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Abstract This paper deals with the problem of delay-in-

terval-dependent stability criteria for switched Hopfield

neural networks of neutral type with successive time-

varying delay components. A novel Lyapunov–Krasovskii

(L–K) functionals with triple integral terms which involves

more information on the state vectors of the neural net-

works and upper bound of the successive time-varying

delays is constructed. By using the famous Jensen’s

inequality, Wirtinger double integral inequality, introduc-

ing of some zero equations and using the reciprocal convex

combination technique and Finsler’s lemma, a novel delay-

interval dependent stability criterion is derived in terms of

linear matrix inequalities, which can be efficiently solved

via standard numerical software. Moreover, it is also

assumed that the lower bound of the successive leakage

and discrete time-varying delays is not restricted to be zero.

In addition, the obtained condition shows potential

advantages over the existing ones since no useful term is

ignored throughout the estimate of upper bound of the

derivative of L–K functional. Using several examples, it is

shown that the proposed stabilization theorem is asymp-

totically stable. Finally, illustrative examples are presented

to demonstrate the effectiveness and usefulness of the

proposed approach with a four-tank benchmark real-world

problem.

Keywords Hopfield neural networks � Neutral type �
Leakage delay � Interval time-varying delay � Lyapunov–
Krasovskii functional � Four-tank benchmark

Introduction

Over the past decades, switched neural networks (SNNs)

have become a popular research topic that attracts

researcher’s attention, various delayed neural networks

such as Hopfield NNs, Cohen–Grossberg NNs, cellular

NNs and bidirectional associative memory NNs have been

extensively investigated. Switched systems are an impor-

tant class of hybrid dynamical systems which are com-

posed of a family of continuous-time or discrete-time

subsystems and a rule that orchestrates the switching

among them. Switched systems provide a natural and

convenient unified framework for mathematical modeling

of many physical phenomena and practical applications,

such as autonomous transmission systems, computer disc

drivers, room temperature control, power electronics, chaos

generators, to name but a few. In recent years, considerable

efforts have been focused on the analysis and design of

switched systems. In this regard, lots of valuable results in

& Jinde Cao

jdcao@seu.edu.cn

R. Manivannan

manimath7@gmail.com

R. Samidurai

samidurair@gmail.com

Ahmed Alsaedi

aalsaedi@hotmail.com

1 Department of Mathematics, Thiruvalluvar University,

Vellore, Tamil Nadu 632 115, India

2 Department of Mathematics, and Research Center for

Complex Systems and Network Sciences, Southeast

University, Nanjing 210 096, China

3 Department of Mathematics, Faculty of Science, King

Abdulaziz University, Jeddah 21589, Saudi Arabia

4 Nonlinear Analysis and Applied Mathematics (NAAM)

Research Group, Department of Mathematics, Faculty of

Science, King Abdulaziz University, Jeddah 21589,

Saudi Arabia

123

Cogn Neurodyn (2016) 10:543–562

DOI 10.1007/s11571-016-9396-y

http://orcid.org/0000-0003-3133-7119
http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-016-9396-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-016-9396-y&amp;domain=pdf


the stability analysis and stabilization for linear or non-

linear hybrid and switched systems were established (see

Liberzon and Morse 1999; Song et al. 2008; Zong et al.

2008; Hetel et al. 2008 and references therein).

Within the last few decades, many researcher’s have

well-focused on the dynamic analysis of Hopfield NNs,

which was first introduced by Hopfield (1982, 1984), has

drawn considerable attention due to their many applica-

tions in different areas such as pattern recognition, asso-

ciative memory and combinatorial optimization. Since, the

stability is one of the most important behaviors for the

NNs, a great deal of results concerning the asymptotic or

exponential stability have been proposed (see e.g., Xu

1995; Cao and Ho 2005; Cao et al. 2007, 2008, 2016;

Manivannan et al. 2016; Aouiti et al. 2016; Yang et al.

2006; Zhou et al. 2009 and the references therein). It is

well known that time delays are often encountered in NNs

which may degrade the system performance and cause

oscillation, leading to instability. Therefore, it is of great

importance to study the asymptotic or exponential stability

of NNs with time delay. Meanwhile, neutral time-delay

systems are frequently encountered in many practical sit-

uations such as in chemical reactors, water pipes, popula-

tion ecology, heat exchangers, robots in contact with rigid

environments (Zhang and Yu 2010; Niculescu 2001), and

so on. A neutral time-delay system contains delays both in

its state, and in its derivatives of state. Therefore, many

dynamical NNs are described with neutral functional dif-

ferential equations that include neutral delay differential

equations as their special case. These NNs are called

neutral type NNs or NNs of neural-type.

Since, we know that successive time-varying delay

model has a more strapping application background in

remote control and control system. For example, we

consider a state-feedback networked control, where the

physical plant, controller, sensor, and actuator are placed

at different places and signals are transmitted from one

device to another. Along with the delays, there are two

network-induced ones, one from sensor to controller and

the other from controller to actuator. Then, the closed

loop system will appear with two additive time delays in

the state. Thus, in the network transmission settings, the

two delays are usually time varying with dissimilar

properties. Therefore, it is of substantial importance to

study the stability of systems with two additive time-

varying delay components. Motivated by the previous

discussion, in this paper we are concerned with the

problem of stability analysis for SHNNs of neutral type

with successive time-varying delay components. In this

connection, recently a new form of NNs with two additive

time-varying delays has been considered in Zhao et al.

(2008), Gao et al. (2008) and Shao and Han (2011). In

Lam et al. (2007) and Rakkiyappan et al. (2015a, b), it

was mentioned that in network controlled system (NCS),

if the signal transmitted from one point to another passes

through few segments of networks, then successive delays

are induced with different properties owing to variable

transmission conditions. That is, if the physical plant and

the state-feedback controller are given by _zðtÞ ¼ AzðtÞ þ
BuðtÞ and ucðtÞ ¼ KxcðtÞ, then it is appropriate to consider

time-delays in the dynamical model as

_zðtÞ ¼ AzðtÞ þ BKzðt � h1ðtÞ � h2ðtÞÞ, where h1ðtÞ is the

time-delay induced from sensor to controller and h2ðtÞ is

the delay induced from controller to the actuator. There-

fore, the stability analysis of such system was earlier

carried out by adding up all the successive delays into a

single delay, that is h1ðtÞ þ h2ðtÞ ¼ hðtÞ to develop a

sufficient stability condition. Therefore, the problem of

stability analysis of NNs with successive time-varying

delays in the state has received more and more attention

and become more popular in recent years (see

Rakkiyappan et al. 2015a, b; Senthilraj et al. 2016;

Samidurai and Manivannan 2015; Dharani et al. 2015 and

the references therein).

Recently, the stability of systems with leakage delays

becomes one of the hot topics and it has been studied by

many researcher’s in the literature. The research about the

leakage delay (or forgetting delay), which has been found

in the negative feedback of system, can be traced back to

1992. In Kosko (1992), it was observed that the leakage

delay had great impact on the dynamical behavior of the

system. Since then, many researcher’s have paid much

attention to the systems with leakage delay and some

interesting results have been derived. For example,

Gopalsamy (1992), considered a population model with

leakage delay and found that the leakage delay can desta-

bilize a system. In Gopalsamy (2007), the bidirectional

associative memory (BAM) neural networks with constant

leakage delays were investigated based on L–K functions

and properties of M-matrices. Inspired by Gopalsamy

(2007), recently it is essential important to study the sta-

bility of delayed NNs with leakage effects have been

existing in Samidurai and Manivannan (2015), Sakthivel

et al. (2015), Li et al. (2011, 2015), Lakshmanan et al.

(2013), Li and Yang (2015), and Balasubramaniam et al.

(2012).

So far, recently Rakkiyappan et al. (2015a, b), estab-

lished the exponential synchronization of complex

dynamical networks with control packet loss and additive

time-varying delays. Currently, Senthilraj et al. (2016),

proposed the problem of stability analysis of uncertain

neutral type BAM neural networks with two additive time-

varying delay components. Very recently, robust passivity

analysis for delayed stochastic impulsive NNs with leakage

and additive time-varying delays have been established by

Samidurai and Manivannan (2015). Very recently,
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Rakkiyappan et al. (2015a, b), analyzed synchronization

for singular complex dynamical networks with Markovian

jumping parameters and two additive time-varying delay

components. More recently, new stability criteria for

switched Hopfield NNs of neutral type with additive time-

varying discrete delay components and finitely distributed

delay were studied by Dharani et al. (2015). Lakshmanan

et al. (2013), stability problem concerned with the BAM

neural networks with leakage time delay and probabilistic

time-varying delays was studied. Li and Yang (2015)

analyzed the leakage delay has significant impacts on the

dynamical behavior of genetic regulatory networks (GRNs)

and can bring tendency to destabilize systems. Recently, in

Li et al. (2015) considered stability problem for a class of

impulsive NNs model, which includes simultaneously

parameter uncertainties, stochastic disturbances and two

additive time-varying delays in the leakage term. Balasub-

ramaniam et al. (2012), deals with the problem of delay-

dependent global asymptotic stability of uncertain switched

Hopfield NNs with discrete interval and distributed time-

varying delays and time delay in the leakage term.

Very recently, Sakthivel et al. (2015), considered the

issue of state estimation for a class of BAM neural net-

works with leakage term. Fuzzy cellular NNs with time-

varying delays in the leakage terms have been extensively

studied by Yang (2014), without assuming the boundedness

on the activation functions. In Zhang et al. (2010), studied

a class of new NNs referred to as switched neutral-type

NNs with time-varying delays, which combines switched

systems with a class of neutral-type NNs. By using an

average dwell time method and new L–K functional to

assure the global exponential stability and decay estimation

for a class of switched Hopfield NNs of neutral type in

Zong et al. (2010). In Li and Cao (2013), proposed the

switched exponential state estimation and robust stability

for interval neural networks with the average dwell time.

Very recently, Li et al. (2014) concerned with a class of

nonlinear uncertain switched networks with discrete time-

varying delays, based on the strictly complete property of

the matrices system and the delay-decomposing approach.

In Ahn (2010) first time, proposed the H1 weight learning

law to study not only guarantee the asymptotical stability

of switched Hopfield NNs, but also reduce the effect of

external disturbance to an H1 norm constraint.

With the motivation mentioned above, a new delay-

interval-dependent stability criterion for SHNNs of neu-

tral type with successive time-varying delay components

is proposed in this paper. By fully using the available

information about time-delays and activation functions, a

novel L–K functional is constructed. Our main goal is to

establish the delay-interval-dependent stability criteria,

such that the concerned NNs are asymptotically stable.

Make use of new technique to estimate the lower and

upper bound information of the time-varying delay and

L–K functional with double and triple integral terms, we

apply WDII, introducing of some zero equations and

using the RCC technique and Finsler’s lemma, new

stability criteria for a class of SHNNs of neutral type is

obtained in terms of LMIs, which ensures the asymptotic

stability. Finally, four numerical examples are given to

demonstrate the effectiveness and applicability of our

theoretical results.

The main contribution of this paper lies in the following

aspects:

• A novel L–K functional is introduced which includes

more information about successive time-varying delays

and slope of the neuron activation function. Such type

of L–K functional has not yet been considered in the

previous literature on the stability of SHNNs of neutral

type with successive time-varying delay components

are introduced.

• Different from others in Dharani et al. (2015), Bala-

subramaniam et al. (2012), Zong et al. (2010), Li and

Cao (2013), Li et al. (2014), Cao et al. (2013) and Ahn

(2010); several numerical examples are presented to

illustrate the validity of the main results with a real-

world simulation. This implies that the results of the

present paper are essentially new.

• Inspired by the works in Kwon et al. (2014a, (2014b),

some zero equations which would include more

quadratic and integral terms are introduced. These

terms are merged with the time derivative of L–K

functional and combined with RCC approach, which in

turn can enhance the feasibility region of stability

criterion.

• Moreover, WDII Lemma is taken into account to

bound the time-derivative of triple integral L–K

functionals, this gives more tighter bounding technol-

ogy to deal with such L–K functionals, this technique

has been never used in previous literature for the

stability of SHNNs of neutral type.

Notations Throughout this paper, the superscripts T and

�1 mean the transpose and the inverse of a matrix

respectively. Rn denotes the n-dimensional Euclidean

space, Rn�m is the set of all n� m real matrices. For

symmetric matrices P and Q;P[Q (respectively, P ¼ Q)

means that the matrix P� Q is positive definite (respec-

tively, non-negative). In; 0n and 0m; n stands for n� n

identity matrix, n� n and n� m zero matrices, respec-

tively and symmetric term in a symmetric matrix is

denoted by �;X? denotes a basis for the null-space of X. If

the Matrices are not explicitly stated, it is assumed to

compatible dimensions.
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Problem formulation and preliminaries

Consider the following delayed Hopfield neural network

model Dharani et al. (2015) of neutral type with successive

time-varying delay components and distributed delay as:

_yðtÞ ¼ � Dyðt � d1ðtÞ � d2ðtÞÞ þ Af ðyðtÞÞ
þ Bf ðyðt � h1ðtÞ � h2ðtÞÞÞ

þ C

Z t

t�sðtÞ
f ðyðsÞÞdsþ E _yðt � rðtÞÞ þ J;

yðtÞ ¼ uðtÞ; t 2 ½�r; 0�;

ð1Þ

where yðtÞ ¼ ½y1ðtÞ; y2ðtÞ; . . .; ynðtÞ�T 2 Rn is the state

vector of the network at time t, n corresponds to the

number of neurons, f ðyðtÞÞ ¼ ½f1ðy1ðtÞÞ; f2ðy2ðtÞÞ;
. . .; fnðynðtÞÞ�T 2 Rn is the neuron activation function. The

matrix D ¼diagðd1; d2; . . .; dnÞ is a diagonal matrix with

positive entries di [ 0:A;B;C;E are the connection

weight matrix and coefficient matrix, the discretely

delayed connection weight matrix, the distributively

delayed connection weight matrix and coefficient matrix

of the time derivative of the delayed states, respectively.

J ¼ ½J1; J2; . . .; Jn�T is the constant external input vector.

uiðtÞði 2 NÞ is a continuous vector-valued initial function

on ½��r; 0�; r ¼maxfd1U ; d2U ; h1U ; h2U ; s; rg. d1ðtÞ; d2ðtÞ
and h1ðtÞ; h2ðtÞ are leakage and discrete interval time-

varying continuous functions that represent the two delay

components in the state respectively, sðtÞ and rðtÞ are

denotes the distributive and neutral time delays, and

which satisfies the following:

0� d1L � d1ðtÞ� d1U ; d1UL ¼ d1U � d1L; _d1ðtÞ� g1;

0� d2L � d2ðtÞ� d2U ; d2UL ¼ d2U � d2L; _d2ðtÞ� g2;

0� dL � dðtÞ� dU ; dUL ¼ dU � dL; _dðtÞ� g;

0� h1L � h1ðtÞ� h1U ; h1UL ¼ h1U � h1L; _h1ðtÞ� l1;

0� h2L � h2ðtÞ� h2U ; h2UL ¼ h2U � h2L; _h2ðtÞ� l2;

0� hL � hðtÞ� hU ; hUL ¼ hU � hL; _hðtÞ� l;

0� sðtÞ� s; _sðtÞ� sD; 0� rðtÞ� r; _rðtÞ� rD;

ð2Þ

where d1U � d1L; d2U � d2L; dU � dL; h1U � h1L; h2U � h2L;

hU � hL; s; r; g1; g2; l1; l2; sD and rD are known real con-

stants. Note that d1L; d2L; dL; h1L; h2L; hL may not be equal

to 0. we denote

dðtÞ ¼ d1ðtÞ þ d2ðtÞ; hðtÞ ¼ h1ðtÞ þ h2ðtÞ;
d1 ¼ d1L þ d1U ; h1 ¼ h1L þ h2U ;

d2 ¼ d2L þ d2U ; h2 ¼ h2L þ h2U ;

g ¼ g1 þ g2; l ¼ l1 þ l2:

ð3Þ

Remark 2.1 The first term in the right side of (1) var-

iously known as forgetting or leakage term. It is known

from the literature on population dynamics [see Gopal-

samy (1992)] that time delays in the stabilizing negative

feedback terms will have a tendency to destabilize a

system. fjð�Þ; j ¼ 1; 2; . . .; n are signal transmission func-

tions. Furthermore, system (1) contains some data about

the derivative of the past state to further analysis and

model the dynamics for such complex neural responses.

Hence system (1) has been referred to as neutral-type

system, in which the system has both the state delay and

the state derivative with delay, the so-called neutral

delay.

Throughout this paper, it is assumed that each neuron

activation function fjð�Þ in (1) satisfies:

Assumption (H) (Liu et al. 2006) For any j 2
f1; 2; . . .; ng; fjð0Þ ¼ 0 and their exist constants k�j and kþj
such that

k�j � fjða1Þ � fjða2Þ
a1 � a2

� kþj ; ð4Þ

for all a1 6¼ a2, where a1; a2 2 R: Then by Brouwer’s

fixed-point theorem Cao (2000) and Assumption H, it can

be proved that there exist at least one equilibrium point for

system (1). Let z� ¼ ½z�1; z�2; . . .; z�n�
T

be one equilibrium

point of system (1). For convenience we shift z� to the

origin by making the following transformation: zð�Þ ¼
yð�Þ � y� and then system (1) can be rewritten as

_zðtÞ ¼ �Dzðt � dðtÞÞ þ AgðzðtÞÞ þ Bgðzðt � hðtÞÞÞ

þ C

Z t

t�sðtÞ
gðzðsÞÞdsþ E _zðt � rðtÞÞ;

zðtÞ ¼ /ðtÞ; t 2 ½�r; 0�;

ð5Þ

where zðtÞ ¼ ½z1ðtÞ; z2ðtÞ; . . .; znðtÞ�T is the state vector of

the transformed system, the initial condition /ðtÞ ¼ uðtÞ �
z�; gðzðtÞÞ ¼ ½g1ðz1ðtÞÞ; g2ðz2ðtÞÞ; . . .; gnðznðtÞÞ�T ; gjðzjðtÞÞ
¼ fjðzjðtÞ þ z�j Þ � fjðz�j Þ; j ¼ 1; 2; . . .; n: According to

Assumption H, function gjð�Þ satisfies the following

condition:

k�j � gjðaÞ
a

� kþj ; gjð0Þ ¼ 0; 8a 2 R; a 6¼ 0;

i ¼ 1; 2; . . .; n: ð6Þ

The switched Hopfield neural network of neutral type with

discrete and distributed delays are described as

546 Cogn Neurodyn (2016) 10:543–562
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_zðtÞ ¼ �D.ðtÞzðt � dðtÞÞ þ A.ðtÞgðzðtÞÞ þ B.ðtÞgðzðt � hðtÞÞÞ

þ C.ðtÞ

Z t

t�sðtÞ
gðzðsÞÞdsþ E.ðtÞ _zðt � rðtÞÞ;

zðtÞ ¼ /ðtÞ; t 2 ½�r; 0�;
ð7Þ

where .ðtÞ is a switching signal which takes its values in

the finite set K ¼ f1; 2; . . .;mg: Define the indicator func-

tion cðtÞ ¼ ½c1ðtÞ; c2ðtÞ; . . .; cnðtÞ�T , where

and k 2 K: Thus, the model (8) can also be described by

_zðtÞ¼
Xm
k¼1

ckðtÞ �Dkzðt�dðtÞÞþAkgðzðtÞÞþBkgðzðt�hðtÞÞÞ½

þ Ck

Z t

t�sðtÞ
gðzðsÞÞdsþEk _zðt�rðtÞÞ

#
: ð9Þ

As (9) must be satisfied under any switching rules, it fol-

lows that
Pm

k¼1 ckðtÞ ¼ 1: Next, we present some prelimi-

nary lemmas, which are needed in the proof of our main

results.

Lemma 2.1 (Gu 2000) For any positive definite matrix

M 2 Rn�n, scalars h2 [ h1 [ 0, vector function w :

½h1; h2� ! Rn such that the integrations concerned are well

defined, the following inequality holds:

� ðh2 � h1Þ
Z t�h1

t�h2

wTðsÞMwðsÞds

� �
Z t�h1

t�h2

wðsÞds
� �T

M

Z t�h1

t�h2

wðsÞds
� �

Lemma 2.2 (Park et al. 2011) Let f1; f2; . . .; fN : Rm �! R

have positive values in an open subset D of Rm. Then, the

reciprocally convex combination of fi over D satisfies

min
faijai [ 0;

P
i
ai¼1g

X
i

1

ai
fiðtÞ ¼

X
i

fiðtÞ þmax
gi;jðtÞ

X
i6¼j

gi;jðtÞ

subject to

gi;j : R
m �! R; gj;iðtÞ,gi;jðtÞ;

fiðtÞ gi;jðtÞ
gj;iðtÞ fjðtÞ

� �
� 0

� �

Lemma 2.3 (Park et al. 2015) For a given matrix M[ 0,

given scalars a and b satisfying a\b, the following

inequality holds for all continuously differentiable function

in ½a; b� ! Rn :

ðb� aÞ2

2

Z b

a

Z b

s

_xTðuÞM _xðuÞduds�
Z b

a

Z b

s

_xðuÞduds
� �T

M

Z b

a

Z b

s

_xTðuÞduds
� �

þ 2HT
dMHd:

where

Hd ¼ �
Z b

a

Z b

s

_xðuÞdudsþ 3

b� a

Z b

a

Z b

s

Z b

v

_xðvÞdvduds:

Remark 2.2 So far, very recently the WDII is proposed by

Park et al. (2015). Employing WDII is sure to get less

conservative criteria than applying the Jensen’s inequality.

Therefore, this integral inequality takes advantage of the

following information from three aspects: the first is to use

the information on the state such as x(t), the second is to

benefit information on the integral of the state over the

period of the delay such as
R t
t��s xðsÞds or

R t
t�sðtÞ xðsÞds and

the third is to employ the information on the double inte-

gral of the state over the period of the delay such asR 0
��s

R t
tþu

xðsÞds or
R 0
�sðtÞ

R t
tþu

xðsÞds: Therefore, which gives

the more information about the plant states such as

xðtÞ;
R t
t��s xðsÞds or

R t
t�sðtÞ xðsÞds and

R 0
��s

R t
tþu

xðsÞds orR 0
�sðtÞ

R t
tþu

xðsÞds: Hence, Lemma 2.3 may provide tighter

bound than the Jensen’s inequality.

Lemma 2.4 (Boyd et al. 1994) Let n 2 Rn;U ¼ UT 2
Rn�n such that rank ðBÞ\n. The following statements are

equivalent

(i) nTUn\0; 8Bn ¼ 0; n 6¼ 0;

(ii) B?T
UB?\0; where B? is a right orthogonal

complement of B.

Lemma 2.5 (Boyd et al. 1994) For a given matrices

A11;A12;A21;A22 with appropriate dimensions,

A11 A12

A21 A22

� �
\0, holds if and only if A22\0;A11 � A12

A�1
22 A

T
12\0.

ckðtÞ ¼
1; when the switched system is described by the kth mode;Dk;Ak;Bk;Ck;Ek;
0; otherwise,

�
ð8Þ

Cogn Neurodyn (2016) 10:543–562 547

123



Main results

In this section,wewill propose a stability criteria for system (9).

For the sake of simplicity of matrix and vector representation,

ei 2 R56n�n ði ¼ 1; 2; . . .; 56Þ are defined as block entry

matrices (for example eT4 ¼ 0n; 0n; 0n; In;½
0n; . . .. . .. . .; 0n|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

52 times

�Þ. The other notations are defined as

fðtÞ ¼ zTðtÞ zTðt� h1LÞ zTðt� h1ðtÞÞ zTðt� h1UÞ
	
zTðt� h2LÞ zTðt� h2ðtÞÞ zTðt� h2UÞ zTðt� hLÞ:

zTðt� hðtÞÞ zTðt� hUÞ
Z t

t�h1L

zTðsÞds
Z t

t�h2L

zTðsÞds
Z t

t�hL

zTðsÞds
Z t�h1L

t�h1ðtÞ
zTðsÞds

Z t�h1ðtÞ

t�h1U

zTðsÞds
Z t�h2L

t�h2ðtÞ
zTðsÞds

Z t�h2ðtÞ

t�h2U

zTðsÞds
Z t�hL

t�hðtÞ
zTðsÞds

Z t�hðtÞ

t�hU

zTðsÞds
Z 0

�h1L

Z t

tþu

zTðsÞdsdu
Z 0

�h2L

Z t

tþu

zTðsÞdsdu
Z 0

�hL

Z t

tþu

zTðsÞdsdu
Z �h1L

�h1ðtÞ

Z t

tþu

zTðsÞdsdu
Z �h1ðtÞ

�h1U

Z t

tþu

zTðsÞdsdu
Z �h2L

�h2ðtÞ

Z t

tþu

zTðsÞdsdu
Z �h2ðtÞ

�h2U

Z t

tþu

zTðsÞdsdu
Z �hL

�hðtÞ

Z t

tþu

zTðsÞdsdu
Z �hðtÞ

�hU

Z t

tþu

zTðsÞdsdu gTðzðtÞÞ gTðzðt� h1UÞÞ

gTðzðt� h1ðtÞÞÞ gTðzðt� h2UÞÞ gTðzðt� h2ðtÞÞÞ
gTðzðt� hUÞÞ gTðzðt� hðtÞÞÞ _zTðtÞ _zTðt� h1UÞ

_zTðt� h2UÞ _zTðt� hUÞ
Z t

t�sðtÞ
gTðzðsÞÞds

zTðt� d1Þ zTðt� d1ðtÞÞ zTðt� d2Þ zTðt� d2ðtÞÞ

zTðt� dÞ zTðt� dðtÞÞ
Z t

t�d1ðtÞ
zTðsÞds

Z t

t�d2ðtÞ
zTðsÞds

Z t

t�dðtÞ
zTðsÞds

Z t�d1L

t�d1ðtÞ
zTðsÞds

Z t�d1ðtÞ

t�d1U

zTðsÞds
Z t�d2L

t�d2ðtÞ
zTðsÞds

Z t�d2ðtÞ

t�d2U

zTðsÞds

Z t�dL

t�dðtÞ
zTðsÞds

Z t�dðtÞ

t�dU

zTðsÞds _zTðt�rðtÞÞ
#T

:

C ¼ 0n. . .. . .0n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
28 times

Ak 0n. . .. . .0n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
5 times

Bk 0n. . .. . .0n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
4 times

Ck 0n. . .. . .0n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
5 times

2
4

�Dk 0n. . .. . .0n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
9 times

Ek

3
5;

P1 ¼ e1 � e49Dk½ �;
P2 ¼ e36 � e1Dk þ ð1� gÞe46Dk½ �;
P3 ¼ 2 e29 � kme1ð ÞK1e

T
36 þ 2 kpe1 � e29


 �
D1e

T
36 þ 2 e30 � kme4ð ÞeT37

þ 2 kpe4 � e30

 �

D2e
T
37 þ 2 e32 � kme7ð ÞK3e

T
38 þ 2 kpe7 � e32


 �
D3e

T
38

þ 2 e34 � kme10ð ÞK4e
T
39 þ 2 kpe10 � e34


 �
D4e

T
39;

P4 ¼ e36ðT1 þ T2 þ T3ÞeT36 � e37T1e
T
37 � e38T2e

T
38 � e39T3e

T
39;

P5 ¼ e1ðP2 þ P3 þ P4ÞeT1 þ e42ð�ð1� g1ÞP2

þ ð1� g1ÞP5ÞeT42 þ e44ð�ð1� g2ÞP3 þ ð1� g2ÞP6ÞeT44
þ e46ð�ð1� gÞP4 � ð1� gÞP5 � ð1� gÞP6ÞeT46

þ e1 e29½ �
P7 P8

� P9

� �
e1 e29½ �T

� ð1� l1Þ e3 e31½ �
P7 P8

� P9

� �
e3 e31½ �T

þ e1 e29½ �
P10 P11

� P12

� �
e1 e29½ �T

� ð1� l2Þ e6 e33½ �
P10 P11

� P12

� �
e6 e33½ �T

þ ð1� l1Þ e3 e31½ �
P13 P14

� P15

� �
e3 e31½ �T

� ð1� lÞ e9 e35½ �
P13 P14

� P15

� �
e9 e35½ �T

þ ð1� l2Þ e6 e33½ �
P16 P17

� P18

� �
e6 e33½ �T

� ð1� lÞ e9 e35½ �
P16 P17

� P18

� �
e9 e35½ �T ;

P6 ¼ e1ðQ1 þ Q2 þ Q3 þ Q6 þ Q9ÞeT1 þ e41ð�Q1 þ Q4ÞeT41
þ e43ð�Q2 þ Q3ÞeT43 þ e45ð�Q3 � Q4 � Q5ÞeT45
þ e1ðQ7 þ Q10ÞeT29 þ e29ðQ8 þ Q11ÞeT29

þ e1 e29½ �
Q6 Q7

� Q8

� �
e1 e29½ �T� e4 e30½ �

Q6 Q7

� Q8

� �
e4 e30½ �T

þ e1 e29½ �
Q9 Q10

� Q11

� �
e1 e29½ �T� e7 e32½ �

Q9 Q10

� Q11

� �
e7 e32½ �T

þ e4 e30½ �
Q12 Q13

� Q14

� �
e4 e30½ �T

� e10 e34½ �
Q12 Q13

� Q14

� �
e10 e34½ �T

þ e7 e32½ �
Q15 Q16

� Q17

� �
e7 e32½ �T

� e10 e34½ �
Q15 Q16

� Q17

� �
e10 e34½ �T ;

P7 ¼ e1 d21LU þ d22LV þ d21LW þ d21ULX þ d22ULY þ d2ULZ

 �

eT1

� e47Ue47 � e48Ve
T
48 � e49WeT49 � e50Xe

T
50 � 2e50Xe

T
51 � e51Xe

T
51

� e52Ye
T
52 � 2e52Ye

T
52 � e53Ye

T
53 � e54Ze

T
54 � 2e54Ze

T
55 � e55Ze

T
55;

P8 ¼ e2h1ULQ1e
T
2 þ e3 �h1ULQ1 þ h1ULQ2ð ÞeT3 � e4h1ULQ2e

T
4

þ e5h2ULQ3e
T
5 þ e6 �h2ULQ3 þ h2ULQ4ð ÞeT6 � e7h2ULQ4e

T
7

þ e8hULQ5e
T
8 þ e9 �hULQ5 þ hULQ6ð ÞeT9 � e10hULQ6e

T
10;
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P9 ¼ e1 e36½ � h21L �U þ h22L
�V þ h2L

�W þ h21UL
�X þ h22UL

�Y þ h2UL
�Z


 �
e1 e36½ �T� e11 e1 � e2½ � �U e11 e1 � e2½ �T

� e12 e1 � e5½ � �V e12 e1 � e5½ �T� e13 e1 � e8½ � �W e13 e1 � e8½ �T

� e14 e2 � e3 e15 e3 � e4½ �
�X L
� �X

� �
e14 e2 � e3 e15 e3 � e4½ �T

� e16 e5 � e6 e17 e6 � e7½ �
�Y M
� �Y

� �
e16 e5 � e6 e17 e6 � e7½ �T

� e18 e8 � e9 e19 e9 � e10½ �
�Z N
� �Z

� �
e18 e8 � e9 e19 e9 � e10½ �T ;

P10 ¼ e36
h41L
4
R1 þ

h42L
4
R2 þ

h4L
4
R3 þ

ðh21U � h21LÞ
2

4
R4 þ

ðh22U � h22LÞ
2

4
R5 þ

ðh2U � h2LÞ
2

4
R6

 !
eT36

� e1
3

2
R1 þ

3

2
R2 þ

3

2
R3 þ 3R4 þ 3R5 þ 3R6

� �
eT1 þ e13R1e

T
20 � e113R1e

T
11 þ e11

6

h1L
R1e

T
20 � e20

18

h21L
R1e

T
20

þ e13R2e
T
21 � e123R2e

T
12 þ e12

6

h2L
R2e

T
21 � e21

18

h22L
R2e

T
21 þ e13R3e

T
22 � e133R3e

T
13 þ e13

6

hL
R3e

T
22

� e22
18

h2L
R3e

T
22 þ e13R4e

T
23 � e143R4e

T
14 þ e14

6

h1U � h1L
R4e

T
23 � e23

18

ðh1U � h1LÞ2
R4e

T
23

þ e13R4e
T
24 � e153R4e

T
15 þ e15

6

h1U � h1L
R4e

T
24 � e24

18

ðh1U � h1LÞ2
R4e

T
24 þ e13R5e

T
25 � e163R5e

T
16

þ e16
6

h2U � h2L
R5e

T
25 � e25

18

ðh2U � h2LÞ2
R5e

T
25 þ e13R5e

T
26 � e173R5e

T
17 þ e17

6

h2U � h2L
R5e

T
26

� e26
18

ðh2U � h2LÞ2
R5e

T
26 þ e13R6e

T
27 � e183R6e

T
18 þ e18

6

hU � hL
R6e

T
27 � e27

18

ðhU � hLÞ2
R6e

T
27

þ e13R6e
T
28 � e193R6e

T
19 þ e19

6

hU � hL
R6e

T
28 � e28

18

ðhU � hLÞ2
R6e

T
28;

P11 ¼ e29s
2S1e

T
29 � e40S1e

T
40 þ e36S2e

T
36 � e56ð1� rDÞS2eT56;

P12 ¼ e36ð�H � HTÞeT36 � 2e36HAke
T
46 þ 2e36HBke

T
29 þ 2e36HCke

T
35 þ 2e36HDke

T
40 þ 2e36HEke

T
56;

P13 ¼� e1G1R1e
T
1 þ 2e1G1R2e

T
29 � e29G1e

T
29 � e3G2R1e

T
3 þ 2e3G2R2e

T
31 � e31G2e

T
31 � e4G3R1e

T
4

þ 2e4G3R2e
T
30 � e30G3e

T
30 � e6G4R1e

T
6 þ 2e6G4R2e

T
33 � e33G4e

T
33 � e7G5R1e

T
7 þ 2e7G5R2e

T
32

� e32G5e
T
32 � e9G6R1e

T
9 þ 2e9G6R2e

T
35 � e35G6e

T
35 � e10G7R1e

T
10 þ 2e10G7R2e

T
34 � e34G7e

T
34;

N ¼ P1PP
T
2 þP2PP

T
1 þ

X13
i¼3

Pi;

Kp ¼ diag kþ1 ; k
þ
2 ; . . .. . .; k

þ
n

� 

; Km ¼ diag k�1 ; k

�
2 ; . . .. . .; k

�
n

� 

;

R1 ¼ diag k�1 k
þ
1 ; k

�
2 k

þ
2 ; . . .. . .; k

�
n k

þ
n

� 

; R2 ¼ diag

k�1 þ kþ1
2

;
k�2 þ kþ2

2
; . . .. . .;

k�n þ kþn
2

� �
;

F 1 ¼
0n F1

F1 0n

� �
; F 2 ¼

0n F2

F2 0n

� �
; F 3 ¼

0n F3

F3 0n

� �
; F 4 ¼

0n F4

F4 0n

� �
; F 5 ¼

0n F5

F5 0n

� �
; F 6 ¼

0n F6

F6 0n

� �
:
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Theorem 3.1 For given positive scalars

d1L; d1U ; d2L; d2U ;h1L;h1U ; h2L; h2U ;d1;d2;h1;h2; s;r;g1;g2;
l1;l2; sD;rD and diagonal matrices Kp;Km, then the neu-

ral network described by (9) is globally asymptotically

stable, for any time-varying delay dðtÞ; hðtÞ; sðtÞ and rðtÞ
satisfying (2), if there exist positive definite matrices

Piði ¼ 1;2; . . .; 18Þ 2 Rn�n;Tiði ¼ 1;2; 3Þ 2 Rn�n;Qiði ¼
1;2; . . .;17Þ 2 Rn�nU; V ;W ;X; Y ; Z 2 Rn�n; �U2 R2n�2n;
�V2 R2n�2n; �W2 R2n�2n; �X2 R2n�2n; �Y2 R2n�2n; �Z2 R2n�2n,

Ri ði ¼ 1; 2; . . .;6Þ 2 Rn�n; Siði ¼ 1; 2Þ 2 Rn�n, positive

diagonal matrices Dl ¼ diag kl1; kl2; . . .;klnf g; Kl ¼diag

ll1;ll2;f . . .;llng;H 2 Rn�n;Giði ¼ 1; 2; . . .;7Þ 2 Rn�n,

any symmetric matrices Fi 2 Rn�nði ¼ 1;2; . . .; 6Þ, any

matrices L;M;N 2 R2n�2n such that the following LMIs

hold:

ðC?ÞT N C?\0; ð10Þ
�X þ F 1 L

� �X þ F 2

2
4

3
5� 0; ð11Þ

�Y þF 3 M

� �Y þ F 4

2
4

3
5� 0; ð12Þ

�Z þ F 5 N

� �Z þ F 6

2
4

3
5� 0; ð13Þ

Proof Let us consider the following Lyapunov–Krasoskii

functional candidate:

VðzðtÞ; tÞ ¼
X9
i¼1

ViðzðtÞ; tÞ; ð14Þ

where

V1ðzðtÞ; tÞ ¼ zðtÞ � Dk

Z t

t�dðtÞ
zðsÞds

 !T

P1 zðtÞ � Dk

Z t

t�dðtÞ
zðsÞds

 !
;

V2ðzðtÞ; tÞ ¼ 2
Xn
i¼1

k1i

Z ziðtÞ

0

giðsÞ � k�i s

 �

dsþ d1i

Z ziðtÞ

0

kþi s� giðsÞ

 �

ds

" #

þ 2
Xn
i¼1

k2i

Z ziðt�h1UÞ

0

giðsÞ � k�i s

 �

ds þ d2i

Z ziðt�h1UÞ

0

kþi s� giðsÞ

 �

ds

" #

þ 2
Xn
i¼1

k3i

Z ziðt�h2UÞ

0

giðsÞ � k�i s

 �

dsþ d3i

Z ziðt�h2UÞ

0

kþi s� giðsÞ

 �

ds

" #

þ 2
Xn
i¼1

k4i

Z ziðt�hUÞ

0

giðsÞ � k�i s

 �

dsþ d4i

Z ziðt�hUÞ

0

kþi s� giðsÞ

 �

ds

" #
;

V3ðzðtÞ; tÞ ¼
Z t

t�h1U

_zTðsÞT1 _zðsÞdsþ
Z t

t�h2U

_zTðsÞT2 _zðsÞdsþ
Z t

t�hU

_zTðsÞT3 _zðsÞds;

V4ðzðtÞ; tÞ ¼
Z t

t�d1ðtÞ
zTðsÞP2zðsÞdsþ

Z t

t�d2ðtÞ
zTðsÞP3zðsÞds

þ
Z t

t�dðtÞ
zTðsÞP4zðsÞds

þ
Z t�d1ðtÞ

t�dðtÞ
zTðsÞP5zðsÞdsþ

Z t�d2ðtÞ

t�dðtÞ
zTðsÞP6zðsÞds

þ
Z t

t�h1ðtÞ

zðsÞ
gðzðsÞÞ

� �T
P7 P8

� P9

� �
zðsÞ

gðzðsÞÞ

� �
ds

þ
Z t

t�h2ðtÞ

zðsÞ
gðzðsÞÞ

� �T
P10 P11

� P12

� �
zðsÞ

gðzðsÞÞ

� �
ds

þ
Z t�h1ðtÞ

t�hðtÞ

zðsÞ
gðzðsÞÞ

� �T
P13 P14

� P15

� �
zðsÞ

gðzðsÞÞ

� �
ds

þ
Z t�h2ðtÞ

t�hðtÞ

zðsÞ
gðzðsÞÞ

� �T
P16 P17

� P18

� �
zðsÞ

gðzðsÞÞ

� �
ds;

V5ðzðtÞ; tÞ ¼
Z t

t�d1

zTðsÞQ1zðsÞdsþ
Z t

t�d2

zTðsÞQ2zðsÞdsþ
Z t

t�d
zTðsÞQ3zðsÞds

þ
Z t�d1

t�d
zTðsÞQ4zðsÞdsþ

Z t�d2

t�d
zTðsÞQ5zðsÞds

þ
Z t

t�h1U

zðsÞ
f ðzðsÞÞ

� �T
Q6 Q7

� Q8

� �
zðsÞ

gðzðsÞÞ

� �
ds

þ
Z t

t�h2U

zðsÞ
gðzðsÞÞ

� �T
Q9 Q10

� Q11

� �
zðsÞ

gðzðsÞÞ

� �
ds

þ
Z t�h1U

t�hU

zðsÞ
gðzðsÞÞ

� �T
Q12 Q13

� Q14

� �
zðsÞ

gðzðsÞÞ

� �
ds

þ
Z t�h2U

t�hU

zðsÞ
gðzðsÞÞ

� �T
Q15 Q16

� Q17

� �
zðsÞ

gðzðsÞÞ

� �
ds;

V6ðzðtÞ; tÞ ¼ d1L

Z 0

�d1L

Z t

tþh
zTðsÞUzðsÞdsdh

þ d2L

Z 0

�d2L

Z t

tþh
zTðsÞVzðsÞdsdh

þ dL

Z 0

�dL

Z t

tþh
zTðsÞWzðsÞdsdh

þ d1UL

Z �d1L

�d1U

Z t

tþh
zTðsÞXzðsÞdsdh

þ d2UL

Z �d2L

�d2U

Z t

tþh
zTðsÞYzðsÞdsdh

þ dUL

Z �dL

�dU

Z t

tþh
zTðsÞZzðsÞdsdh;

V7ðzðtÞ; tÞ ¼ h1L

Z 0

�h1L

Z t

tþh
nTðsÞ �UnðsÞdsdh

þ h2L

Z 0

�h2L

Z t

tþh
nTðsÞ �VnðsÞdsdh

þ hL

Z 0

�hL

Z t

tþh
nTðsÞ �WnðsÞdsdh

þ h1UL

Z �h1L

�h1U

Z t

tþh
nTðsÞ �XnðsÞdsdh

þ h2UL

Z �h2L

�h2U

Z t

tþh
nTðsÞ �YnðsÞdsdh

þ hUL

Z �hL

�hU

Z t

tþh
nTðsÞ�ZnðsÞdsdh;
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V8ðzðtÞ; tÞ ¼
h21L
2

Z 0

�h1L

Z 0

h

Z t

tþu

_zTðsÞR1 _zðsÞdsdudh

þ h22L
2

Z 0

�h2L

Z 0

h

Z t

tþu

_zTðsÞR2 _zðsÞdsdudh

þ h2L
2

Z 0

�hL

Z 0

h

Z t

tþu

_zTðsÞR3 _zðsÞdsdudh

þ h21U � h21L
2

Z �h1L

�h1U

Z 0

h

Z t

tþu

_zTðsÞR4 _zðsÞdsdudh

þ h22U � h22L
2

Z �h2L

�h2U

Z 0

h

Z t

tþu

_zTðsÞR5 _zðsÞdsdudh

þ h2U � h2L
2

Z �hL

�hU

Z 0

h

Z t

tþu

_zTðsÞR6 _zðsÞdsdudh;

V9ðzðtÞ; tÞ ¼ s
Z 0

�s

Z t

tþh
gTðzðsÞÞS1gðzðsÞÞdsdh

þ
Z t

t�rðtÞ
_zTðsÞS2 _zðsÞds:

nTðtÞ ¼ col zðtÞ; _zðtÞf g:

Taking the time derivative of V(z(t), t) along the trajec-

tories of system (9) yields

_VðzðtÞ; tÞ ¼
X9
i¼1

_ViðzðtÞ; tÞ; ð15Þ

where

_V1ðzðtÞ; tÞ� 2 zðtÞ � Dk

Z t

t�dðtÞ
zðsÞds

 !T

P1 _zðtÞð

�DkzðtÞ þ ð1� gÞDkzðt � dðtÞÞÞ� 2fTðtÞPT
1P1P2fðtÞ;

ð16Þ
_V2ðzðtÞ; tÞ ¼ 2 gðzðtÞÞ � kmzðtÞ½ �TK1 _zðtÞ þ 2 kpzðtÞ � gðzðtÞÞ

	 �T
D1 _zðtÞ

þ 2 gðzðt � h1UÞÞ � kmzðt � h1UÞ½ �TK2 _zðt � h1UÞ
þ 2 kpzðt � h1UÞ � gðzðt � h1UÞÞ

	 �T
D2 _zðt � h1UÞ

þ 2 gðzðt � h2UÞÞ � kmzðt � h2UÞ½ �TK3 _zðt � h2UÞ
þ 2 kpzðt � h2UÞ � gðzðt � h2UÞÞ

	 �T
D3 _zðt � h1UÞ

þ 2 gðzðt � hUÞÞ � kmzðt � hUÞ½ �TK4 _zðt � hUÞ
þ 2 kpzðt � hUÞ � gðzðt � hUÞÞ

	 �T
D4 _zðt � hUÞ

¼ fTðtÞP3fðtÞ;
ð17Þ

_V3ðzðtÞ; tÞ ¼ _zTðtÞ T1 þ T2 þ T3½ � _zðtÞ
� _zTðt � h1UÞT1 _zTðt � h1UÞ
� _zTðt � h2UÞT2 _zTðt � h2UÞ
� _zTðt � hUÞT3 _zTðt � hUÞ
¼ fTðtÞP4fðtÞ; ð18Þ

_V4ðzðtÞ; tÞ� zTðtÞ P2 þ P3 þ P4½ �zðtÞ
þ zTðt � d1ðtÞÞ �ð1� g1ÞP2 þ ð1� g1ÞP5½ �zðt � d1ðtÞÞ
þ zTðt � d2ðtÞÞ �ð1� g2ÞP3 þ ð1� g2ÞP6½ �zðt � d2ðtÞÞ
þ zTðt � dðtÞÞ �ð1� gÞP4 � ð1� gÞP5 � ð1� gÞP6½ �zðt � dðtÞÞ

þ
zðtÞ

gðzðtÞÞ

� �T
P7 P8

� P9

� �
zðtÞ

gðzðtÞÞ

� �

� ð1� l1Þ
zðt � h1ðtÞÞ

gðzðt � h1ðtÞÞÞ

� �T
P7 P8

� P9

� �
zðt � h1ðtÞÞ

gðzðt � h1ðtÞÞÞ

� �

þ
zðtÞ

gðzðtÞÞ

� �T
P10 P11

� P12

� �
zðtÞ

gðzðtÞÞ

� �

� ð1� l2Þ
zðt � h2ðtÞÞ

gðzðt � h2ðtÞÞÞ

� �T
P10 P11

� P12

� �
zðt � h2ðtÞÞ

gðzðt � h2ðtÞÞÞ

� �

þ ð1� l1Þ
zðt � h1ðtÞÞ

gðzðt � h1ðtÞÞÞ

� �T
P13 P14

� P15

� �
zðt � h1ðtÞÞ

gðzðt � h1ðtÞÞÞ

� �

� ð1� lÞ
zðt � hðtÞÞ

gðzðt � hðtÞÞÞ

� �T
P13 P14

� P15

� �
zðt � hðtÞÞ

gðzðt � hðtÞÞÞ

� �

þ ð1� l2Þ
zðt � h2ðtÞÞ

gðzðt � h2ðtÞÞÞ

� �T
P16 P17

� P18

� �
zðt � h2ðtÞÞ

gðzðt � h2ðtÞÞÞ

� �

� ð1� lÞ
zðt � hðtÞÞ

gðzðt � hðtÞÞÞ

� �T
P16 P17

� P18

� �
zðt � hðtÞÞ

gðzðt � hðtÞÞÞ

� �

� fTðtÞP5fðtÞ;

ð19Þ
_V5ðzðtÞ; tÞ ¼ zTðtÞ Q1 þ Q2 þ Q3 þ Q6 þ Q9½ �zðtÞ
þ zTðt � d1Þ �Q1 þ Q4½ �zðt � d1Þ
þ zTðt � d2Þ �Q2 þ Q5½ �zðt � d2Þ þ zTðt � dÞ
� �Q3 � Q4 � Q5½ �zðt � dÞ
þ zTðtÞ Q7 þ Q10½ �gðzðtÞÞ þ gTðzðtÞÞ Q8 þ Q11½ �gðzðtÞÞ

þ
zðtÞ

gðzðtÞÞ

� �T
Q6 Q7

� Q8

� �
zðtÞ

gðzðtÞÞ

� �

�
zðt � h1UÞ

gðzðt � h1UÞÞ

� �T
Q6 Q7

� Q8

� �
zðt � h1UÞ

gðzðt � h1UÞÞ

� �

þ
zðtÞ

gðzðtÞÞ

� �T
Q9 Q10

� Q11

� �
zðtÞ

gðzðtÞÞ

� �

�
zðt � h2UÞ

gðzðt � h2UÞÞ

� �T
Q9 Q10

� Q11

� �
zðt � h2UÞ

gðzðt � h2UÞÞ

� �

þ
zðt � h1UÞ

gðzðt � h1UÞÞ

� �T
Q12 Q13

� Q14

� �
zðt � h1UÞ

gðzðt � h1UÞÞ

� �

�
zðt � hUÞ

gðzðt � hUÞÞ

� �T
Q12 Q13

� Q14

� �
zðt � hUÞ

gðzðt � hUÞÞ

� �

þ
zðt � h2UÞ

gðzðt � h2UÞÞ

� �T
Q15 Q16

� Q17

� �
zðt � h2UÞ

gðzðt � h2UÞÞ

� �

�
zðt � hUÞ

gðzðt � hUÞÞ

� �T
Q15 Q16

� Q17

� �
zðt � hUÞ

gðzðt � hUÞÞ

� �

¼ fTðtÞP6fðtÞ; ð20Þ
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_V6ðzðtÞ; tÞ ¼
zTðtÞ d21LU þ d22LV þ d2LW þ d21ULX þ d22ULY þ d2ULZ

	 �
zðtÞ

� d1L

Z t

t�d1L

zTðsÞUzðsÞds� d2L

Z t

t�d2L

zTðsÞVzðsÞds

� dL

Z t

t�dL

zTðsÞWzðsÞds� d1UL

Z t�d1L

t�d1U

zTðsÞXzðsÞds

� d2UL

Z t�d2L

t�d2U

zTðsÞYzðsÞds� dUL

Z t�dL

t�dU

zTðsÞZzðsÞds:

Applying Lemma 2.1, we have

_V6ðzðtÞ; tÞ� zTðtÞ d21LU þ d22LV þ d2LW þ d21ULX þ d22ULY þ d2ULZ
	 �

zðtÞ

�
Z t

t�d1ðtÞ
zTðsÞdsU

Z t

t�d1ðtÞ
zðsÞds

�
Z t

t�d2ðtÞ
zTðsÞdsV

Z t

t�d2ðtÞ
zðsÞds

�
Z t

t�dðtÞ
zTðsÞdsW

Z t

t�dðtÞ
zðsÞds

�
Z t�d1L

t�d1ðtÞ
zTðsÞdsX

Z t�d1L

t�d1ðtÞ
zðsÞds

� 2

Z t�d1L

t�d1ðtÞ
zTðsÞdsX

Z t�d1ðtÞ

t�d1U

zTðsÞds

�
Z t�d1ðtÞ

t�d1U

zTðsÞdsX
Z t�d1ðtÞ

t�d1U

zðsÞds

�
Z t�d2L

t�d2ðtÞ
zTðsÞdsY

Z t�d2L

t�d2ðtÞ
zðsÞds

� 2

Z t�d2L

t�d2ðtÞ
zTðsÞdsY

Z t�d2ðtÞ

t�d2U

zTðsÞds

�
Z t�d2ðtÞ

t�d2U

zTðsÞdsY
Z t�d2ðtÞ

t�d2U

zðsÞds

�
Z t�dL

t�dðtÞ
zTðsÞdsZ

Z t�dL

t�dðtÞ
zðsÞds

� 2

Z t�dL

t�dðtÞ
zTðsÞdsZ

Z t�dðtÞ

t�dU

zTðsÞds

�
Z t�dðtÞ

t�dU

zTðsÞdsZ
Z t�dðtÞ

t�dU

zðsÞds

_V6ðzðtÞ; tÞ� fTðtÞP7fðtÞ:

ð21Þ

Inspired by the ideas in the works of Kwon et al.

(2014a, b), following six zero equalities with any sym-

metric matrices Fi; i ¼ 1; 2; . . .; 6 are introduced:

0 ¼h1UL

h
zTðt � h1LÞF1zðt � h1LÞ � zTðt � h1ðtÞÞ

F1zðt � h1ðtÞÞ � 2

Z t�h1L

t�h1ðtÞ
zTðsÞF1 _zðsÞds

i
;

ð22Þ

0 ¼ h1UL

h
zTðt � h1ðtÞÞF2zðt � h1ðtÞÞ � zTðt � h1UÞ

F2zðt � h1UÞ � 2

Z t�h1ðtÞ

t�h1U

zTðsÞF2 _zðsÞds
i
;

ð23Þ

0 ¼ h2UL

h
zTðt � h2LÞF3zðt � h2LÞ � zTðt � h2ðtÞÞ

F3zðt � h2ðtÞÞ � 2

Z t�h2L

t�h2ðtÞ
zTðsÞF3 _zðsÞds

i
;

ð24Þ

0 ¼ h2UL zTðt � h2ðtÞÞF4zðt � h2ðtÞÞ
	

� zTðt � h2UÞ

F4zðt � h2UÞ � 2

Z t�h2ðtÞ

t�h2U

zTðsÞF4 _zðsÞds
i
;

ð25Þ

0 ¼ hUL

h
zTðt � hLÞF5zðt � hLÞ � zTðt � hðtÞÞ

F5zðt � hðtÞÞ � 2

Z t�hL

t�hðtÞ
zTðsÞF5 _zðsÞds

i
;

ð26Þ

0 ¼ hUL

h
zTðt � hðtÞÞF6zðt � hðtÞÞ � zTðt � hUÞ

F6zðt � hUÞ � 2

Z t�hðtÞ

t�hU

zTðsÞF6 _zðsÞds
i
:

ð27Þ

By summing the above six zero equalities given in the

Eqs. (22)–(27), it can be obtained

0 ¼ fTðtÞP8fðtÞ � 2h1UL

Z t�h1L

t�h1ðtÞ
zTðsÞF1 _zðsÞ

� 2h1UL

Z t�h1ðtÞ

t�h1U

zTðsÞF2 _zðsÞds

� 2h2UL

Z t�h2L

t�h2ðtÞ
zTðsÞF3 _zðsÞ � 2h2UL

Z t�h2ðtÞ

t�h2U

zTðsÞF4 _zðsÞds

� 2hUL

Z t�hL

t�hðtÞ
zTðsÞF5 _zðsÞ � 2hUL

Z t�hðtÞ

t�hU

zTðsÞF6 _zðsÞds;

_V7ðzðtÞ; tÞ ¼ nTðtÞ h21L
�U þ h22L

�V þ h2L
�W þ h21UL

�X
	

þ h22UL
�Y þ h2UL

�Z�nðtÞ � h1L

Z t

t�h1L

nTðsÞ �UnðsÞds

� h2L

Z t

t�h2L

nTðsÞ �VnðsÞds� hL

Z t

t�hL

nTðsÞ �WnðsÞds

� h1UL

Z t�h1L

t�h1U

nTðsÞ �XnðsÞds� h2UL

Z t�h2L

t�h2U

nTðsÞ�YnðsÞds

� hUL

Z t�hL

t�hU

nTðsÞ�ZnðsÞds:

ð28Þ

Using Lemma 2.1, the following inequalities hold
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_V7ðzðtÞ; tÞ� nTðtÞ h21L
�U þ h22L

�V þ h2L
�W þ h21UL

�X
	

þ h22UL
�Y þ h2UL

�Z
�
nðtÞ

�

R t
t�h1L

zðsÞds

zðtÞ � zðt � h1LÞ

2
64

3
75
T �U11

�U12

� �U22

2
64

3
75

R t
t�h1L

xðsÞds

zðtÞ � zðt � h1LÞ

2
64

3
75

�

R t
t�h2L

zðsÞds

zðtÞ � zðt � h2LÞ

2
64

3
75
T �V11

�V12

� �V22

2
64

3
75

R t
t�h2L

zðsÞds

zðtÞ � zðt � h2LÞ

2
64

3
75

�

R t
t�hL

zðsÞds

zðtÞ � zðt � hLÞ

2
64

3
75
T �W11

�W12

� �W22

2
64

3
75

R t
t�hL

zðsÞds

zðtÞ � zðt � hLÞ

2
64

3
75

� h1UL

Z t�h1L

t�h1U

nTðsÞ �XnðsÞds� h2UL

Z t�h2L

t�h2U

nTðsÞ�YnðsÞds

� hUL

Z t�hL

t�hU

nTðsÞ�ZnðsÞds:

ð29Þ

By considering integral terms in (29) with the equation

(28), if the inequalities in (11), (12) and (13) are holds, then

by utilizing Lemmas 2.1 and 2.2, it follows that

� h1UL

Z t�h1L

t�h1U

nTðsÞ �XnðsÞds� 2h1UL

Z t�h1L

t�h1ðtÞ
zTðsÞF1 _zðsÞds

� 2h1UL

Z t�h1ðtÞ

t�h1U

zTðsÞF2 _zðsÞds

¼ �h1UL

Z t�h1L

t�h1ðtÞ
nTðsÞ �X þ F 1f gnðsÞds

� h1UL

Z t�h1ðtÞ

t�h1U

nTðsÞ �X þ F 2f gnðsÞds

� � h1UL

h1ðtÞ � h1L

Z t�h1L

t�h1ðtÞ
nTðsÞ �X þ F 1f gnðsÞds

� h1UL

h1U � h1ðtÞ

Z t�h1ðtÞ

t�h1U

nTðsÞ �X þ F 2f gnðsÞds

� �

R t�h1L
t�h1ðtÞ nðsÞds

R t�h1ðtÞ
t�h1U

nðsÞds

2
64

3
75
T

�X þ F 1 L

� �X þF 2

2
64

3
75

R t�h1L
t�h1ðtÞ nðsÞds

R t�h1ðtÞ
t�h1U

nðsÞds

2
64

3
75; ð30Þ

and similarly, we have

� h2UL

Z t�h2L

t�h2U

nTðsÞ�YnðsÞds� 2h2UL

Z t�h2L

t�h2ðtÞ
zTðsÞF3 _zðsÞds

� 2h2UL

Z t�h2ðtÞ

t�h2U

zTðsÞF4 _zðsÞds

¼ �h2UL

Z t�h2L

t�h2ðtÞ
nTðsÞ �Y þ F 3f gnðsÞds

� h2UL

Z t�h2ðtÞ

t�h2U

nTðsÞ �Y þ F 4f gnðsÞds

� � h2UL

h2ðtÞ � h2L

Z t�h2L

t�h2ðtÞ
nTðsÞ �Y þF 3f gnðsÞds

� h2UL

h2U � h2ðtÞ

Z t�h2ðtÞ

t�h2U

nTðsÞ �Y þF 4f gnðsÞds

� �

R t�h2L
t�h2ðtÞ nðsÞds

R t�h2ðtÞ
t�h2U

nðsÞds

2
64

3
75
T

�Y þ F 3 M

� �Y þ F 4

2
64

3
75

R t�h2L
t�h2ðtÞ nðsÞds

R t�h2ðtÞ
t�h2U

nðsÞds

2
64

3
75;

ð31Þ

� hUL

Z t�hL

t�hU

nTðsÞ�ZnðsÞds� 2hUL

Z t�hL

t�hðtÞ
zTðsÞF5 _zðsÞds

� 2hUL

Z t�hðtÞ

t�hU

zTðsÞF6 _zðsÞds

¼ �hUL

Z t�hL

t�hðtÞ
nTðsÞ �Z þ F 5f gnðsÞds

� hUL

Z t�hðtÞ

t�hU

nTðsÞ �Z þ F 6f gnðsÞds

� � hUL

hðtÞ � hL

Z t�hL

t�hðtÞ
nTðsÞ �Z þ F 5f gnðsÞds

� hUL

hU � hðtÞ

Z t�hðtÞ

t�hU

nTðsÞ �Z þ F 6f gnðsÞds

� �

R t�hL
t�hðtÞ nðsÞds

R t�hðtÞ
t�hU

nðsÞds

2
64

3
75
T

�Z þ F 5 N

� �Z þ F 6

2
64

3
75

R t�hL
t�hðtÞ nðsÞds

R t�hðtÞ
t�hU

nðsÞds

2
64

3
75:

ð32Þ

From (30)–(32), it is concluded that
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_V7ðzðtÞ; tÞ � 2h1UL

Z t�h1L

t�h1ðtÞ
zTðsÞF1 _zðsÞ � 2h1UL

Z t�h1ðtÞ

t�h1U

zTðsÞF2 _zðsÞds

� 2h2UL

Z t�h2L

t�h2ðtÞ
zTðsÞF3 _zðsÞ � 2h2UL

Z t�h2ðtÞ

t�h2U

zTðsÞF4 _zðsÞds

� 2hUL

Z t�hL

t�hðtÞ
zTðsÞF5 _zðsÞ � 2hUL

Z t�hðtÞ

t�hU

zTðsÞF6 _zðsÞds

� nTðtÞ h21L
�U þ h22L

�V þ h2L
�W þ h21UL

�X þ h22UL
�Y þ h2UL

�Z
	 �

nðtÞ

�

R t
t�h1L

zðsÞds

zðtÞ � zðt � h1LÞ

2
64

3
75
T �U11

�U12

� �U22

2
64

3
75

R t
t�h1L

xðsÞds

zðtÞ � zðt � h1LÞ

2
64

3
75

�

R t
t�h2L

zðsÞds

zðtÞ � zðt � h2LÞ

2
64

3
75
T �V11

�V12

� �V22

2
64

3
75

R t
t�h2L

zðsÞds

zðtÞ � zðt � h2LÞ

2
64

3
75

�

R t
t�hL

zðsÞds

zðtÞ � zðt � hLÞ

2
64

3
75
T �W11

�W12

� �W22

2
64

3
75

R t
t�hL

zðsÞds

zðtÞ � zðt � hLÞ

2
64

3
75

�

R t�h1L
t�h1ðtÞ zðsÞds

zðt � h1LÞ � zðt � h1ðtÞÞ

R t�h1ðtÞ
t�h1U

zðsÞds
zðt � h1ðtÞÞ � zðt � h1UÞ

2
6666664

3
7777775

T

�X þ F 1 L

� �X þ F 2

2
64

3
75

R t�h1L
t�h1ðtÞ zðsÞds

zðt � h1LÞ � zðt � h1ðtÞÞ

R t�h1ðtÞ
t�h1U

zðsÞds
zðt � h1ðtÞÞ � zðt � h1UÞ

2
6666664

3
7777775

�

R t�h2L
t�h2ðtÞ zðsÞds

zðt � h2LÞ � zðt � h2ðtÞÞ

R t�h2ðtÞ
t�h2U

zðsÞds
zðt � h2ðtÞÞ � zðt � h2UÞ

2
6666664

3
7777775

T

�Y þ F 3 M

� �Y þ F 4

2
64

3
75

R t�h2L
t�h2ðtÞ zðsÞds

zðt � h2LÞ � zðt � h2ðtÞÞ

R t�h2ðtÞ
t�h2U

zðsÞds
zðt � h2ðtÞÞ � zðt � h2UÞ

2
6666664

3
7777775

�

R t�hL
t�hðtÞ zðsÞds

zðt � hLÞ � zðt � hðtÞÞ

R t�hðtÞ
t�hU

zðsÞds
zðt � hðtÞÞ � zðt � hUÞ

2
6666664

3
7777775

T

�Z þ F 5 N

� �Z þ F 6

2
64

3
75

R t�hL
t�hðtÞ zðsÞds

zðt � hLÞ � zðt � hðtÞÞ

R t�hðtÞ
t�hU

zðsÞds
zðt � hðtÞÞ � zðt � hUÞ

2
6666664

3
7777775

� fTðtÞP9fðtÞ;

ð33Þ

_V8ðzðtÞ; tÞ ¼ _zTðtÞ h41L
4
R1 þ

h42L
4
R2 þ

h4L
4
R3 þ

ðh21U � h21LÞ
2

4
R4

 

þ ðh22U � h22LÞ
2

4
R5 þ

ðh2U � h2LÞ
2

4
R6

!
_zðtÞ

�h21L
2

Z 0

�h1L

Z t

tþu

_zTðsÞR1 _zðsÞdsdu�
h22L
2

Z 0

�h2LZ t

tþu

_zTðsÞR2 _zðsÞdsdu�
h2L
2

Z 0

�hL

Z t

tþu

_zTðsÞ

dsR3 _zðsÞdu�
h21U � h21L

2

Z �h1L

�h1ðtÞ

Z t

tþu

_zTðsÞ

dsR4 _zðsÞdsdu�
h21U � h21L

2

Z �h1ðtÞ

�h1U

Z t

tþu

_zTðsÞ

R4 _zðsÞdsdu�
h22U � h22L

2

Z �h2L

�h2ðtÞ

Z t

tþu

_zTðsÞ

R5 _zðsÞdsdu�
h22U � h22L

2

Z �h2ðtÞ

�h2U

Z t

tþu

_zTðsÞ

R5 _zðsÞdsdu�
h2U � h2L

2

Z �hL

�hðtÞ

Z t

tþu

_zTðsÞ

R6 _zðsÞdsdu�
h2U � h2L

2

Z �hðtÞ

�hU

Z t

tþu

_zTðsÞR6 _zðsÞdsdu:

ð34Þ

Applying Lemma 2.3, the integral terms in (34) can be

rewritten as

� h21L
2

Z 0

�h1L

Z t

tþu

_zTðsÞR1 _zðsÞdsdu�

� h1LzðtÞ �
Z t

t�h1L

zðsÞds
� �T

R1 h1LzðtÞ �
Z t

t�h1L

zðsÞds
� �

� 2 �h1L

2
zðtÞ �

Z t

t�h1L

zðsÞdsþ 3

h1L

Z 0

�h1L

Z t

tþu

zðsÞdsdu
� �T

R1

� �h1L

2
zðtÞ �

Z t

t�h1L

zðsÞdsþ 3

h1L

Z 0

�h1L

Z t

tþu

zðsÞdsdu
� �

� fTðtÞH1fðtÞ;
ð35Þ

Similarly, we have

�h22L
2

Z 0

�h2L

Z t

tþu

_zTðsÞR2 _zðsÞdsdu� fTðtÞH2fðtÞ; ð36Þ

�h2L
2

Z 0

�hL

Z t

tþu

_zTðsÞR3 _zðsÞdsdu� fTðtÞH3fðtÞ; ð37Þ

�h21U � h21L
2

Z �h1L

�h1ðtÞ

Z t

tþu

_zTðsÞR4 _zðsÞdsdu� fTðtÞH4fðtÞ;

ð38Þ
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�h21U � h21L
2

Z �h1ðtÞ

�h1U

Z t

tþu

_zTðsÞR4 _zðsÞdsdu� fTðtÞH5fðtÞ;

ð39Þ

�h22U � h22L
2

Z �h2L

�h2ðtÞ

Z t

tþu

_zTðsÞR5 _zðsÞdsdu� fTðtÞH6fðtÞ;

ð40Þ

�h22U � h22L
2

Z �h2ðtÞ

�h2U

Z t

tþu

_zTðsÞR5 _zðsÞdsdu� fTðtÞH7fðtÞ;

ð41Þ

�h2U � h2L
2

Z �hL

�hðtÞ

Z t

tþu

_zTðsÞR6 _zðsÞdsdu� fTðtÞH8fðtÞ;

ð42Þ

�h2U � h2L
2

Z �hðtÞ

�hU

Z t

tþu

_zTðsÞR6 _zðsÞdsdu� fTðtÞH9fðtÞ:

ð43Þ

where

H1 ¼ � h1Le1 � e11½ �R1 h1Le1 � e11½ �T

� 2 �h1L

2
e1 � e11 þ

3

h1L
e20

� �
R1 �h1L

2
e1 � e11 þ

3

h1L
e20

� �T

H2 ¼ � h2Le1 � e12½ �R2 h2Le1 � e12½ �T

� 2 �h2L

2
e1 � e12 þ

3

h2L
e21

� �
R2 �h2L

2
e1 � e12 þ

3

h2L
e21

� �T
;

H3 ¼ � hLe1 � e13½ �R3 hLe1 � e13½ �T

� 2 �hL

2
e1 � e13 þ

3

hL
e22

� �
R3 �hL

2
e1 � e13 þ

3

hL
e22

� �T
;

H4 ¼ � h1ULe1 � e14½ �R4 h1ULe1 � e14½ �T

� 2 �h1UL

2
e1 � e14 þ

3

h1UL
e23

� �
R4 �h1UL

2
e1 � e14 þ

3

h1UL
e23

� �T
;

H5 ¼ � h1ULe1 � e15½ �R4 h1ULe1 � e15½ �T

� 2 �h1UL

2
e1 � e15 þ

3

h1UL
e24

� �
R4 �h1UL

2
e1 � e15 þ

3

h1UL
e24

� �T
;

H6 ¼ � h2ULe1 � e16½ �R5 h2ULe1 � e16½ �T

� 2 �h2UL

2
e1 � e16 þ

3

h2UL
e25

� �
R5 �h2UL

2
e1 � e16 þ

3

h2UL
e25

� �T
;

H7 ¼ � h2ULe1 � e17½ �R5 h2ULe1 � e17½ �T

� 2 �h2UL

2
e1 � e17 þ

3

h2UL
e26

� �
R5 �h2UL

2
e1 � e17 þ

3

h2UL
e26

� �T
;

H8 ¼ � hULe1 � e18½ �R6 hULe1 � e18½ �T

� 2 �hUL

2
e1 � e18 þ

3

hUL
e27

� �
R6 �hUL

2
e1 � e18 þ

3

hUL
e27

� �T
;

H9 ¼ � hULe1 � e19½ �R6 hULe1 � e19½ �T

� 2 �hUL

2
e1 � e19 þ

3

hUL
e28

� �
R6 �hUL

2
e1 � e19 þ

3

hUL
e28

� �T
:

From (34)–(43), it gives that

V8ðzðtÞ; tÞ� fTðtÞP10fðtÞ;
V9ðzðtÞ; tÞ� s2gTðzðtÞÞS1gðzðtÞÞ

� s
Z t

t�sðtÞ
gTðzðsÞÞS1gðzðsÞÞdsþ _zTðtÞT2 _zðtÞ

þ _zTðt � rðtÞÞð�ð1� rDÞT2Þ _zðt � rðtÞÞ:

Utilizing Lemma 2.1, we have

V9ðzðtÞ; tÞ� gTðzðtÞÞ s2S1
	 �

gðzðtÞÞ

þ
Z t

t�sðtÞ
gðzðsÞÞds

 !T

ð�S1Þ
Z t

t�sðtÞ
gðzðsÞÞds

 !

þ _zTðtÞS2 _zðtÞ
þ _zTðt � rðtÞÞð�ð1� rDÞS2Þ _zðt � rðtÞÞ;
� fTðtÞP11fðtÞ:

ð44Þ

On the other hand, for any matrix H with appropriate

dimension, it is true that

0 ¼ 2 _zTðtÞH
Xm
k¼1

ckðtÞ
h
_zðtÞ � Dkzðt � dðtÞÞ þ AkgðzðtÞÞ

þBkgðzðt � hðtÞÞÞ

þCk

Z t

t�sðtÞ
gðzðsÞÞdsþ Ek _zðt � rðtÞÞ

#
;

¼ fTðtÞP12fðtÞ: ð45Þ

From (6), the following inequality holds for any positive

diagonal matrices Gi; i ¼ 1; 2; . . .; 7

0¼ zTðtÞ �G1R1ð ÞzðtÞþ2zTðtÞ G1R2ð ÞgðzðtÞÞþgTðzðtÞÞ �G1ð ÞgðzðtÞÞ
	 ��

þ zTðt�h1ðtÞÞ �G2R1ð Þzðt�h1ðtÞÞþ2zTðt�h1ðtÞÞ G2R2ð Þgðzðt�h1ðtÞÞÞ
	

þgTðzðt�h1ðtÞÞÞ �G2ð Þgðzðt�h1ðtÞÞÞ
�

þ zTðt�h1UÞ �G3R1ð Þzðt�h1UÞþ2zTðt�h1UÞ G3R2ð Þgðzðt�h1UÞÞ
	

þgTðzðt�h1UÞÞ �G3ð Þgðzðt�h1UÞÞ
�

þ zTðt�h2ðtÞÞ �G4R1ð Þzðt�h2ðtÞÞþ2zTðt�h2ðtÞÞ G4R2ð Þgðzðt�h2ðtÞÞÞ
	

þgTðzðt�h2ðtÞÞÞ �G4ð Þgðzðt�h2ðtÞÞÞ
�

þ zTðt�h2UÞ �G5R1ð Þzðt�h2UÞ
	

þ2zTðt�h2UÞ G5R2ð Þgðzðt�h2UÞÞþgTðzðt�h2UÞÞ �G5ð Þgðzðt�h2UÞÞ
�

þ zTðt�hðtÞÞ �G6R1ð Þzðt�hðtÞÞþ2zTðt�hðtÞÞ G6R2ð Þgðzðt�hðtÞÞÞ
	

þgTðzðt�hðtÞÞÞ �G6ð Þgðzðt�hðtÞÞÞ
�

þ zTðt�hUÞ �G7R1ð Þzðt�hUÞ
	

þ2zTðt�hUÞ G7R2ð Þgðzðt�hUÞÞþgTðzðt�hUÞÞ �G7ð Þgðzðt�hUÞÞ
�


¼fTðtÞP13fðtÞ:

ð46Þ

From Eqs. (16)–(46), by using S-procedure in Boyd et al.

(1994), if Eqs. (11)–(13) hold, then an upper bound of
_VðzðtÞ;tÞ can be written as

_VðzðtÞ; tÞ � fTðtÞNfðtÞ: ð47Þ
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Based on Lemma 2.4, fTðtÞ N fðtÞ\0 with C fðtÞ ¼ 0 is

equivalent to ðC?ÞT N C?\0: Therefore, if the inequality

(10) holds, the equilibrium point of system (9) is asymp-

totically stable. This completes the proof

Remark 3.1 For the case of SHNNs without neutral term,

we let Ek ¼ 0 in (9) and the following corollary can be

obtained with a proof similar to Theorem 3.1. In this case,

network (9) can be rewritten as

_zðtÞ ¼
Xm
k¼1

ckðtÞ
h
� Dkzðt � dðtÞÞ þ AkgðzðtÞÞ þ Bkgðzðt

� hðtÞÞÞ þ Ck

Z t

t�sðtÞ
gðzðsÞÞds

i
:

ð48Þ

Corollary 3.1 For given positive scalars

d1L; d1U ; d2L; d2U ; h1L; h1U ; h2L; h2U ; d1; d2; h1; h2; s; g1; g2;
l1; l2; sD, and diagonal matrices Kp;Km, then the neural

network described by (48) is asymptotically stable, for any

time-varying delay dðtÞ; hðtÞ and sðtÞ satisfying (2), if there

exist positive definite matrices Piði ¼ 1; 2; . . .; 18Þ 2
Rn�n; Tiði ¼ 1; 2; 3Þ 2 Rn�n;Qi ði ¼ 1; 2; . . .; 17Þ 2
Rn�nU;V ;W ;X; Y; Z 2 Rn�n; �U2 R2n�2n; �V2 R2n�2n; �W

2 R2n�2n; �X 2 R2n�2n; �Y 2 R2n�2n; �Z2 R2n�2n; Riði ¼ 1;

2; . . .; 6Þ 2 Rn�n; S1 2 Rn�n, positive diagonal matrices

Dl ¼ diag kl1; kl2; . . .; klnf g;Kl ¼ diag ll1; ll2; . . .; llnf g;
H 2 Rn�n;Giði ¼ 1; 2; . . .; 7Þ 2 Rn�n, any symmetric

matrices Fi 2 Rn�nði ¼ 1; 2; . . .; 6Þ, any matrices L;M;

N 2 R2n�2n such that the following LMIs hold:

C
?� �T

N C
?\0; ð49Þ

�X þ F 1 L

� �X þ F 2

2
4

3
5� 0;

�Y þ F 3 M

� �Y þ F 4

2
4

3
5� 0;

�Z þF 5 N

� �Z þ F 6

2
4

3
5� 0;

ð50Þ

where N is same as defined in Theorem 3.1 with Ek ¼ 0:

Proof For the proof, consider the same Lyapunov–Kra-

sovskii functional (10) with S2 ¼ 0 in V9ðzðtÞ; tÞ: Then by

following the same procedure in Theorem 3.1, we obtain N

with S2 ¼ 0: Then by defining C ¼ 0n. . .. . .0n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
28 times

Ak

2
4

0n. . .. . .0n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
5 times

Bk 0n. . .. . .0n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
4 times

Ck 0n. . .. . .0n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
5 times

�Dk 0n. . .. . .0n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
9 times

i
and

its right orthogonal complement by C
T
we conclude the

proof similar to Theorem 3.1. h

Remark 3.2 For the case of SHNNs without leakage and

neutral term, we let Ek ¼ 0 in (9) and the following

corollary can be obtained with a proof similar to Theo-

rem 3.1. In this case, network (9) can be rewritten as

_zðtÞ ¼
Xm
k¼1

ckðtÞ
h
� DkzðtÞ þ AkgðzðtÞÞ

þ Bkgðzðt � hðtÞÞÞ þ Ck

Z t

t�sðtÞ
gðzðsÞÞds

i
:

ð51Þ

Corollary 3.2 For given positive scalars

h1L; h1U ; h2L; h2U ; h1; h2; s; l1; l2; sD, and diagonal matri-

ces Kp;Km, then the neural network described by (51) is

asymptotically stable, for any time-varying delay h(t) and

sðtÞ satisfying (2), if there exist positive definite matrices

Piði ¼ 1; 7; . . .; 18Þ 2 Rn�n; Tiði ¼ 1; 2; 3Þ 2 Rn�n; Qiði ¼
6; 7; . . .; 17Þ 2 Rn�n; �U2 R2n�2n; �V2 R2n�2n; �W2 R2n�2n;
�X2 R2n�2n; �Y2 R2n�2n; �Z2 R2n�2n,Riði ¼ 1; 2; . . .; 6Þ
2 Rn�n; S1 2 Rn�n, positive diagonal matrices Dl ¼
diag kl1; kl2; . . .; klnf g; Kl ¼ diag ll1; ll2; . . .;f llng;H 2
Rn�n;Giði ¼ 1; 2; . . .; 7Þ 2 Rn�n, any symmetric matrices

Fi 2 Rn�nði ¼ 1; 2; . . .; 6Þ, any matrices L;M;N 2
R2n�2n such that the following LMIs hold:

bC?� �T
N bC?

\0; ð52Þ

�X þ F 1 L

� �X þ F 2

2
4

3
5� 0;

�Y þ F 3 M

� �Y þ F 4

2
4

3
5� 0;

�Z þF 5 N

� �Z þ F 6

2
4

3
5� 0;

ð53Þ

where N is same as defined in Theorem 3.1 with Ek ¼ 0:

Proof For the proof, consider the same Lyapunov–Kra-

sovskii functional (10) with Pi ¼ 0; i ¼ 2; 3; . . .; 6; Qi; i ¼
1; 2; . . .; 5; U ¼ V ¼ W ¼ X ¼ Y ¼ Z ¼ 0; S2 ¼ 0 in V4ðz
ðtÞ; tÞ;V5ðzðtÞ; tÞ;V6ðzðtÞ; tÞ and V9ðzðtÞ; tÞ: Then by fol-

lowing the same procedure in Theorem 3.1, we obtain N
with Pi ¼ 0; i ¼ 2; 3; . . .; 6; Qi; i ¼ 1; 2; . . .; 5; U ¼ V ¼
W ¼ X ¼ Y ¼ Z ¼ 0; S2 ¼ 0: Then by defining bC ¼

�DK 0n. . .. . .0n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
27 times

Ak 0n. . .. . .0n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
5 times

Bk 0n. . .. . .0n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
4 times

Ck

2
4

3
5 and its

right orthogonal complement by C
T
we conclude the proof

similar to Theorem 3.1. h

Remark 3.3 We may also consider the case of SHNNs

without leakage, distributed and neutral term, we let dðtÞ ¼
Ck ¼ Ek ¼ 0 in (9) and the following corollary can be

obtained with a proof similar to Theorem 3.1. In this case,

network (9) can be rewritten as
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_zðtÞ ¼
Xm
k¼1

ckðtÞ �DkzðtÞ þ AkgðzðtÞÞ þ Bkgðzðt � hðtÞÞÞ½ �:

ð54Þ

Corollary 3.3 For given positive scalars

h1L; h1U ; h2L; h2U ; h1; h2; l1; l2, and diagonal matrices

Kp;Km, then the neural network described by (54) is

asymptotically stable, for any time-varying delay h(t) sat-

isfying (2), if there exist positive definite matrices Pi ði ¼
1; 7; . . .; 18Þ 2 Rn�n; Ti ði ¼ 1; 2; 3Þ 2 Rn�n;Qiði ¼ 6; 7;

. . .; 17Þ 2 Rn�n; �U2 R2n�2n; �V2 R2n�2n; �W2 R2n�2n; �X2
R2n�2n; �Y2 R2n�2n; �Z2 R2n�2n;Riði ¼ 1; 2; . . .; 6Þ 2 Rn�n,

positive diagonal matrices Dl ¼ diag kl1; kl2; . . .;f
klng;Kl ¼ diag ll1; ll2; . . .; llnf g;H 2 Rn�n;Giði ¼ 1; 2;

. . .; 7Þ 2 Rn�n, any symmetric matrices Fi 2 Rn�nði ¼ 1; 2;

. . .; 6Þ, any matrices L;M;N 2 R2n�2n such that the fol-

lowing LMIs hold:

W?
 �T
N W?\0; ð55Þ

�X þ F 1 L

� �X þ F 2

2
4

3
5� 0;

�Y þ F 3 M

� �Y þ F 4

2
4

3
5� 0;

�Z þF 5 N

� �Z þ F 6

2
4

3
5� 0;

ð56Þ

where N is same as defined in Theorem 3.1 with

dðtÞ ¼ Ck ¼ Ek ¼ 0:

Proof For the proof, consider the same Lyapunov–Kra-

sovskii functional (10) with Pi ¼ 0; i ¼ 2; 3; . . .; 6; Qi; i ¼
1; 2; . . .; 5; U ¼ V ¼ W ¼ X ¼ Y ¼ Z ¼ 0; S1 ¼ S2 ¼ 0

in V4ðzðtÞ; tÞ;V5ðzðtÞ; tÞ;V6ðzðtÞ; tÞ and V9ðzðtÞ; tÞ: Then by

following the same procedure in Theorem 3.1, we obtain N
with Pi ¼ 0; i ¼ 2; 3; . . .; 6; Qi; i ¼ 1; 2; . . .; 5; U ¼ V ¼
W ¼ X ¼ Y ¼ Z ¼ 0; S1 ¼ S2 ¼ 0: Then by defining W ¼

�DK 0n. . .. . .0n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
27 times

Ak 0n. . .. . .0n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
5 times

Bk 0n. . .. . .0n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
4 times

2
4

3
5 and its right

orthogonal complement by WT we conclude the proof

similar to Theorem 3.1. h

Remark 3.4 In order to use more information about

neuron activation functions, in this paper terms on the

slope of neuron activation functions are introduced in the

L–K functional to study the stability of addressed NNs. In

Shao and Han (2011) have used the term.

2
Xn
i¼1

Z zi

0

digiðsÞds; where di � 0; i ¼ 1; 2; . . .; n

in their L–K functional for the neuron activation function

gðzð�ÞÞ. By utilizing the condition (4) about the slope of the

neuron activation functions into the L–K functional, the

term

2
Xn
i¼1

k1i

Z ziðtÞ

0

ðgiðsÞ � k�i sÞdsþ d1i

Z ziðtÞ

0

ðkþi s� giðsÞÞds
" #

;

has been introduced in Li et al. (2011). Recently, only few

authors have employed delay bounds into the slope of

neuron activation functions in the L–K functional, see

Kwon et al. (2014a, b). Inspired by these works, in this

paper, we consider a new V2ðzðtÞ; tÞ, which indicates that

more information about neuron activations has been used

and it has not been considered in any of the previous works

that deal with the stability of SHNNs with successive time-

varying delay components.

Remark 3.5 In order to reduce the conservatism of

stability conditions, inspired by the ideas in Kwon et al.

(2014b), six zero integral equalities in (22)–(27) are

introduced and terms involving these inequalities are

merged with Eq. (29) during the calculation of

V7ðzðtÞ; tÞ. After then, reciprocal convex combination

technique is utilized in the proof of Theorem 3.1, which

can lead to a further improvement of the stability cri-

terion. It is noted that introducing augmented L–K

functional and zero integral inequalities and utilizing

reciprocal convex combination technique can lead to less

conservative results.

Remark 3.6 The number of decision variables used in

Theorem 3.1 is larger than the previous studies in

Rakkiyappan et al. (2015a, b), Senthilraj et al. (2016),

and Dharani et al. (2015). Because, the reason is the

proposed model consists of an additive interval time-

delay components in the state both of discrete delay and

leakage delay with newly augmented form of L–K

functionals. As we know that, in order to reduce the

computational burden the Finsler’s lemma was conducted

in the proof of Theorem 3.1, which in turn to reduces

the computational burden. As a result, proposed stability

criteria gives better results while maintaining lower

computational burden.

Remark 3.7 It is important to note that very limited

works have been done on stability of switched Hopfield

NNs of neutral-type with time-varying delays. More

particularly, stability analysis of switched Hopfield NNs

of neutral-type with successive interval time-varying

delay components in the state both of discrete and

leakage delay has not been completely studied in pre-

vious literature (see e.g., Rakkiyappan et al. 2015a, b;

Senthilraj et al. 2016; Dharani et al. 2015). In order to

fill such a gap, in this paper we aimed to obtain new

stability criteria for switched Hopfield NNs of neutral-
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type with successive interval time-varying delay com-

ponents in the state both of discrete and leakage delay is

proposed. Therefore, the results of the present paper are

essentially new. Hence, unfortunately we could not

provide any comparison results over existing methods in

order to show the improvements.

Remark 3.8 It is noted that, very recently Zeng et al.

(2015) proposed the free-matrix-based integral inequality

and this integral inequality used for handling the double

integral L–K functionals, that offers a new tighter

information on the upper bounds of time-varying delay

and its interval for the time-delay systems. Therefore, we

utilizing this integral inequality to deal with such L–K

functionals, which turn to reduce the conservatism fur-

ther. Thus, there is no limit for such improvements on

delay bounds of time-delay systems it’s basically

depends on choosing good L–K functionals and com-

puting it’s derivative with an newly improved integral

inequalities or some other techniques called delay-parti-

tioning approaches and so on. Thus, in the future, the

inequality proposed in Zeng et al. (2015) can be used in

order to achieve improved results for delayed NNs.

Remark 3.9 It is well-known that most of the existing

results concerning the stability problem of delayed

switched Hopfield NNs of neutral type. However, swit-

ched Hopfield NNs of neutral type with successive

interval time-varying delay components in the state of

discrete delay and leakage delay has not been considered

in the previous works. In contrast to the system models

in Rakkiyappan et al. (2015a, b), Senthilraj et al. (2016),

Dharani et al. (2015); one can find that their results

cannot be applicable to system (1). This indicates that

the proposed system model and obtained results are

essentially new. There is no doubt that studying stability

analysis for the systems described in (9), with leakage

and discrete interval time-varying delays is sure not only

to enhance the dynamic research theory of system model

proposed in (9), but also further enrich the foundation of

realistic application for the delayed SHNNs, as shown in

the following numerical section.

Numerical examples

In this section, we provide four numerical examples to

demonstrate the effectiveness of our delay-dependent sta-

bility criteria.

Example 4.1 Consider system (9) with n ¼ k ¼ 2 and

D1 ¼
5:1 0

04:7

� �
; D2 ¼

4:6 0

04:3

� �
;

A1 ¼
1:1 �0:7

0:9 1:2

� �
; A2 ¼

�0:8 �1:1

0:9 0:8

� �
;

B1 ¼
1:2 0:6

0:8 1

� �
;

B2 ¼
�0:6 �0:7

0:7 0:6

� �
; C1 ¼

�0:8 �0:9

0:9 0:8

� �
;

C2 ¼
0:6 0:6

0:65 0:6

� �
; E1 ¼

�0:8 �1:0

0:9 0:8

� �
;

E2 ¼
�0:9 �1:2

0:9 0:9

� �
:

The activation functions are assumed to be

giðziÞ ¼ 0:5 jzi þ 1j � jzi � 1jð Þ; i ¼ 1; 2:

It is easy to check that the activation functions are satisfied

(6) with Km ¼ diag 0; 0f g;Kp ¼ diag 1; 1f g. Also let d1L ¼
0:10; d1U ¼ 0:20; d1 ¼ 0:30; d2L ¼ 0:15; d2U ¼ 0:25; d2 ¼
0:40; h1L ¼ 0:50; h1U ¼ 1:0; h1 ¼ 1:50; h2L ¼ 0:80; h2U ¼
1:0; h2 ¼ 1:80; s ¼ 0:30; r ¼ 0:40; g1 ¼ 0:4; g2 ¼ 0:5; l1
¼ 0:4; l2 ¼ 0:5; sD ¼ 0:5; rD ¼ 0:5: By our Theorem 3.1

and Matlab LMI toolbox, it is found that the equilibrium

point of system (9) is asymptotically stable. It can also be

verified that the LMIs (10)–(13) are feasible for larger

upper delay bounds d1; d2; h1; h2; s and r. lt shows that all
the conditions stated in Theorem 3.1 have been satisfied

and hence system (9) with the above given parameters are

asymptotically stable.

Example 4.2 Consider the switched Hopfield neural

network without neutral term as in (48) with the parameters

Dk;Ak;Bk;Ckðk ¼ 1; 2Þ as defined in Example 4.1. By

choosing d1ðtÞ ¼ 0:1þ 0:1 cosð0:5tÞ; d2ðtÞ ¼ 0:2 þ0:2 cos

ð0:5tÞ; h1ðtÞ ¼ 0:6þ 0:6 sinð0:5tÞ; h2ðtÞ ¼ 0:7þ 0:7 sin

ð0:5tÞ; sðtÞ ¼ 0:25þ 0:25 cosð3tÞ, we let d1L ¼
0:05; d1U ¼ 0:15; d1 ¼ 0:20; d2L ¼ 0:10; d2U ¼ 0:30; d2 ¼
0:40; h1L ¼ 0:40; h1U ¼ 0:80; h1 ¼ 1:20; h2L ¼ 0:50; h2U ¼
1:0; h2 ¼ 1:50; s ¼ 0:50 and g1 ¼ 0:2; g2 ¼ 0:3; l1 ¼
0:4; l2 ¼ 0:5; sD ¼ 0:5: Also letting giðziÞ ¼ 0:5 jziþð 1j �
jzi � 1jÞ; i ¼ 1; 2: it can be easily verified that the activa-

tion functions holds with Km ¼ diag 0; 0f g;Kp ¼
diag 1; 1f g. By using Matlab LMI toolbox, it is found that

LMI (49) and (50) is feasible. Thus, it can be conclude that

the switched NNs (48) is asymptotically stable and the state

trajectories of the dynamical system is converges to the

zero equilibrium point with an initial state ½�0:2; 0:2�T , it
can be shown in Fig. 1. Suppose, if we take leakage time-

varying delay d1ðtÞ ¼ 0:15þ 0:15 cosð0:5tÞðd1 � 0:30Þ;
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d2ðtÞ ¼ 0:25þ 0:25 cosð0:5tÞðd2 � 0:50Þ, it is found that

the neural network (48) is actually unstable and the state

trajectories of the dynamical system is not converges to the

zero equilibrium point, it can be shown in Fig. 2.

According to this example, it can be conclude that the

leakage delay has a significant effect in the dynamical

behaviour of the switched NNs.

Remark 4.1 As is well-known that the leakage time

delays are unavoidable and their occurrence causes insta-

bility or oscillation, it can be verified through different

simulation results for different time delays especially for

the leakage delay that the oscillation of the dynamics

increases when time delays are chosen to be larger, which

would obviously affect the stability. Thus, time delays in

the leakage term have a great impact on the stability of the

considered switched system.

Example 4.3 Consider the switched Hopfield neural net-

work without leakage and neutral term as in (51) with the

parameters Ak;Bk;Ck;Dkðk ¼ 1; 2Þ as defined in Exam-

ple 4.1. By choosing h1ðtÞ ¼ 0:8þ 0:8 sinð0:5tÞ; h2ðtÞ ¼
1:2þ 1:2 sinð0:5tÞ; sðtÞ ¼ 0:5þ 0:5 cosð3tÞ; we let h1L ¼
0:50; h1U ¼ 1:10; h1 ¼ 1:60; h2L ¼ 0:70; h2U ¼ 1:70; h2 ¼
2:40; s ¼ 1:0 and l1 ¼ 0:3; l2 ¼ 0:35; sD ¼ 0:5. Also let-

ting g1ðzÞ ¼ g2ðzÞ ¼ 0:5ðjzþ 1j � jz� 1jÞ, it can be easily

verified that the neuron activation function holds with

Km ¼ diag 0; 0f g;Kp ¼ diag 1; 1f g. By using Matlab LMI

toolbox, it is found that LMIs in Corollary 3.2 is feasible.

Thus, we can conclude that the model (51) is asymptotically

stable. The simulation results for the above mentioned delay

values also ensure the asymptotic stability of the model (51).

Hence, the convergence of the SHNNs (51) is shown in

Fig. 3, with an initial state ½�0:4; 0:8�T .

Example 4.4 So far, originally NNs embody the char-

acteristics of real biological neurons that are connected or

functionally related in a nervous system. On the other hand,

NNs can represent not only biological neurons but also

other practical systems namely the quadruple-tank process

system can be shown in Fig. 5. The setup consists of four

interacting tanks, two water pumps and two valves. The

two process inputs are the voltages t1 and t2 supplied to the
two pumps. Tank 1 and Tank 2 are placed below Tank 3

and Tank 4 to receive water flow by the action of gravity.

Hence as shown in Fig. 4, the quadruple-tank process can

be expressed clearly using the neural network model, see

for instance, Samidurai and Manivannan (2016), Lee et al.

(2013), Huang et al. (2012), Haoussi et al. (2011) and

Johansson (2000); proposed the state-space equation of the

quadruple-tank process and designed the state feedback

controller as follows:

0 10 20 30 40 50
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time

z(
t)

 

 
z1
z2

Fig. 1 State trajectory of the system (48) in Example 4.2

0 10 20 30 40 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

z(
t)

z1
z2

Fig. 2 State trajectory of the system (48) in Example 4.2
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−0.4

−0.2

0
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Fig. 3 State trajectory of the system (51) in Example 4.3

Cogn Neurodyn (2016) 10:543–562 559

123



_�xðtÞ ¼ �A0�xðtÞ þ �A1�xðt � s1Þ þ �B0�uðt � s2Þ þ �B1�uðt � s3Þ;
ð57Þ

where

�A0 ¼

�0:0021 0 0 0

0 �0:0021 0 0

0 0 �0:0424 0

0 0 0 �0:0424

2
6664

3
7775;

�A1 ¼

0 0 0:0424 0

0 0 0 0:0424

0 0 0 0

0 0 0 0

2
6664

3
7775;

�B0 ¼
0:1113c1 0 0 0

0 0:1042c2 0 0

� �T
;

�B1 ¼
0 0 0 0:1113ð1� c1Þ
0 0 0:1042ð1� c2Þ 0

� �T
;

c1 ¼ 0:333; c2 ¼ 0:307; �u ¼ �KxðtÞ;

�K ¼
�0:1609 �0:1765 �0:0795 �0:2073

�0:1977 �0:1579 �0:2288 �0:0772

� �
:

Generally speaking, the differential equations representing

the mass balances in the delayed [transport delay

hðtÞ ¼ h1ðtÞ þ h2ðtÞ] equations. To derive a more inter-

esting control problem, transport delays can easily be

added by delaying the inlet of water to the tanks, so it is the

possible approach used to examine in this paper. Moreover,

in this present study transport delays between valves and

tanks being additive interval time-varying, it is also taken

into account but not exists in previous literature in the

following aspects. For simplicity, it was assumed that s1 ¼
0; s2 ¼ 0 and s3 ¼ hðtÞ ¼ h1ðtÞ þ h2ðtÞ (since h1L � h1ðtÞ
� h1U and h2L � h2ðtÞ� h2U). Here, the control input �uðtÞ,
means that the amount of water supplied by the pumps.

Therefore, it is true that �uðtÞ has a threshold value due to

the limited area of the hose and the capacity of the pumps.

Therefore, it is natural to consider �uðtÞ, as a nonlinear

function as follows:

�uðtÞ ¼ �K�gð�zðtÞÞ;
�uðt � sðtÞÞ
�gð�zðtÞÞ ¼ �g1ð �z1ðtÞÞ; . . .; �g4ð �z4ðtÞÞ½ �T ;
�gið�ziðtÞÞ ¼ 0:1ðj �ziðtÞ þ 1 j � j �ziðtÞ � 1 jÞ; i ¼ 1; . . .; 4:

The quadruple-tank process (57) can be rewritten to the

form of system (54) with k ¼ 1, as follows:

_zðtÞ ¼ �D1zðtÞ þ A1gðzðtÞÞ þ B1gðzðt � hðtÞÞÞ;
yðtÞ ¼ uðtÞ;

ð58Þ

where

D1 ¼ � �A0 � �A1; A1 ¼ �B0
�K; B1 ¼ �B1

�K; gð�Þ ¼ �gð�Þ.
In addition, Km ¼ diag 0; 0; 0; 0f g;Kp ¼ diag 0:1; 0:1;f
0:1; 0:1g with h1L ¼ 0:60; h1U ¼ 1:20; h1 ¼ 1:80; h2L ¼
0:80; h1U ¼ 1:50; h2 ¼ 2:30; l1 ¼ l2 ¼ 0:5. Using

MATLAB LMI control Toolbox and by solving LMIs in

Corollary 3.3, we found that the quadruple-tank process

system (58) is asymptotically stable. By choosing h1ðtÞ ¼
0:9þ 0:9 sinð0:5tÞ; h2ðtÞ ¼ 1:15þ 1:15 sinð0:5tÞ; l1 ¼
l2 ¼ 0:5 and giðziÞ ¼ 0:1 j zi þ 1 j � j zi � 1 jð Þ; i ¼
1; 2; . . .; 4, it can be easily verified that Assumption (H) is

Fig. 4 Schematic representation of the quadruple-tank process.

Source: From Johansson (2000)
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Fig. 5 State trajectory of the system (58) in Example 4.4
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holds. Figure 5 shows the state trajectories of the system is

converges to zero equilibrium point with an initial state

½�0:3; 0:2; 0:5;�0:4�, hence it is found that the dynamical

behavior of the quadruple-tank process system (58) is

asymptotically stable.

Conclusions

In this paper, the problem of new delay-interval-dependent

stability criteria for SHNNs of neutral type with time

delays have been investigated. In order to achieving sta-

bility results, some suitable L–K functional under the

weaker assumption of neuron activation function divided

by states are utilized to enhance the feasible region of

proposed stability criteria. By using the famous Jensen’s

inequality, WDII Lemma, introducing of some zero equa-

tions and combined with RCC technique, a novel delay-

interval-dependent stability criterion is derived in terms of

linear matrix inequalities (LMIs). Then the feasibility and

effectiveness of the developed methods have been shown

by interesting numerical simulation examples. The pro-

posed approach is finally demonstrate the numerical sim-

ulation of the benchmark problem that takes into account

additive time-varying delays, showing the feasibility of the

proposed approach on a realistic problem. Therefore, our

results have an important significance in theory and design,

as well as in applications of neutral type SHNNs with

delays in leakage terms.
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