>>ds]

Remark 3.5 In order to reduce the conservatism of
stability conditions, inspired by the ideas in Kwon et al.
(2014b), six zero integral equalities in (22)—(27) are
introduced and terms involving these inequalities are
merged with Eq. (29) during the calculation of
V7(z(¢),t). After then, reciprocal convex combination
technique is utilized in the proof of Theorem 3.1, which
can lead to a further improvement of the stability cri-
terion. It is noted that introducing augmented L-K
functional and zero integral inequalities and utilizing
reciprocal convex combination technique can lead to less
conservative results.

Remark 3.6 The number of decision variables used in
Theorem 3.1 is larger than the previous studies in
Rakkiyappan et al. (2015a, b), Senthilraj et al. (2016),
and Dharani et al. (2015). Because, the reason is the
proposed model consists of an additive interval time-
delay components in the state both of discrete delay and
leakage delay with newly augmented form of L-K
functionals. As we know that, in order to reduce the
computational burden the Finsler’s lemma was conducted
in the proof of Theorem 3.1, which in turn to reduces
the computational burden. As a result, proposed stability
criteria gives better results while maintaining lower
computational burden.

Remark 3.7 It is important to note that very limited
works have been done on stability of switched Hopfield
NNs of neutral-type with time-varying delays. More
particularly, stability analysis of switched Hopfield NNs
of neutral-type with successive interval time-varying
delay components in the state both of discrete and
leakage delay has not been completely studied in pre-
vious literature (see e.g., Rakkiyappan et al. 2015a, b;
Senthilraj et al. 2016; Dharani et al. 2015). In order to
fill such a gap, in this paper we aimed to obtain new
stability criteria for switched Hopfield NNs of neutral-
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type with successive interval time-varying delay com-
ponents in the state both of discrete and leakage delay is
proposed. Therefore, the results of the present paper are
essentially new. Hence, unfortunately we could not
provide any comparison results over existing methods in
order to show the improvements.

Remark 3.8 1Tt is noted that, very recently Zeng et al.
(2015) proposed the free-matrix-based integral inequality
and this integral inequality used for handling the double
integral L-K functionals, that offers a new tighter
information on the upper bounds of time-varying delay
and its interval for the time-delay systems. Therefore, we
utilizing this integral inequality to deal with such L-K
functionals, which turn to reduce the conservatism fur-
ther. Thus, there is no limit for such improvements on
delay bounds of time-delay systems it’s basically
depends on choosing good L-K functionals and com-
puting it’s derivative with an newly improved integral
inequalities or some other techniques called delay-parti-
tioning approaches and so on. Thus, in the future, the
inequality proposed in Zeng et al. (2015) can be used in
order to achieve improved results for delayed NNs.

Remark 3.9 1t is well-known that most of the existing
results concerning the stability problem of delayed
switched Hopfield NNs of neutral type. However, swit-
ched Hopfield NNs of neutral type with successive
interval time-varying delay components in the state of
discrete delay and leakage delay has not been considered
in the previous works. In contrast to the system models
in Rakkiyappan et al. (2015a, b), Senthilraj et al. (2016),
Dharani et al. (2015); one can find that their results
cannot be applicable to system (1). This indicates that
the proposed system model and obtained results are
essentially new. There is no doubt that studying stability
analysis for the systems described in (9), with leakage
and discrete interval time-varying delays is sure not only
to enhance the dynamic research theory of system model
proposed in (9), but also further enrich the foundation of
realistic application for the delayed SHNNS, as shown in
the following numerical section.

Numerical examples
In this section, we provide four numerical examples to

demonstrate the effectiveness of our delay-dependent sta-
bility criteria.

Example 4.1 Consider system (9) with n = k = 2 and

@ Springer

5.1 0 46 0
D, = ) D2 = 3
04.7 04.3

(1.1 —-0.7 -0.8 -—1.1
A= ) 2= )
109 12 09 08
[1.2 0.6
Bl = )
108 1 }
[—0.6 —0.7] -0.8 —-0.9
B2 = 5 Cl = )
| 07 06 | 09 08
[ 0.6 0.6 -0.8 —-1.0
C2 = 5 El = ’
10.65 0.6 0.9 0.8
[—09 —1.27
E, = .
| 09 09 |

The activation functions are assumed to be
gi(Zi) = 05(|Zl + 1‘ — |Z,' — l|), = 172

It is easy to check that the activation functions are satisfied
(6) with K,, = diag{0,0}, K, = diag{1,1}. Also let ¢;;, =
0.10,0;y = 0.20,0; = 0.30, 05, = 0.15, 0,y = 0.25,0, =
0.40,hy, = 0.50,h1y = 1.0,y = 1.50,hy, = 0.80,hyy =
1.0, = 1.80,7=0.30,0 = 0.40,n, =0.4,1,=0.5,p
= 04,14, =0.5,7p =0.5,0p = 0.5. By our Theorem 3.1
and Matlab LMI toolbox, it is found that the equilibrium
point of system (9) is asymptotically stable. It can also be
verified that the LMIs (10)—(13) are feasible for larger
upper delay bounds d1, 05, hy, hy, T and o. It shows that all
the conditions stated in Theorem 3.1 have been satisfied
and hence system (9) with the above given parameters are
asymptotically stable.

Example 4.2 Consider the switched Hopfield neural
network without neutral term as in (48) with the parameters
Dy, Ay, B, Cr(k =1,2) as defined in Example 4.1. By
choosing d;(¢) = 0.1 + 0.1 cos(0.5¢), d>(¢) = 0.2 +0.2 cos
(0.5¢),  hy(t) = 0.6 +0.6sin(0.5¢), hy(t) = 0.7 + 0.7 sin
(0.5¢),7(f) = 0.254+0.25 cos(3t), we let =
0.05,0,y = 0.15,6, = 0.20, 65, = 0.10, 2y = 0.30,6, =
0.40,hy, = 0.40,h 1y = 0.80,h) = 1.20,hyp, = 0.50,hyy =
1.0,h; =1.50,7 =050 and #;,=02,1,=03,u, =
0.4, 11, = 0.5,7p = 0.5. Also letting g;(z;) = 0.5(]z;i+ 1| —
|zi — 1]), i = 1,2. it can be easily verified that the activa-
tion functions holds with K, = diag{0,0},K, =
diag{1, 1}. By using Matlab LMI toolbox, it is found that
LMI (49) and (50) is feasible. Thus, it can be conclude that
the switched NN (48) is asymptotically stable and the state
trajectories of the dynamical system is converges to the
zero equilibrium point with an initial state [—0.2,0.2]", it
can be shown in Fig. 1. Suppose, if we take leakage time-
varying delay d;(¢) =0.154 0.15co0s(0.5¢)(6; > 0.30),
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z1
22|

) 10 20 30 40 50
time

Fig. 1 State trajectory of the system (48) in Example 4.2

25

z1
z2

z(t)

0 10 20 30 40 50
time

Fig. 2 State trajectory of the system (48) in Example 4.2

02(1) = 0.25 4+ 0.25c0s(0.57) (5, > 0.50), it is found that
the neural network (48) is actually unstable and the state
trajectories of the dynamical system is not converges to the
zero equilibrium point, it can be shown in Fig. 2.
According to this example, it can be conclude that the
leakage delay has a significant effect in the dynamical
behaviour of the switched NNs.

Remark 4.1 As is well-known that the leakage time
delays are unavoidable and their occurrence causes insta-
bility or oscillation, it can be verified through different
simulation results for different time delays especially for
the leakage delay that the oscillation of the dynamics
increases when time delays are chosen to be larger, which
would obviously affect the stability. Thus, time delays in
the leakage term have a great impact on the stability of the
considered switched system.

0.8 : 1

0.4 1

0.2 9

2 4 ) 6 8 10
time

Fig. 3 State trajectory of the system (51) in Example 4.3

Example 4.3 Consider the switched Hopfield neural net-
work without leakage and neutral term as in (51) with the
parameters Ay, By, Cx, Di(k = 1,2) as defined in Exam-
ple 4.1. By choosing h;(z) = 0.8 4+ 0.8sin(0.5¢), hy (1) =
1.2 + 1.25sin(0.5¢), t(f) = 0.5 4+ 0.5 cos(3¢t), we let hy =
0.50,h1y = 1.10,h; = 1.60, hyr = 0.70, hy = 1.70, hy =
2.40,7=1.0 and pu; = 0.3, 4, = 0.35,7p = 0.5. Also let-
ting g1(z) = g2(z) = 0.5(|z+ 1| — |z — 1]), it can be easily
verified that the neuron activation function holds with
K,, = diag{0,0}, K, = diag{1, 1}. By using Matlab LMI
toolbox, it is found that LMIs in Corollary 3.2 is feasible.
Thus, we can conclude that the model (51) is asymptotically
stable. The simulation results for the above mentioned delay
values also ensure the asymptotic stability of the model (51).
Hence, the convergence of the SHNNs (51) is shown in

Fig. 3, with an initial state [—0.4,0.8]".

Example 4.4 So far, originally NNs embody the char-
acteristics of real biological neurons that are connected or
functionally related in a nervous system. On the other hand,
NNs can represent not only biological neurons but also
other practical systems namely the quadruple-tank process
system can be shown in Fig. 5. The setup consists of four
interacting tanks, two water pumps and two valves. The
two process inputs are the voltages v and v, supplied to the
two pumps. Tank 1 and Tank 2 are placed below Tank 3
and Tank 4 to receive water flow by the action of gravity.
Hence as shown in Fig. 4, the quadruple-tank process can
be expressed clearly using the neural network model, see
for instance, Samidurai and Manivannan (2016), Lee et al.
(2013), Huang et al. (2012), Haoussi et al. (2011) and
Johansson (2000); proposed the state-space equation of the
quadruple-tank process and designed the state feedback
controller as follows:
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Fig. 4 Schematic representation of the quadruple-tank process.
Source: From Johansson (2000)

X(t) = Aox(t) + A1x(t — t1) + Boit(t — 1) + Bria(t — 13),

(57)
where
—0.0021 0 0 0
i 0 —0.0021 0 0 ’
0 0 —0.0424 0
L0 0 0 —0.0424
[0 0 00424 0
~ {00 0 00424
A = ;
00 0 0
00 0 0
# 0.1113y, 0 0 or
.0 0.1042p, 0 0]’
5 — 0 0 0 0.1113(1—y1)r
0 0 0.1042(1 —7,) 0 ’
7, =0.333, 7, =0.307, = Kx(1),
_ [-0.1609 —0.1765 —0.0795 —0.2073
~ 101977 —0.1579 —0.2288 —0.0772]'

Generally speaking, the differential equations representing
the mass balances in the delayed [transport delay
h(t) = h(t) + ha(2)] equations. To derive a more inter-
esting control problem, transport delays can easily be
added by delaying the inlet of water to the tanks, so it is the
possible approach used to examine in this paper. Moreover,
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state z(t)

500 1000 1500 2000 2500 3000
times t

Fig. 5 State trajectory of the system (58) in Example 4.4

in this present study transport delays between valves and
tanks being additive interval time-varying, it is also taken
into account but not exists in previous literature in the
following aspects. For simplicity, it was assumed that 7, =
0, 7, =0and 13 = h(t) = I’l](f) + h2(l> (since hyp, Shl(l)
< hyy and hy;, < hy(t) < hyy). Here, the control input i(z),
means that the amount of water supplied by the pumps.
Therefore, it is true that i(¢) has a threshold value due to
the limited area of the hose and the capacity of the pumps.
Therefore, it is natural to consider u(z), as a nonlinear
function as follows:

a@Eo),

i(z(0) =01([z() + 1] = |z() = 1)), i=1,...4

The quadruple-tank process (57) can be rewritten to the
form of system (54) with k = 1, as follows:

1) = =Diz(t) + Aig(2(1) + Big(z(t — h(1)),

(58)
y(t) = o(1),
where
D) = —Ay—A;, A =BoK, B =BK, g(-)=3z().

In addition, K, = diag{0,0,0,0}, K, = diag{0.1,0.1,
0.1,0.1} with Ay, =0.60,h1y = 1.20,h = 1.80, hy, =
0.80, hyy = 1.50, hy, = 2.30, U =, =0.5. Using
MATLAB LMI control Toolbox and by solving LMIs in
Corollary 3.3, we found that the quadruple-tank process
system (58) is asymptotically stable. By choosing A (¢) =
0.9 4+ 0.95in(0.5¢), hy (1) = 1.15 + 1.158in(0.5¢), u; =
=05 and gi(z)=01(lz+1|—=|z—1]), i=
1,2,...,4, it can be easily verified that Assumption (H) is
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holds. Figure 5 shows the state trajectories of the system is
converges to zero equilibrium point with an initial state
[—0.3,0.2,0.5,—0.4], hence it is found that the dynamical
behavior of the quadruple-tank process system (58) is
asymptotically stable.

Conclusions

In this paper, the problem of new delay-interval-dependent
stability criteria for SHNNs of neutral type with time
delays have been investigated. In order to achieving sta-
bility results, some suitable L-K functional under the
weaker assumption of neuron activation function divided
by states are utilized to enhance the feasible region of
proposed stability criteria. By using the famous Jensen’s
inequality, WDII Lemma, introducing of some zero equa-
tions and combined with RCC technique, a novel delay-
interval-dependent stability criterion is derived in terms of
linear matrix inequalities (LMIs). Then the feasibility and
effectiveness of the developed methods have been shown
by interesting numerical simulation examples. The pro-
posed approach is finally demonstrate the numerical sim-
ulation of the benchmark problem that takes into account
additive time-varying delays, showing the feasibility of the
proposed approach on a realistic problem. Therefore, our
results have an important significance in theory and design,
as well as in applications of neutral type SHNNs with
delays in leakage terms.
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