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Abstract This paper is concerned with the problem of

stability and pinning synchronization of a class of inertial

memristive neural networks with time delay. In contrast to

general inertial neural networks, inertial memristive neural

networks is applied to exhibit the synchronization and

stability behaviors due to the physical properties of mem-

ristors and the differential inclusion theory. By choosing an

appropriate variable transmission, the original system can

be transformed into first order differential equations. Then,

several sufficient conditions for the stability of inertial

memristive neural networks by using matrix measure and

Halanay inequality are derived. These obtained criteria are

capable of reducing computational burden in the theoretical

part. In addition, the evaluation is done on pinning syn-

chronization for an array of linearly coupled inertial

memristive neural networks, to derive the condition using

matrix measure strategy. Finally, the two numerical simu-

lations are presented to show the effectiveness of acquired

theoretical results.

Keywords Inertial memristive neural networks � Matrix

measure � Halanay inequality � Synchronization � Pinning
control

Introduction

In 1971, Chua discovered the fourth element in circuit

theory and named it as memristor (short for memory

resistor). Chua mathematically revealed that memristor has

the relationship between the magnetic flux and electric

charge as in Chua (1971). Almost after 40 years, Stanley

Williams and his group formulated the practical memristor

in May 2008 in Strukov et al. (2008). The rapid variation

of voltage at certain instants leads to irregular change of

memristance which is similar to the switching behaviors in

a dynamical system. The most fascinating trait of the

memristor is that it can memorize the direction of flow of

electric charge in the past. Thus, it performs as a forgetting

and remembering (memory) process in human brains and

hence the memristor is acknowledged well and its potential

applications are in next generation computers and powerful

brain-like computers. In order to replicate the artificial

neural networks of human brain better, the conventional

resistor of self feedback connection weights and connec-

tion weights of the primitive neural networks are replaced

by the memristor.

Time delay is a common phenomenon that describes the

fact that the future state of a system depends not only on

the present state but also on the past state, and often

encountered in many fields such as engineering, biological

and economical systems. In reality, time delays often occur

in many systems due to the finite switching speed of

amplifiers in electronic neural networks or due to the finite

signal propagation time in biological networks. In neural

networks, the inner delay time that frequently occurs in the

processing of information storage and telecommunication

affects the dynamical behavior of the networks. Hence it is

reasonable to consider time delay in modeling dynamical

networks (Cao et al. 2016). In neural networks literature,
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research work on second-order states are very few compare

to the first-order states. The second order states of the

system is due to the inertial term or influence of induc-

tance. There are some biological background for the

inclusion of an inductance term in a neural system. For

example, the membrane of a hair cell in the semicircular

canals of some animals can be described by equivalent

circuits that contain an inductance (Jagger and Ashmore

1999; Ospeck et al. 2001). The addition of inductance

makes the membrane to have an electrical tuning, filtering

behaviors and so on. The inertia can be treated as a helpful

tool in the generation of chaos in neural systems. From the

literature review of inertial neural networks, the bifurcation

in a single inertial neuron model is discussed in He et al.

(2012), Li et al. (2004), Liu et al. (2009) and the stability

of an inertial two-neuron system in Wheeler and Schieve

(1997). Furthermore, the stability analysis of Bidirectional

Associative Memory (BAM) inertial neural networks has

been discussed in Cao and Wan (2014), Yunkuan and

Chunfang (2012), Zhang et al. (2015) and Ke and Miao

(2013) deals with the inertial Cohen–Grossberg type neural

networks in the literature.

The stability analysis of neural networks with time delay

has received much more attention. Noticeable results on

the stability analysis of neural networks with time delay

has been projected by various authors. For instance, in

Yunkuan and Chunfang (2012), the stability of an inertial

BAM neural network with time delay is discussed by

constructing suitable Lyapunov functional. Further, the

stability of an inertial BAM neural network with time delay

has been investigated by matrix measure theory in Cao and

Wan (2014). The authors in Qi et al. (2014), Rakkiyappan

et al. (2015), deals with the stability of a class of mem-

ristor-based recurrent neural networks with time delays

using Lyapunov method and Banach contraction principle.

In Chen et al. (2015), the global asymptotic stability of

fractional memristor-based delayed neural networks has

been discussed by employing the comparison theorem of

fractional-order linear systems with time delay.

Synchronization of a complex network is a fascinating

phenomena which is observed in fields such as physical,

biological, chemical, technological, etc., and it has poten-

tial applications in biological systems, chemical reactions,

secure communication, image processing and so on (Pan

et al. 2015; Yang and Cao 2014, 2012). Synchronization of

coupled inertial neural networks means that multiple neural

networks can achieve a common trajectory, such as a

common equilibrium, limit cycle or chaotic trajectory. The

authors in Dai et al. (2016) have analyzed, the problem of

neutral-type coupled neural networks with Markovian

switching parameters by placing the adaptive controllers to

part of nodes, and the sufficient conditions for exponential

synchronization are drawn with the help of Lyapunov

stability theory, stochastic analysis and matrix theory.

Outer synchronization of partially coupled dynamical net-

works via pinning impulsive controller has been discussed

in Lu et al. (2015). The global exponential synchronization

of coupled neural networks with stochastic perturbations

and mixed time-varying delays has been discussed in Wang

et al. (2015) and synchronization criteria have been derived

based on multiple Lyapunov theory. Two types of coupled

neural networks with reaction–diffusion terms have been

considered in Wang et al. (2016) and the general criterion

for ensuring network synchronization has been derived by

pinning a small fraction of nodes with adaptive feedback

controllers. A sufficient condition for the exponential

synchronization of fractional-order complex networks via

pinning impulsive control has been derived using Lya-

punov function and Mittag-Leffler function in Wang et al.

(2015). In Yang et al. (2015), exponential synchronization

of neural networks with discontinuous activations with

mixed delays has been discussed by combining state

feedback control and impulsive control techniques. More-

over, Pinning synchronization of coupled inertial delayed

neural networks using matrix measure and Lyapunov–

Krasovskii functional has been done in Hu et al. (2015). To

the best of our knowledge, upto now no work in the liter-

ature have been carried out on the stability and synchro-

nization problem for inertial Memristive neural networks

(MNNs) with time-delay by using matrix measure and

Halanay inequality.

Motivated by the above discussion, in this paper the

stability of inertial memristive neural networks and

pinning synchronization of coupled inertial memristive

neural networks are presented. The main contribution of

this paper are as follows: (1) The analysis on inertial

MNNs is discussed. (2) The stability of inertial MNNs

using matrix measure strategy is introduced. (3) In the

literature, the stability of memristive-based first order

system and fractional-order system are discussed but no

work is done on inertial MNNs. Further, the synchro-

nization of inertial MNNs is considered and pinning

feedback control is used to synchronize the coupled

inertial MNNs to the objective trajectory. In general, the

matrix measure method utilizes the information of

matrix elements, especially the diagonal elements of a

matrix more sufficiently.

The rest of the paper is organized as follows. In

‘‘Problem formulation’’ section, model description and

preliminaries are presented. Stability of the equilibrium

point is investigated in ‘‘Stability analysis’’ section, and the

pinning synchronization analysis of inertial MNNs are

stated in ‘‘Synchronization analysis’’ section. In ‘‘Numer-

ical simulation’’ section, some examples are given to show

the validity of our results. Finally, in ‘‘Conclusion’’ section,

conclusions are drawn.
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Notations Throughout this paper, Rn and Rn�n denotes

the n-dimensional Euclidean space and the set of all n� n

matrices, respectively. aij ¼ maxfâij; �aijg, aij ¼ min

fâij; �aijg, bij ¼ maxfb̂ij; �bijg, bij ¼ minfb̂ij; �bijg for i; j ¼
1; 2; . . .; n. ars ¼ maxfârs; �arsg; ars ¼ minfârs; �arsg; brs ¼
maxfb̂rs; �brsg; brs ¼ minfb̂rs; �brsg for r; s ¼ 1; 2; . . .; n.

A ¼ ðarsÞn�n, A ¼ ðarsÞn�n, B ¼ ðbrsÞn�n, B ¼ ðbrsÞn�n.

cofu; vg denotes closure of the convex hull generated by

real numbers u and v or real matrices u and

v. AC1ð½0; 1�;RnÞ denote the space of differential functions
x : ½0; 1� ! R, whose first derivative, x

0
, is absolutely

continuous. In and diagfa1; a2; . . .; ang denotes the identity

matrix and the diagonal matrix of order n� n. INn stands

for the identity matrix with Nn dimension. Let A and B be

the arbitrary matrices, then A� B denotes the Kronecker

product of the matrices A and B.

Problem formulation

In this paper, we consider the following inertial memristive

delayed neural networks,

d2siðtÞ
dt2

¼ �di
dsiðtÞ
dt

� cisiðtÞ þ
Xn

j¼1

aijðsiðtÞÞfjðsjðtÞÞ

þ
Xn

j¼1

bijðsiðtÞÞfjðsjðt � sðtÞÞÞ þ Ii; ð1Þ

where siðtÞ is the state vector of the ith neuron, di [ 0,

ci [ 0 are constants, ci denotes the rate with which the ith

neuron will reset its potential to the resetting state in iso-

lation when disconnected from the networks and external

inputs. The second derivative of siðtÞ is known as inertial

term of system (1). aijðsiðtÞÞ and bijðsiðtÞÞ represent the

memristive connective weights which changes based on the

feature of memristor and current–voltage characteristic.

They are given as,

aijðsiðtÞÞ ¼
âij; jsiðtÞj � Ti;

�aij; jsiðtÞj[ Ti;

�

bijðsiðtÞÞ ¼
b̂ij; jsiðtÞj � Ti;

�bij; jsiðtÞj[ Ti;

( ð2Þ

for i; j ¼ 1; 2; . . .; n in which switching jumps Ti [ 0, âij,

�aij, b̂ij, �bij are known constants with respect to memris-

tance. fi denotes the nonlinear activation function of the ith

neuron at time t. Ii is the external input of the ith neuron.

The time delay of the system (1) is defined as sðtÞ� 0. The

initial conditions of the system (1) is given as,

siðvÞ ¼ UiðvÞ and
dsiðvÞ
dv

¼ WiðvÞ; �s� v� 0; ð3Þ

where UiðvÞ;WiðvÞ 2 Cð1Þð½�s; 0�;RnÞ, Cð1Þð½�s; 0�;RnÞ
denotes the set of all n-dimensional continuously differ-

entiable functions defined on the interval ½�s; 0� with

s ¼ sup t� 0fsðtÞg.
To proceed, the following assumption, definitions and

lemmas are given.

Assumption 1 The activation function fi satisfies the

Lipschitz condition, i.e., there exist constants li [ 0 such

that 8 x, y 2 R, we have

jfiðxÞ � fiðyÞj � lijx� yj; i ¼ 1; 2; . . .; n:

Definition 1 (Benchohra et al. 2010) A function si 2
AC1ðð0; 1Þ;RnÞ is said to be a solution of (1), (3) if s00i ðtÞ þ
dis

0
iðtÞ 2 Fðt; siðtÞÞ almost everywhere on [0, 1], where

di [ 0 and the function si satisfies conditions (3). For each

si 2 Cð½0; 1�;RnÞ, define the set of selections of F by,

SF;si ¼fvi 2 L1ð½0;1�;RnÞ : viðtÞ 2Fðt;siðtÞÞ a.e. t2 ½0;1�g:

By applying the theories of set-valued maps and differen-

tial inclusion to system (1) as stated in Definition 1,

where di [ 0 and Fðsi; tÞ ¼ �cisiðtÞ þ
Pn

j¼1 aijðsiðtÞÞfj
ðsjðtÞÞ

Pn
j¼1 bijðsiðtÞÞfjðsjðt � sðtÞÞÞ þ Ii.

The system (1) can be written as the following

differential inclusion:

d2siðtÞ
dt2

þ di
dsiðtÞ
dt

2 �cisiðtÞ þ
Xn

j¼1

co½aij; aij�fjðsjðtÞÞ

þ
Xn

j¼1

co½bij; bij�fjðsjðt � sðtÞÞÞ þ Ii;

ð4Þ

or equivalently, for i; j ¼ 1; 2; . . .; n there exist measurable

functions ~aijðsiðtÞÞ 2 co½aij; aij�; ~bijðsiðtÞÞ 2 co½bij; bij�;such
that

d2siðtÞ
dt2

þ di
dsiðtÞ
dt

¼ �cisiðtÞ þ
Xn

j¼1

~aijðsiðtÞÞfjðsjðtÞÞ

þ
Xn

j¼1

~bijðsiðtÞÞfjðsjðt � sðtÞÞÞ þ Ii;

ð5Þ

where i ¼ 1; 2; . . .; n.
Consider the following variable transformation to the

system (5):

p1iðtÞ ¼ siðtÞ;

p2iðtÞ ¼
dsiðtÞ
dt

þ siðtÞ:

Then we have the system (5) as,

Cogn Neurodyn (2016) 10:437–451 439

123



_p1iðtÞ ¼ �p1iðtÞ þ p2iðtÞ;
_p2iðtÞ ¼ �cip1iðtÞ � dip2iðtÞ þ

Pn
j¼1 ~aijðp1iðtÞÞfjðp1jðtÞÞ

þ
Pn

j¼1
~bijðp1iðtÞÞfjðp1jðt � sðtÞÞÞ þ Ii;

8
><

>:

ð6Þ

where ci ¼ ci þ 1� di and di ¼ di � 1 with the initial

values p1iðvÞ ¼ UiðvÞ and p2iðvÞ ¼ WiðvÞ þ UiðvÞ;�s
� v� 0.

Definition 2 For the system piðtÞ 2 f ðpiÞ. Since 0 2 f ð0Þ
it follows that pi ¼ 0 is the equilibrium point. i.e.,

0 ¼ �p	1iðtÞ þ p	2iðtÞ;¼ �cip
	
1iðtÞ � dip

	
2iðtÞ

þ
Xn

j¼1

~aijðp	1iðtÞÞfjðp	1jðtÞÞ þ
Xn

j¼1

~bijðp	1iðtÞÞfjðp	1jðtÞÞ þ Ii:

Definition 3 (He and Cao 2009) The matrix measure of a

real square matrix W ¼ ðwijÞn�n is as follows:

lpðWÞ ¼ lim
h!0þ

kIn þ hWkp � 1

h
;

where k � kp is an induced matrix norm on Rn�n, In is an

identity matrix and p ¼ 1; 2;1;x. When the matrix norm,

kWk1 ¼ max
j

Xn

i¼1

jwijj; kWk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðWTWÞ

p
;

kWk1 ¼ max
i

Xn

j¼1

jwijj; kWkx ¼ max
j

Xn

i¼1

xi

xj

jwijj:

We can obtain matrix measures as,

l1ðWÞ ¼ max
j

wjj þ
Xn

i¼1;i6¼j

jwijj
( )

;

l2ðWÞ ¼ kmax
WT þW

2

� �
;

l1ðWÞ ¼ max
i

wii þ
Xn

j¼1;i 6¼j

jwijj
( )

;

lxðWÞ ¼ max
j

wjj þ
Xn

i¼1;i6¼j

xi

xj

jwijj
( )

;

where kmaxð�Þ represents the maximum eigenvalue of the

matrix ð�Þ and xi [ 0 for i ¼ 1; 2; . . .; n are any constant

numbers.

Remark 1 lpðWÞ is the one-sided directional derivative of
the mapping k � kp : Rn�n ! Rþ at the point In, in the

direction of W. Matrix norm k � kp holds the non-negative

property. But lpð�Þ is not restricted to be non-negative. It

may take negative values since it emphasizes more infor-

mation about the diagonal elements of the matrix.

Definition 4 (Ke and Miao 2013) The equilibrium point

s	 of the system (1) is said to be globally exponentially

stable, if there exist constants g[ 0 and M[ 0 such that

jsiðtÞ � s	i j
2 �Me�gtkU� s	k2; t[ 0;

where i ¼ 1; � � � ; n, sðtÞ ¼ ðs1ðtÞ; s2ðtÞ; . . .; snðtÞÞT is a

solution of system (1) with the initial value (3).

Lemma 1 (Chandrasekar et al. 2014) Under Assumption

1, if fjð
TjÞ ¼ 0 ðj ¼ 1; 2; . . .; nÞ then
jKðaijðujÞÞfjðujÞ � KðaijðvjÞÞfjðvjÞj � ~auijkjjuj � vjj;

for i; j ¼ 1; 2; . . .; n, i.e., for any gijðujÞ 2 Kðaij
ðujÞÞ; gijðvjÞ 2 KðaijðvjÞÞ;

jgijðujÞfjðujÞ � gijðvjÞfjðvjÞj� ~auijkjjuj � vjj;

for i; j ¼ 1; 2; . . .; n, where ~auij ¼ max fjâijj; j�aijjg.

Lemma 2 If the activation function fi is bounded, i.e.,

jfiðxÞj �Mi, for each i ¼ 1; 2; . . .; n then for any given input
I ¼ diagfI1; . . .; Ing, there exists an equilibrium for (1).

Proof It is clear that s	 is an equilibrium of (1) if and only

if it is a solution of the following equation

�cis
	
i þ

Xn

j¼1

aijðsiðtÞÞfjðs	j Þ þ
Xn

j¼1

bijðsiðtÞÞfjðs	j Þ þ Ii ¼ 0:

By applying the theories of set-valued maps and differen-

tial inclusion, we have

�cis
	
i þ

Xn

j¼1

co½aij; aij�fjðs	j Þ þ
Xn

j¼1

co½bij; bij�fjðs	j Þ þ Ii 2 0;

or equivalently, for i; j ¼ 1; 2; . . .; n, there exist measurable

functions ~aijðs	i ðtÞÞ 2 co½aij; aij�; ~bijðs	i ðtÞÞ 2 co½bij; bij� ,
such that

�cis
	
i þ

Xn

j¼1

~aijðs	i ðtÞÞfjðs	j Þ þ
Xn

j¼1

~bijðs	i ðtÞÞfjðs	j Þ þ Ii ¼ 0:

Noting that ci [ 0, jfiðxÞj�Mi; 8i; j ¼ 1; 2; . . .; n, one

yields that,

js	i j, jhiðs	1; . . .; s	nÞj ¼
1

ci

Xn

j¼1

ð~aij þ ~bijÞfjðs	j Þ þ Ii

" #�����

�����;

� 1

ci

Xn

j¼1

ðj~aijj þ j~bijjÞMj þ jIij;

,Di; i ¼ 1; 2; . . .; n:

Thus the function hðsÞ ¼ ðh1; h2; . . .; hnÞT maps D ¼
½�D1;D1� � . . .� ½�Dn;Dn� into itself. According to
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Brower’s fixed point theorem, the existence of an equi-

librium is obtained. h

Lemma 3 (Vidyasagar 1993) Let k � kp be an induced

matrix norm on Rn�n and lpð�Þ be the corresponding

matrix measure. Then lpð�Þ has the following properties:

1. For each W 2 Rn�n, the limit indicated in Definition 3

exists and is well-defined;

2. �kWkp � lpðWÞ� kWkp;
3. lpðaWÞ ¼ alpðWÞ, 8 a� 0, 8W 2 Rn�n and in gen-

eral, lpðWÞ 6¼ lpð�WÞ;
4. maxflpðAÞ � lpð�BÞ; lpðBÞ � lpð�AÞg� lpðAþ BÞ

� lpðAÞ þ lpðBÞ, 8 A;B 2 Rn�n;

5. lpð�Þ is a convex function, i.e., lpðaAþ ð1� aÞBÞ
� alpðAÞ þ ð1� aÞlpðBÞ, 8 a 2 ½0; 1�, 8A;B 2 Rn�n.

Lemma 4 (Halanay 1966) Let k1 and k2 be constants with

k1 [ k2 [ 0 and y(t) is a non-negative continuous function

defined on ½t0 � s;þ1� which satisfies the following

inequality for t� t0

DþyðtÞ� � k1yðtÞ þ k2yðtÞ;

where yðtÞ, supt�s� s� t yðsÞ. Then, yðtÞ� yðt0Þe�rðt�t0Þ,

where r is a bound on the exponential convergence rate

and is the unique positive solution of r ¼ k1 � k2e
rs, where

the upper right Dini derivative DþyðtÞ is defined as

DþyðtÞ ¼ lim
h!0þ

yðt þ hÞ � yðtÞ
h

;

where h ! 0þ means that h approaches zero from the

right-hand side.

Lemma 5 (He and Cao 2009) Under Assumption 1, let

lpð�Þ be the corresponding matrix measure associated with

the induced matrix norm k � kp on Rn�n. Then

lpðAFðeðtÞÞÞ� lpðA	LÞ;

where FðeðtÞÞ ¼ diag
f1ðe1ðtÞÞ
e1ðtÞ ; . . .;

n
fnðenðtÞÞ
enðtÞ g, L ¼ diag

fl1; . . .; lng, p ¼ 1;1;x and

A	 ¼ ða	ijÞn�n ¼
maxf0; aiig; i ¼ j;
aij; i 6¼ j:

�

Stability analysis

In this section, wewill investigate the exponential stability of

inertial memristive neural networks using matrix measure

strategy. The main result is given in the following theorem.

Theorem 1 Under the Assumption 1, further

�ðlpðGÞ þ lk~AkpÞ[ lk~Bkp [ 0; ð7Þ

whereG ¼ �In In
�C �D

� �
, C ¼ C þ In � D, D ¼ D� In

and l ¼ max1� i� nflig. Then the equilibrium ðp	1ðtÞ; p	2ðtÞÞ
T

of the system (6) is globally exponentially stable for

p ¼ 1; 2;1;x.

Proof Let us define the error between the trajectory of the

system (6) and the corresponding equilibrium

ðp	1ðtÞ; p	2ðtÞÞ
T
as,

eðtÞ ¼
e1ðtÞ
e2ðtÞ

� �
¼

p1ðtÞ � p	1ðtÞ
p2ðtÞ � p	2ðtÞ

� �
:

According to the error system, the upper-right Dini

derivative of keðtÞkp with respect to ‘t’ is calculated as

follows:

DþkeðtÞkp ¼ lim
h!0þ

keðt þ hÞkp � keðtÞkp
h

¼ lim
h!0þ

keðtÞ þ h _eðtÞ þ oðhÞkp � keðtÞkp
h

:

We have,

_e1iðtÞ
_e2iðtÞ

� �
¼

�e1iðtÞ þ e2iðtÞ

�cie1iðtÞ � die2iðtÞ þ
Pn

j¼1

½~aijðp1iðtÞÞfjðp1jðtÞÞ � ~aijðp	1iðtÞÞfjðp	1jðtÞÞ�

þ
Pn

j¼1

½~bijðp1iðtÞÞfjðp1jðt � sðtÞÞÞ � ~bijðp	1iðtÞÞfjðp	1jðtÞÞ�

0
BBBBB@

1
CCCCCA
:

According to Lemma 1, the above equation can be written

as follows:

_e1iðtÞ
_e2iðtÞ

� �
¼

�e1iðtÞ þ e2iðtÞ

�cie1iðtÞ � die2iðtÞ þ
Pn

j¼1

~auijðfjðp1jðtÞÞ � fjðp	1jðtÞÞÞ

þ
Pn

j¼1

~buijðfjðp1jðt � sðtÞÞÞ � fjðp	1jðtÞÞÞ

0
BBBBB@

1
CCCCCA
;

where ~auij ¼ maxfjâijj; j�aijjg and ~buij ¼ maxfjb̂ijj; j�bijjg.
The vector form of the above equation is,

_eðtÞ ¼
_e1ðtÞ
_e2ðtÞ

� �
¼

�e1ðtÞ þ e2ðtÞ
�Ce1ðtÞ � De2ðtÞ þ ~Aðf ðp1ðtÞÞ � f ðp	1ðtÞÞÞ

þ~Bðf ðp1ðt � sðtÞÞÞ � f ðp	1ðtÞÞÞ

0

B@

1

CA; ð8Þ

where C ¼ C þ In � D, D ¼ D� In, ~A ¼ ð~auijÞn�n and

~B ¼ ð~buijÞn�n.

We have the upper right Dini-derivative as,

Cogn Neurodyn (2016) 10:437–451 441

123



DþkeðtÞkp¼ lim
h!0þ

eðtÞþh
_e1ðtÞ
_e2ðtÞ

� �
þoðhÞ

����

����
p

�keðtÞkp

h

¼ lim
h!0þ

eðtÞþh
�e1ðtÞþe2ðtÞ

n

� �
þoðhÞ

����

����
p

�keðtÞkp

h

� lim
h!0þ

eðtÞþh
�In In

�C �D

� �
eðtÞ

����

����
p

�keðtÞkp

h

þk~Aðf ðp1ðtÞÞ� f ðp	1ðtÞÞÞkp
þk~Bðf ðp1ðt�sðtÞÞÞ� f ðp	1ðtÞÞÞkp

� lim
h!0þ

eðtÞþh
�In In

�C �D

� �
eðtÞ

����

����
p

�keðtÞkp

h

þ lk~Akpkp1ðtÞ�p	1ðtÞkp
þ lk~Bkpkp1ðt�sðtÞÞ�p	1ðtÞkp

� lim
h!0þ

kInþhðGÞkp�1

h
keðtÞkpþ lk~Akpke1ðtÞkp

þ lk~Bkpke1ðt�sðtÞÞkp
¼lpðGÞkeðtÞkpþ lk~AkpkeðtÞkpþ lk~Bkpkeðt�sðtÞÞkp
�ðlpðGÞþ lk~AkpÞkeðtÞkpþ lk~Bkp sup

t�s�v�t
keðvÞkp

¼�ð�lpðGÞ� lk~AkpÞkeðtÞkpþ lk~Bkp sup
t�s�v�t

keðvÞkp;

where n¼�Ce1ðtÞ�De2ðtÞþ ~Aðf ðp1ðtÞÞ� f ðp	1ðtÞÞÞþ ~B

ðf ðp1ðt�sðtÞÞÞ� f ðp	1ðtÞÞÞ. Using Lemma 4, by considering

k1¼�ðlpðGÞþ lk~AkpÞ, k2¼ lk~Bkp and the assumption of

Theorem 1, �ðlpðGÞþ lk~AkpÞ[lk~Bkp[0. We have the

result as,

keðtÞkp � sup
t�s� v� t

keðvÞkpe�rðt�t0Þ;

where r is a bound on the exponential convergence rate

with

r ¼ k1 � k2e
rs ¼ �ðlpðGÞ þ lk~AkpÞ � lk~Bkpers:

Thus we conclude that, e(t) converges exponentially to zero

with a convergence rate r. That is, every trajectory of the

system (6) converges exponentially towards the equilib-

rium ðp	1ðtÞ; p	2ðtÞÞ
T
with a convergence rate r. This com-

pletes the proof. h

Remark 2 The fundamental concept of the Lyapunov

direct method is that if the total energy of a system is

continuously dissipating, then the system will eventually

reach an equilibrium point and remain at that point. Hence,

the Lyapunov direct method consists of two steps. Firstly, a

suitable scalar function is chosen and this function is

referred as Lyapunov function Hahn (1967), Bacciotti and

Rosier (2005). Secondly, we have to evaluate its first-order

time derivative along the trajectory of the system. If the

derivative of a Lyapunov function is decreasing along the

system trajectory as time increases, then the system energy

is dissipating and the system will finally settle down.

However, it should be noted that much of the previous

work in the stability analysis of neural networks is based on

Lyapunov direct methods, where constructing a proper

Lyapunov function is important for the stability analysis.

Moreover, to construct a proper Lyapunov function for a

given system is very difficult and there are no general rules

to follow. Compared with Lyapunov direct method, matrix

measure strategy is an efficient tool to address the stability

problem of nonlinear systems. Generally, the established

results by using matrix measure are more superior than

common algebraic criterion due to the fact that matrix

measure can not only be taken to be positive value but also

it can be a negative value. Inspired by the above method,

we introduce the so called matrix measure and Halanay

inequality to study the stability of the system (1), and some

simple but generic criteria have been derived.

Remark 3 Compared to the matrix norm k � kp, the matrix

measure, lpð�Þ are sign sensitive which ensure that the

obtained results are more precise and less computational

burden those obtained by using matrix norm.

Corollary 1 Under the Assumption 1 and if further there

exists matrix K ¼ diagfn1; n2; . . .; nng such that

�ðlpðGÞ þ lk~AkpÞ[ lk~Bkp [ 0; ð9Þ

holds where G ¼ �K In
�C �D

� �
, C ¼ C þ In � D, D ¼

D� In and l ¼ max1� i� nflig. Then the equilibrium

ðp	1ðtÞ; p	2ðtÞÞ
T
of the system (6) is globally exponentially

stable for p ¼ 1; 2;1;x.

Proof To the system (5), we consider the following

transformation:

p1iðtÞ ¼ siðtÞ;

p2iðtÞ ¼
dsiðtÞ
dt

þ nisiðtÞ:

and proceed as stated before and the proof is similar to the

Theorem 1. h

Remark 4 The condition of Theorem 1 certainly does not

holds for p ¼ 1;1. On that case, it is better to introduce

ni [ 0, i ¼ 1; 2; . . .; n in the variable transformation as in

Corollary 1. So that the condition holds for p ¼ 1;1 and

leads to the better performance.

Theorem 2 Under the Assumption 1, further

�ðlpðGÞ þ lpðAL	ÞÞ[ lk~Bkp [ 0; ð10Þ
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holds where L	 ¼ diagfl1; l2; . . .; ln; 1; 1; . . .; 1g and

A ¼ 0 0
~A 0

� �
. Then the equilibrium ðp	1ðtÞ; p	2ðtÞÞ

T
of

the system (6) is globally exponentially stable for

p ¼ 1;1;x.

Proof Similar to the proof of Theorem 1, first let us

calculate the upper-right Dini-derivative as,

DþkeðtÞkp ¼ lim
h!0þ

keðt þ hÞkp � keðtÞkp
h

¼ lim
h!0þ

keðtÞ þ h _eðtÞ þ oðhÞkp � keðtÞkp
h

:

The error system is defined as,

eðtÞ ¼
e1ðtÞ
e2ðtÞ

� �
¼

p1ðtÞ � p	1ðtÞ
p2ðtÞ � p	2ðtÞ

� �
:

Also note that, e1ðtÞ ¼ ðe11ðtÞ; e12ðtÞ; . . .; e1nðtÞÞ,
fiðp1iðtÞÞ � fiðp	1iðtÞÞ ¼ fiðp	1iðtÞþe1iðtÞÞ � fiðp	1iðtÞÞ;
f ðp1ðtÞÞ � f ðp	1ðtÞÞ ¼ ðf11ðp11ðtÞÞ � f11ðp	11ðtÞÞ; . . .;
f1nðp1nðtÞÞ � f1nðp	1nðtÞÞÞ:
Define the function as,

F1ðp1ðtÞÞ �F1ðp	1ðtÞÞ ¼ diag
f11ðp11ðtÞÞ � f11ðp	11ðtÞÞ

p11ðtÞ� p	11ðtÞ
; . . .;

�

f1nðp1nðtÞÞ � f1nðp	1nðtÞÞ
p1nðtÞ � p	1nðtÞ

g;F2ðp2ðtÞÞ

�F2ðp	2ðtÞÞ � In:

Then, f ðp1ðtÞÞ � f ðp	1ðtÞÞ and f ðp2ðtÞÞ � f ðp	2ðtÞÞ can be

written as,

f ðp1ðtÞÞ� f ðp	1ðtÞÞ¼ ðF1ðp1ðtÞÞ�F1ðp	1ðtÞÞÞðp1ðtÞ�p	1ðtÞÞ;
f ðp2ðtÞÞ� f ðp	2ðtÞÞ¼ p2ðtÞ�p	2ðtÞ¼ ðF2ðp2ðtÞÞ

�F2ðp	2ðtÞÞÞðp2ðtÞ�p	2ðtÞÞ:

It follows from (8) that,

_eðtÞ ¼
_e1ðtÞ
_e2ðtÞ

� �
¼

�e1ðtÞ þ e2ðtÞ
�Ce1ðtÞ � De2ðtÞ þ ~Aðf ðp1ðtÞÞ � f ðp	1ðtÞÞÞ

þ~Bðf ðp1ðt � sðtÞÞÞ � f ðp	1ðtÞÞÞ

0

B@

1

CA

¼
�In In

�C �D

� �
e1ðtÞ
e2ðtÞ

� �
þ

0

~Aðf ðp1ðtÞÞ � f ðp	1ðtÞÞÞ

� �

þ
0

~Bðf ðp1ðt � sðtÞÞÞ � f ðp	1ðtÞÞÞ

� �

¼
�In In

�C �D

� �
e1ðtÞ
e2ðtÞ

� �
þ

0 0

~A 0

� �
f ðp1ðtÞÞ � f ðp	1ðtÞÞ
f ðp2ðtÞÞ � f ðp	2ðtÞÞ

� �

þ
0

~Bðf ðp1ðt � sðtÞÞÞ � f ðp	1ðtÞÞÞ

� �

¼
�In In

�C �D

� �
e1ðtÞ
e2ðtÞ

� �
þA

F1ðp1ðtÞÞ � F1ðp	1ðtÞÞðp1ðtÞ � p	1ðtÞÞ
F2ðp2ðtÞÞ � F2ðp	2ðtÞÞðp2ðtÞ � p	2ðtÞÞ

� �

þ
0

~Bðf ðp1ðt � sðtÞÞÞ � f ðp	1ðtÞÞÞ

� �
:

Now by letting,

FðpðtÞÞ � Fðp	ðtÞÞ ¼ diag
f11ðp11ðtÞÞ � f11ðp	11ðtÞÞ

p11ðtÞ � p	11ðtÞ
; . . .;

f11ðp11ðtÞÞ � f11ðp	11ðtÞÞ
p11ðtÞ � p	11ðtÞ

� �
;

¼
F1ðp1ðtÞÞ � F1ðp	1ðtÞÞ 0

0 F2ðp2ðtÞÞ � F2ðp	2ðtÞÞ

� �
:

We have the error system as,

_eðtÞ ¼
�In In

�C �D

� �
eðtÞ þ AðFðpðtÞÞ � Fðp	ðtÞÞÞðpðtÞ

� p	ðtÞÞ þ
0

~Bðf ðp1ðt � sðtÞÞÞ � f ðp	1ðtÞÞÞ

� �
:

Then, we have the upper-right Dini derivative as,

DþkeðtÞkp

� lim
h!0þ

eðtÞþh
�In In

�C �D

� �
eðtÞþAðFðpðtÞÞ�Fðp	ðtÞÞÞðpðtÞ�p	ðtÞÞ

� �����

����
p

�keðtÞkp

h

þk~Bðf ðp1ðt�sðtÞÞÞ� f ðp	1ðtÞÞÞkp

� lim
h!0þ

keðtÞþhðGþAðFðpðtÞÞ�Fðp	ðtÞÞÞeðtÞkp�keðtÞkp
h

þk~Bðf ðp1ðt�sðtÞÞÞ� f ðp	1ðtÞÞÞkp
¼lpðGþAðFðpðtÞÞ�Fðp	ðtÞÞÞÞkeðtÞkpþ lk~Bkpkeðt�sðtÞÞkp:

It follows from Lemmas 3 and 5 that,

lpðGþAðFðpðtÞÞ � Fðp	ðtÞÞÞÞ� lpðGÞ þ lpðAðFðpðtÞÞ
� Fðp	ðtÞÞÞÞ; � lpðGÞ þ lpðAL	Þ;

where L	 ¼ diagfl1; l2; . . .; ln; 1; 1; . . .; 1g. Hence, we have

DþkeðtÞkp �ðlpðGÞ þ lpðAL	ÞÞkeðtÞkp þ lk~Bkp sup
t�s� v� t

keðvÞkp;

DþkeðtÞkp � � ð�lpðGÞ � lpðAL	ÞÞkeðtÞkp þ lk~Bkp sup
t�s� v� t

keðvÞkp:

Using Lemma 4, by considering k1 ¼ �ðlpðGÞþ
lpðAL	ÞÞ, k2 ¼ lk~Bkp and the assumption of our Theo-

rem 2, �ðlpðGÞ þ lpðAL	ÞÞ[ lk~Bkp [ 0. We have the

result as,

keðtÞkp � sup
t�s� v� t

keðvÞkpe�rðt�t0Þ;

where r is a bound on the exponential convergence rate

with

r ¼ k1 � k2e
rs ¼ �ðlpðGÞ þ lpðAL	ÞÞ � lk~Bkpers:

Thus we conclude that, e(t) converges exponentially to zero

with a convergence rate r. That is, every trajectory of the

system (6) converges exponentially towards the equilib-

rium ðp	1ðtÞ; p	2ðtÞÞ
T
with a convergence rate r. This com-

pletes the proof. h

Remark 5 The stability condition of Theorem 1 utilize

only the maximum Lipschitz constant and not the infor-

mation of each li. But the stability condition of Theorem 2
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utilizes the information of each Lipschitz constant li. Thus,

by letting some terms, we make the term k~Akp as lpðAL	Þ
in Theorem 2 and hence the result is more precise than

Theorem 1. But the condition of Theorem 2 holds only for

p ¼ 1;1;x.

Synchronization analysis

Consider the following memristive delayed neural

networks,

d2yrðtÞ
dt2

¼ �dr
dyrðtÞ
dt

� cryrðtÞ þ
Xn

s¼1

arsðyðtÞÞfsðysðtÞÞ

þ
Xn

s¼1

brsðyðtÞÞfsðysðt � sðtÞÞÞ þ Ir;

r ¼ 1; . . .; n;

ð11Þ

where yðtÞ ¼ ðy1ðtÞ; . . .; ynðtÞÞT 2 Rn. dr [ 0, cr [ 0 are

constants, cr denotes the rate with which the rth neuron

will reset its potential to the resetting state in isolation

when disconnected from the networks and external inputs.

Ir ¼ ðI1; . . .; InÞT and f ðyðtÞÞ ¼ ðf1ðy1ðtÞÞ; . . .; fnðynðtÞÞÞ
T

denotes the external input and the non-linear activation

function respectively. AðyðtÞÞ ¼ ðarsðyðtÞÞÞn�n and

BðyðtÞÞ ¼ ðbrsðyðtÞÞÞn�n are memristive connection

weights which changes based on the feature of memristor

and current–voltage characteristics are defined as,

arsðyðtÞÞ ¼
ârs; jyðtÞj � Tr;

�ars; jyðtÞj[ Tr;

�

brsðyðtÞÞ ¼
b̂rs; jyðtÞj � Tr;

�brs; jyðtÞj[ Tr;

( ð12Þ

for r; s ¼ 1; 2; . . .; n in which switching jumps Tr [ 0, ârs,

�ars, b̂rs, �brs are known constants with respect to memris-

tance. When N inertial MNNs are coupled by a network,

we can obtain the following array of linearly coupled

inertial MNNs with the dynamics of the kth node as,

d2xkðtÞ
dt2

¼ �D
dxkðtÞ
dt

� CxkðtÞ þ AðxkðtÞÞf ðxkðtÞÞ
þ BðxkðtÞÞf ðxkðt � sðtÞÞÞ þ I

þ a
XN

l¼1

WklC
dxlðtÞ
dt

þ xlðtÞ
� �

; ð13Þ

where k ¼ 1; . . .;N. xkðtÞ ¼ ðxk1ðtÞ; . . .; xknðtÞÞT 2 Rn is

the state of the kth neural network. D ¼
diagfd1; d2; . . .; dng and C ¼ diagfc1; c2; . . .; cng denote

the positive definite matrices. AðxkðtÞÞ and BðxkðtÞÞ are

memristive connection weights defined in (12). a is the

positive constant which represents network coupling

strength. C is the inner coupling matrix. The matrix W ¼
ðWklÞN�N is the constant coupling configuration matrix

which is considered to be diffusive. i.e., Wkl � 0 ðk 6¼ lÞ
and Wkk ¼ �

PN
l¼1;l6¼k Wkl. Also, W is not required to be

symmetric or irreducible.

The initial condition of the system (13) is given as,

xkðvÞ ¼ UkðvÞ and
dxkðvÞ
dv

¼ WkðvÞ; �s� v� 0;

ð14Þ

where UkðvÞ, WkðvÞ 2 Cð1Þð½�s; 0�;RnÞ. The isolated node

of network (13) is given as,

d2sðtÞ
dt2

¼ �D
dsðtÞ
dt

� CsðtÞ þ AðsðtÞÞf ðsðtÞÞ þ BðsðtÞÞf ðsðt
� sðtÞÞÞ þ I:

ð15Þ

The connection weight matrices of A(s(t)) and B(s(t)) are

defined as in (12). The initial condition of the system (15)

is given as,

sðvÞ ¼ UðvÞ and
dsðvÞ
dv

¼ WðvÞ; �s� v� 0; ð16Þ

where UðvÞ, WðvÞ 2 Cð1Þð½�s; 0�;RnÞ. By applying the

theories of set-valued maps and differential inclusion to

(15) as stated in Definition 1 we have,

d2sðtÞ
dt2

þ D
dsðtÞ
dt

2 �CsðtÞ þ co½A;A�f ðsðtÞÞ

þ co½B;B�f ðsðt � sðtÞÞÞ þ I;

ð17Þ

or equivalently, there exist measurable functions

eAðsðtÞÞ 2 co½A;A�; eBðsðtÞÞ 2 co½B;B�, such that

d2sðtÞ
dt2

þ D
dsðtÞ
dt

¼ �CsðtÞ þ eAðsðtÞÞf ðsðtÞÞ

þ eBðsðtÞÞf ðsðt � sðtÞÞÞ þ I:

ð18Þ

Consider the following transformation to the system (18),

pðtÞ ¼ sðtÞ;

qðtÞ ¼ dsðtÞ
dt

þ sðtÞ:

Then we have the system (18) as,

_pðtÞ
_qðtÞ

� �
¼

�pðtÞ þ qðtÞ
�CpðtÞ � DqðtÞ þ eAðpðtÞÞf ðpðtÞÞ

þeBðpðtÞÞf ðpðt � sðtÞÞÞ þ I

0
B@

1
CA; ð19Þ

where C ¼ C þ In � D and D ¼ D� In. The pinning con-

trolled networks of the system (13) is given as,
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d2xkðtÞ
dt2

¼ �D
dxkðtÞ
dt

� CxkðtÞ þ AðxkðtÞÞf ðxkðtÞÞ

þ BðxkðtÞÞf ðxkðt � sðtÞÞÞ þ I

þ a
XN

l¼1

WklC
dxlðtÞ
dt

þ xlðtÞ
� �

� arkC
dðxkðtÞ � sðtÞÞ

dt
þ ðxkðtÞ � sðtÞÞ

� �
;

ð20Þ

where k ¼ 1; 2; . . .;N and rk ¼ 1 if the node is

pinned, otherwise rk ¼ 0. AðxkðtÞÞ, BðxkðtÞÞ and the initial

condition of the system are given in (12) and (14)

respectively.

By applying the theories of set-valued maps and dif-

ferential inclusion to the form as stated in Definition 1 to

the system (20) we have,

d2xkðtÞ
dt2

þ D
dxkðtÞ
dt

2 �CxkðtÞ þ co½A;A�f ðxkðtÞÞ

þ co½B;B�f ðxkðt � sðtÞÞÞ þ I

þ a
XN

l¼1

WklC
dxlðtÞ
dt

þ xlðtÞ
� �

� arkC
dðxkðtÞ � sðtÞÞ

dt
þ ðxkðtÞ � sðtÞÞ

� �
;

or equivalently, there exist measurable functions

eAðxkðtÞÞ 2 co½A;A�; eBðxkðtÞÞ 2 co½B;B�, such that

d2xkðtÞ
dt2

þD
dxkðtÞ
dt

¼�CxkðtÞþ eAðxkðtÞÞf ðxkðtÞÞ

þ eBðxkðtÞÞf ðxkðt� sðtÞÞÞþ I

þa
XN

k¼1

WklC
dxlðtÞ
dt

þ xlðtÞ
� �

�arkC
dðxkðtÞ� sðtÞÞ

dt
þðxkðtÞ� sðtÞÞ

� �
:

Consider the following transformation to the above system,

ykðtÞ ¼ xkðtÞ;

zkðtÞ ¼
dxkðtÞ
dt

þ xkðtÞ:

Then we have,

_ykðtÞ
_zkðtÞ

� �
¼

�ykðtÞ þ zkðtÞ
�CykðtÞ � DzkðtÞ þ eAðykðtÞÞf ðykðtÞÞ þ eBðykðtÞÞf ðykðt � sðtÞÞÞ

þI þ a
PN

l¼1

WklCðzlðtÞÞ � arkCðzkðtÞ � qðtÞÞ

0
BBB@

1
CCCA;

where C ¼ C þ In � D and D ¼ D� In. Now, let us

introduce a Laplacian matrix L ¼ ðlklÞN�N of the coupling

network and define L ¼ �W . Then we have,

_ykðtÞ
_zkðtÞ

� �
¼

�ykðtÞ þ zkðtÞ
�CykðtÞ � DzkðtÞ þ eAðykðtÞÞf ðykðtÞÞ þ eBðykðtÞÞ

� f ðykðt � sðtÞÞÞ þ I � a
PN

l¼1

lklCðzlðtÞÞ � ark

�CðzkðtÞ � qðtÞÞ

0
BBBBB@

1
CCCCCA
: ð21Þ

Let us define the error dynamical network as,

ekðtÞ ¼
e1kðtÞ
e2kðtÞ

� �
¼

ykðtÞ � pðtÞ
zkðtÞ � qðtÞ

� �
:

Subtracting (19) from (21), we obtain the following,

_ekðtÞ¼
_e1kðtÞ
_e2kðtÞ

� �
¼

�ykðtÞþzkðtÞþpðtÞ�qðtÞ
�CykðtÞ�DzkðtÞþ eAðykðtÞÞf ðykðtÞÞþ eBðykðtÞÞf ðykðt�sðtÞÞÞ

�a
PN

l¼1

lklCðzlðtÞÞ�arkCðzkðtÞ�qðtÞÞþCpðtÞþDqðtÞ

�eAðpðtÞÞf ðpðtÞÞ� eBðpðtÞÞf ðpðt�sðtÞÞÞ

0
BBBBBB@

1
CCCCCCA
;

According to Lemma 1, the above system can be written as

follows:

_e1kðtÞ
_e2kðtÞ

� �
¼

�e1kðtÞ þ e2kðtÞ
�Ce1kðtÞ � De2kðtÞ þ ~~Aðf ðykðtÞÞ � f ðpðtÞÞÞ
þ~~Bðf ðykðt � sðtÞÞÞ � f ðpðt � sðtÞÞÞÞ

�a
PN

l¼1

lklCðe2lðtÞÞ � arkCðe2kðtÞÞ

0
BBBBBB@

1
CCCCCCA
;

where
~~A ¼ max fjarsj; jarsjg and ~~B ¼ max fjbrsj;

jbrsjg:
Using the Kronecker product, the above system can be

written in the following compact form,

_e1ðtÞ
_e2ðtÞ

� �
¼

�e1ðtÞ þ e2ðtÞ
�ðIN � CÞe1ðtÞ � ðIN �DÞe2ðtÞ þ ðIN � ~~AÞðf ðykðtÞÞ � f ðpðtÞÞÞ

þðIN � ~~BÞðf ðykðt � sðtÞÞÞ � f ðpðt � sðtÞÞÞÞ
�aððLþ RÞ � CÞe2ðtÞ

0
BBBB@

1
CCCCA
:

ð22Þ

Lemma 6 (Cao et al. 2006) For matrices A, B, C and

D with appropriate dimensions, one has

1. ðaAÞ � B ¼ A� ðaBÞ.
2. ðAþ BÞ � C ¼ A� C þ B� C.

3. ðA� BÞðC � DÞ ¼ ðACÞ � ðBDÞ.

Definition 5 The linearly coupled inertial MNNs (13) is

said to be exponentially synchronized if the error system

(22) is exponentially stable, i.e., there exist two constants

a[ 1 and b[ 0 such that

keðtÞkp � a sup
t0�s� h� t0

keðhÞkpe�bðt�t0Þ; t� t0:

Now, we present the synchronization result in the fol-

lowing theorem based on the above transformations.
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Theorem 3 Under the Assumption 1, further

�ðlpðKÞ þ lkIN � ~~AkpÞ[ lkIN � ~~Bkp [ 0; ð23Þ

where K ¼ �INn INn
�ðIN � CÞ �ðIN �DÞ

�
�aðLþ RÞ � CÞ

and l ¼ max1� i� nflig. Then the pinning controlled iner-

tial MNNs (22) is globally exponentially synchronized for

p ¼ 1; 2;1;x.

Proof The upper-right Dini derivative of the synchro-

nization error, keðtÞkp with respect to t is calculated as

follows,

where k ¼ �ðIN � CÞe1ðtÞ � ðIN �DÞe2ðtÞ þ ðIN�
~~AÞðf ðykðtÞÞ � f ðpðtÞÞÞ þ ðIN � ~~BÞðf ðykðt � sðtÞÞÞ� f ðpðt �
sðtÞÞÞÞ � aððLþ RÞ � CÞe2ðtÞ. Using Lemma 4 by con-

sidering k1 ¼ �ðlpðKÞþ lkIN � ~~AkpÞ, k2 ¼ lkIN � ~~Bkp and

the assumption of Theorem 3, �ðlpðKÞ þ lkIN � ~~AkpÞ[
lkIN � ~~Bkp [ 0. We have the result as,

keðtÞkp � sup
t0�s� v� t0

keðvÞkpe�rðt�t0Þ;

where r is a bound on the exponential convergence rate

with

r ¼ k1 � k2e
rs ¼ �ðlpðKÞ þ lkIN � ~~AkpÞ � lkIN � ~~Bkpers:

Thus, we conclude that e(t) converges exponentially to zero

with a convergence rate r. It implies that the global syn-

chronization of the system (22) is achieved. This completes

the proof. h

DþkeðtÞkp ¼ lim
h!0þ

keðt þ hÞkp � keðtÞkp
h

¼ lim
h!0þ

keðtÞ þ h _eðtÞ þ oðhÞkp � keðtÞkp
h

¼ lim
h!0þ

eðtÞ þ h
_e1ðtÞ
_e2ðtÞ

� �
þ oðhÞ

����

����
p

�keðtÞkp

h

¼ lim
h!0þ

eðtÞ þ h
�e1ðtÞ þ e2ðtÞ

k

� �
þ oðhÞ

����

����
p

�keðtÞkp

h

� lim
h!0þ

eðtÞ þ h
�INn INn

�ðIN � CÞ �ðIN �DÞ � aðLþ RÞ � C

� �
eðtÞ

����

����
p

�keðtÞkp

h

þ kðIN � ~~AÞðf ðykðtÞÞ � f ðpðtÞÞÞkp
þ kðIN � ~~BÞðf ðykðt � sðtÞÞÞ � f ðpðt � sðtÞÞÞÞkp

� lim
h!0þ

eðtÞ þ h
�INn INn

�ðIN � CÞ �ðIN �DÞ � aðLþ RÞ � C

� �
eðtÞ

����

����
p

�keðtÞkp

h

þ lkIN � ~~AkpkykðtÞ � pðtÞkp þ lkIN � ~~Bkpkykðt � sðtÞÞ � pðt � sðtÞÞkp

� lim
h!0þ

kIn þ hðKÞkp � 1

h
keðtÞkp þ lkIN � ~~Akpke1ðtÞkp

þ lkIN � ~~Bkpke1ðt � sðtÞÞkp
¼ lpðKÞkeðtÞkp þ lkIN � ~~AkpkeðtÞkp þ lkIN � ~~Bkpkeðt � sðtÞÞkp
�ðlpðKÞ þ lkIN � ~~AkpÞkeðtÞkp þ lkIN � ~~Bkp sup

t�s� v� t
keðvÞkp

¼ �ð�lpðKÞ � lkIN � ~~AkpÞkeðtÞkp þ lkIN � ~~Bkp sup
t�s� v� t

keðvÞkp;
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Theorem 4 Under Assumption 1, if there exists a matrix

measure lpð�Þðp ¼ 1;1;xÞ such that

�ðlpðKÞ þ lpðAL	Þ[ lkIN � ~~Bkp [ 0; ð24Þ

where A ¼ 0 0

IN � ~~A 0

� �
, L	 ¼ diagfl1; l2; . . .; ln; 1;

1; . . .; 1g. Then the pinning controlled coupled inertial

MNNs (22) is globally exponentially synchronized.

Proof Similar to the proof of Theorem 2. h

Remark 6 Compared with the results on pinning syn-

chronization of the coupled inertial delayed neural net-

works of Hu et al. (2015), our results on pinning

synchronization are with discontinuous right-hand side. So

the results in this paper are more superior than in Hu et al.

(2015).

Remark 7 Recently, many of the researchers have

developed synchronization results by constructing suit-

able Lyapunov–Krasovskii functional and by using linear

matrix inequality techniques. Several effective methods

such as delay decomposition approach, convex combina-

tion, free weighting matrix approach and inequalities

technique have been explored and developed in the liter-

ature, see for examples Balasubramaniam et al. (2011),

Balasubramaniam and Vembarasan (2012). Moreover, in

Wang and Shen (2015), authors have concerned the syn-

chronization of memristor-based neural networks with

time-varying delays is investigated by employing the

Newton–Leibniz formulation and inequality technique. In

Bao and Cao (2015), authors deal with the problem of

projective synchronization of fractional-order memristor-

based neural networks in the sense of Caputo’s fractional

derivative. However, to the best of our knowledge, upto

now the memristor based neural networks have been

investigated by the Lyapunov–Krasovskii method but the

result discussed in this paper is more superior than the

results that are obtained by constructing a Lyapunov–

Krasovskii functional. Another important feature of the

derived results is because of the usage of matrix measure

and Halanay inequality.

Remark 8 In the real world, resistors are used to model

connection weight to emulate the synapses in analog

implementation of neural networks. By making use of the

memristor which has memory and behaviour more like

biological synapses we can able to develop memristor

based neural network models. The memristive neural net-

works have characteristics of complex brain networks such

as node degree, distribution and assortativity both at the

whole-brain scale of human neuroimaging. With the

development of application as well as many integrated

technologies, memristive neural networks have proven as a

promising architecture in neuromorphic systems for the

high-density, non-volatility, and unique memristive char-

acteristic. Due to the promising applications in wide areas,

various memristive materials, such as ferroelectric mate-

rials, chalcogenide materials, metal oxides have attracted

great attention. Further, several physical mechanisms have

been proposed to illustrate the memristive behaviors, such

as electronic barrier modulation from migration of oxygen

vacancies, voltage-controlled domain configuration, for-

mation and annihilation of conducting filaments via diffu-

sion of oxygen vacancies, trapping of charge carriers and

metal ions from electrodes. Motivated by the aforemen-

tioned applications, in this paper we investigate the prob-

lem of stability and synchronization analysis of inertial

memristive neural networks with time delays.

Numerical simulation

In this section, numerical examples are presented to illus-

trate the effectiveness and usefulness of the theoretical

result.

Example 1 Consider the following inertial MNNs:

d2siðtÞ
dt2

¼ �di
dsiðtÞ
dt

� cisiðtÞ þ
Xn

i¼1

aijðsiðtÞÞfjðsjðtÞÞ

þ
Xn

i¼1

bijðsiðtÞÞfjðsjðt � sðtÞÞÞ þ Ii;

ð25Þ

where the activation function is given as, fjðxÞ ¼ sinðjxj �
1Þ for j ¼ 1; 2, d1 ¼ c1 ¼ 6, d2 ¼ c2 ¼ 8, I1 ¼ I2 ¼ 6, and

sðtÞ ¼ et

1þet
. Also the memristive weights of the system (25)

is given as,
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In order to show that the system is globally exponen-

tially stable, we have to prove �ðlpðGÞ þ lk~AkpÞ

[ lk~Bkp [ 0, where G ¼ �In In
�C �D

� �
.

From the given example we calculate the following,

C ¼ C þ In � D ¼
1 0

0 1

� �
;

D ¼ D� In ¼
5 0

0 7

� �
;

~A ¼

�0:04p
ffiffiffi
2

p

8
0:05

�0:04p
ffiffiffi
2

p

8
0:05

0

BB@

1

CCA;

~B ¼
0:03 0:025þ p

16

0:04 0:55þ p
16

0

B@

1

CA

and li ¼ 1 for i ¼ 1; 2.

When p ¼ 2, we have l2ðGÞ ¼ �1; k~Ak2 ¼
0:0774; k~Bk2 ¼ 0:7799. Hence we have 0:9226[
0:7763[ 0. By choosing n1 ¼ n2 ¼ 2:1 and p ¼ 1 we

have, l1ðGÞ ¼ �1:1, k~Ak1 ¼ 0:0722, k~Bk1 ¼ 0:7863.

Hence we obtain 1:0278[ 0:7863[ 0. Figure 1a, b,

depicts the trajectories of system (25) for different initial

values. It is clear that the equilibrium is globally expo-

nentially stable. Hence, the Theorem 1 is verified.

Example 2 Consider the following pinned inertial MNNs

with 10 nodes:

d2xkðtÞ
dt2

¼ �D
dxkðtÞ
dt

� CxkðtÞ þ AðxkðtÞÞf ðxkðtÞÞ

þ BðxkðtÞÞf ðxkðt � sðtÞÞÞ

þ I þ a
XN

l¼1

WklC
dxlðtÞ
dt

þ xlðtÞ
� �

;

ð26Þ

where k ¼ 1; 2; . . .; 10. xkðtÞ ¼ ðxk1ðtÞ; xk2ðtÞÞT 2 R2 is the

state variable of kth node. The isolated node of MNNs (26)

is given as,

d2sðtÞ
dt2

¼ �D
dsðtÞ
dt

� CsðtÞ þ AðsðtÞÞf ðsðtÞÞ

þ BðsðtÞÞf ðsðt � sðtÞÞÞ þ I;

ð27Þ

where sðtÞ ¼ ðs1ðtÞ; s2ðtÞÞT 2 R2. Let N ¼ 10,

f ðxkðtÞÞ ¼ ðtanhðjxk1ðtÞj � 1Þ; tanhðjxk2ðtÞj � 1ÞÞT , I ¼
ð0:2; 0:6ÞT and sðtÞ ¼ 0:15et

1þet
. So, it is easy to get lk ¼ 1 and

q ¼ 0:0375. The coefficient matrices are given as,

C ¼ 0:2 0

0 0:1

� �
, D ¼ 0:9 0

0 0:8

� �
, and

a11ðs1ðtÞÞ ¼

�0:01p
ffiffiffi
2

p

8
; js1ðtÞj � 1;

�0:07p
ffiffiffi
2

p

8
; js1ðtÞj[ 1;

8
>><

>>:
b11ðs1ðtÞÞ ¼

0:01; js1ðtÞj� 1;

0:05; js1ðtÞj[ 1;

�

a12ðs1ðtÞÞ ¼
0:06; js1ðtÞj� 1;

0:04; js1ðtÞj[ 1;

�
b12ðs1ðtÞÞ ¼

0:04þ p
16

; js1ðtÞj � 1;

0:01þ p
16

; js1ðtÞj[ 1;

8
><

>:

a21ðs2ðtÞÞ ¼

�0:01p
ffiffiffi
2

p

8
; js2ðtÞj � 1;

�0:07p
ffiffiffi
2

p

8
; js2ðtÞj[ 1;

8
>><

>>:
b21ðs2ðtÞÞ ¼

0:02; js2ðtÞj� 1;

0:06; js2ðtÞj[ 1;

�

a22ðs2ðtÞÞ ¼
0:06; js2ðtÞj� 1;

0:04; js2ðtÞj[ 1;

�
b22ðs2ðtÞÞ ¼

0:09þ p
16

; js2ðtÞj � 1;

1:01þ p
16

; js2ðtÞj[ 1:

8
><

>:
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(a) (b)Fig. 1 a, b The state

trajectories of inertial

memristive neural networks of

Example 1 with different initial

values

Fig. 2 Digraph with 10 nodes

(a) (b)Fig. 3 a State trajectories xkðtÞ
of system (26) and b objective

state trajectory s(t) of system

(27)

Fig. 4 Synchronization error for Example 2
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a11ðxkðtÞÞ ¼
�0:08; jxkðtÞj � 1;

�0:95; jxkðtÞj[ 1;

�

b11ðxkðtÞÞ ¼
0:03; jxkðtÞj � 1;

0:05; jxkðtÞj[ 1;

�

a12ðxkðtÞÞ ¼
0:05; jxkðtÞj � 1;

0:28; jxkðtÞj[ 1;

�

b12ðxkðtÞÞ ¼
�0:005; jxkðtÞj � 1;

�0:015; jxkðtÞj[ 1;

�

a21ðxkðtÞÞ ¼
0:95; jxkðtÞj � 1;

0:05; jxkðtÞj[ 1;

�

b21ðxkðtÞÞ ¼
�0:075; jxkðtÞj � 1;

�0:095; jxkðtÞj[ 1;

�

a22ðxkðtÞÞ ¼
�0:06; jxkðtÞj � 1;

�0:28; jxkðtÞj[ 1;

�

b22ðxkðtÞÞ ¼
0:02; jxkðtÞj � 1;

0:08; jxkðtÞj[ 1:

�

From the given example we calculate the following,

C ¼ C þ In � D ¼
0:3 0

0 0:3

� �
;

D ¼ D� In ¼
�0:1 0

0 �0:2

� �
;

~~A ¼
�0:5 0:2

0:5 �0:1

� �
and

~~B ¼
0:04 �0:01

�0:08 0:05

� �
:

The coupling matrix W is determined by the directed

topology given in Fig. 2. From Fig. 2, it is clear that the

pinning node is 1 and 9. The inner coupling matrix C is

given as, C ¼ diagf6; 4g and the coupling strength is

chosen as a ¼ 20. In order to show that the system is

synchronizable, �ðlpðKÞ þ lk~~AkpÞ[ lk~~Bkp [ 0. Choos-

ing p ¼ 2 we have, l2ðKÞ ¼ �0:9805; k~~Akp ¼ 0:7616 and

k~~Bkp ¼ 0:1023. Hence we have, 0:2189[ 0:1023[ 0.

Based on the conclusion of Theorem 3 the coupled inertial

memristive neural networks can be exponentially syn-

chronized. The synchronization state trajectories xkðtÞ; k ¼
1; 2; . . .; 10 and objective state trajectory s(t) are given in

Fig. 3a, b respectively. The synchronization of error system

ekðtÞ; k ¼ 1; 2; . . .; 10 is given in Fig. 4. Hence, the Theo-

rem 3 is verified.

Remark 9 Note that coupled complex dynamical net-

works can be represented by a large number of intercon-

nected nodes, in which each node consists of a dynamical

system. Owing to their applications in real life, many

researchers have studied coupled complex dynamical net-

works recently. In addition, it can be seen from previous

researches that most of the authors have attempted to find a

proper controller such that the considered coupled complex

network can achieve synchronization, i.e., the synchro-

nization error dynamical network is asymptotically stable.

However, controlling all nodes in a network may result in a

high cost, and is hard to implement. To tackle these issues,

the pinning control scheme has been adopted to study

synchronization of coupled complex networks, in which

only some selected nodes need to be controlled.

Remark 10 The condition of Theorem 3 is difficult to

verify for the case p ¼ 1;1;x in our example. In Example

1, by introducing the coefficient matrix ni in variable

transformation we verified the stability condition for

p ¼ 1. But this transformation is not applicable in our

synchronization case.

Conclusion

In this paper, we have discussed the global exponential sta-

bility of inertial memristive neural networks and global

exponential pinning synchronization of coupled inertial

memristive neural networks by using matrix measure strat-

egy and Halanay inequality. Firstly, matrix measure strate-

gies are utilized to analyze the closed-loop error system,

under which two sufficient criteria have been established

such that the exponential synchronization can be achieved.

The model based on the memristor widens the application

scope for the design of neural networks. Finally, numerical

simulations have been given to demonstrate the effectiveness

of our theoretical results. Our future works may involve the

stability and synchronization analysis of inertial memristive

neural networks under different control schemes.
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