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Abstract Burst firings are functionally important behav-

iors displayed by neural circuits, which plays a primary

role in reliable transmission of electrical signals for neu-

ronal communication. However, with respect to the com-

putational capability of neural networks, most of relevant

studies are based on the spiking dynamics of individual

neurons, while burst firing is seldom considered. In this

paper, we carry out a comprehensive study to compare the

performance of spiking and bursting dynamics on the

capability of liquid computing, which is an effective

approach for intelligent computation of neural networks.

The results show that neural networks with bursting

dynamic have much better computational performance than

those with spiking dynamics, especially for complex

computational tasks. Further analysis demonstrate that the

fast firing pattern of bursting dynamics can obviously

enhance the efficiency of synaptic integration from pre-

neurons both temporally and spatially. This indicates that

bursting dynamic can significantly enhance the complexity

of network activity, implying its high efficiency in infor-

mation processing.
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Introduction

Bursting activity is widely observed in neural circuits

(Selverston and Moulins 1986; Bertram and Sherman 2000;

Sohal and Huguenard 2001; Llinás and Steriade 2006) and

plays an important role in the communication between

neurons (Izhikevich et al. 2003; Lisman 1997; Sherman

2001). In contrast to spike firing, which is a repetitive

single firing state, burst firing is two or more spikes fol-

lowed by a period of quiescence (Izhikevich 2004). Due to

the fact that sending a short burst of firings instead of a

single firing can overcome synaptic transmission failure,

bursting activity can increase the reliability of synaptic

transmission (Lisman 1997). Besides, bursting also pro-

vides effective mechanisms for selective communication

among neurons (Izhikevich et al. 2003), where the inter-

spike frequency within the bursts encodes the channel of

communication (Izhikevich 2002). It is also found that

bursting neurons are easier to achieve synchronization than

spiking ones, which means that bursting activities are more

important for information transfer in neuronal networks

(Shi et al. 2008). Relevant extensive researches about

bursting have gained increasing attention in recent years

(Kim and Lim 2015b; Meng et al. 2013; Kim and Lim

2015a). However, although functional mechanisms of

spiking and bursting dynamics have been broadly investi-

gated, there is rare research focusing on the computational

capability of neural networks with bio-realistic neurons

firing on these two dynamic patterns.

Spiking neuron model, based on the generation of a

single spike, can produce several known types of firing

patterns exhibited by real biological neurons. Spiking

neural network (so called ‘‘third generation’’ of neural

networks) is biologically inspired neural network, where

the timing of individual spikes is considered as the means

& Xiumin Li

xmli@cqu.edu.cn

1 Key Laboratory of Dependable Service Computing in Cyber

Physical Society of Ministry of Education, Chongqing

University, Chongqing 400044, China

2 College of Automation, Chongqing University,

Chongqing 400044, China

123

Cogn Neurodyn (2016) 10:415–421

DOI 10.1007/s11571-016-9387-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-016-9387-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-016-9387-z&amp;domain=pdf


of communication and neural computation instead of ana-

log signals in artificial neural networks, which effectively

captures the rich dynamics of real biological networks

(Gerstner and Kistler 2002). Thus they are computationally

powerful in solving difficult problems in complex. Given

that recurrent network can accurately convey and store

temporal information, liquid computing is potentially

powerful at performing complex computations that are

usually conducted in biological organisms (Maass 2007).

There are two classic applications of liquid computing

which have been widely studied: one is liquid state

machines (LSMs) built from spiking neurons and came

from computational neuroscience (Maass et al. 2002a); the

other is echo state networks (ESNs) built from analog

sigmoidal neurons and came from Machine Learning

(Jaeger 2001). Instead of online updating all of the synaptic

weights in most of the traditional recurrent neural networks

(RNN), synaptic connections in the hidden network of

liquid computing are usually chosen randomly and fixed

during the training process; while only the readout com-

ponent is trained by using a simple classification/regression

technique according to specific tasks (Maass et al. 2002a;

Jaeger 2001). In this paper, we focus on liquid computing

of LSM based on biologically inspired neuron model. Since

proposed by Maass et al in 2002, LSMs have been suc-

cessfully applied to actual engineering applications, such as

controlling a simulated robot arm (Joshi and Maass 2004),

modeling an existing robot controller (Burgsteiner 2005)

and performing object tracking and motion prediction

(Burgsteiner 2005). Additionally, Various ways of con-

structing reservoir topologies and weight matrices have

been developed. For example, in Norton and Ventura

(2010), a new method has been develop ed for iteratively

refining randomly generated networks, so that the LSM

will yield a more effective filter in a fewer epochs than

traditional method. Results shown in Schrauwen et al.

(2008) have demonstrated that IP rule effectively makes

the reservoirs computing more robust. In our previous work

(Xue et al. 2013), a novel type of LSM obtained by STDP

learning has shown that LSM with STDP learning is able to

lead to a better performance than LSM with random

reservoir.

In this paper, we make detailed comparisons between

spiking and bursting dynamics on the capability of liquid

computing. Our results show that neural networks with

bursting activity have much better computational perfor-

mance than those with spike firings. Further analysis of the

probability distribution and entropy of network activity

demonstrate that the fast firing pattern of bursting dynamics

can obviously enhance the efficiency of synaptic integration

from pre-neurons both temporally and spatially. The burst-

ing dynamic can significantly enhance the entropy of activity

patterns and stochastic resonance (SR) of the entire network,

which is beneficial for improving computational capability

and information transition efficiency.

Network description

Network architecture

The LSMs is composed of three parts: input component,

liquid network (i.e. a randomly connected recurrent neural

network), and readout component. In this paper, four dif-

ferent inputs are independently added to four equivalently

divided groups in the liquid network, as shown in Fig. 1.

Synaptic inputs integrated from the input component are

received by the neurons in liquid network and can be

expressed in a higher dimensional form called liquid state.

For specific tasks (i.e. the polynomial computation of four

inputs), liquid network outputs a series of spike trains pro-

jecting to the readout component, which acts as a memory-

less readout function (Maass et al. 2002a, b). During the

computations only readouts are trained by linear regression

according to the teaching signal, while connections in the

liquid always remain unchanged once the structure is

established.Simulations are carried out with the software

package CSIM http://www.lsm.tugraz.at/csim/index.html.

In this paper, the liquid network consists of 400 neurons

which are all-to-all bidirectionally connected with synaptic

weights randomly distributed in the range of ½0; gmax�. The
inputs are four independent signal streams generated by the

Poisson process with randomly varying rates riðtÞ; i ¼
1; . . .4 , where each input stream consists of eight spike

trains (Fig. 2a). The time-varying firing rates riðtÞ of the

Input-1
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Input-3

Input-4

gout

Output

I
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I

V

       Spiking Bursting

Input Liquid Readout

Fig. 1 Schematic diagram of liquid computing. The Input-1, Input-2,

Input-3 and Input-4 represent four input components. 400 neurons with

spiking or bursting activity in LC are equally connected to four input

streams independently. Neurons appliedwith different inputs aremarked

with different colors. Arrows in the liquid network represent the

directions of synaptic connectivity. The readout neuron is connected to

all of the neurons in the liquid with synaptic weights gout, which are

trained by linear regression for different tasks. (Color figure online)
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eight Poisson spike trains were chosen as follows (Maass

et al. 2007). The baseline firing rates for streams 1 and 2

are chosen to be 5 Hz, with randomly distributed bursts of

120 Hz for 50 ms. The rates for Poisson processes that

generated the spike trains for input stream 3 and 4 are

periodically updated, by randomly drawn from the two

options 30 and 90 Hz. The curves in Fig. 2a represent the

actual firing rates of four input streams. The corresponding

responses of liquid neurons with spiking or bursting

dynamic and the outputs of readout neuron with respect to

the teaching signal r1 þ r3 are shown in Fig. reffig:2b, c,

respectively. From the results, we can see that the signal of

incoming input spike trains could be efficiently transferred

into the high-dimensional liquid network, where informa-

tion can be stored and further amplified by the intrinsic

dynamical state of neuronal population, thus resulting in

the high precision of computational capability by readouts.

Neuron model

In this paper, the two-variable integrate-and-fire (I&F)

model of Izhikevich (Izhikevich et al. 2003) is used in the

network. It satisfies the following equations:

_vi ¼ 0:04v2i þ 5vi þ 140� ui þ I þ I
syn
i

_ui ¼ aðbvi � uiÞ þ Dni
ð1Þ

if vi [ 30mV; then
vi  c

ui  ui þ d

�
ð2Þ

where i ¼ 1; 2; . . .;N, vi represents the membrane potential

and ui is a membrane recovery variable. The variable ni is

the independent Gaussian noise with zero mean and

intensity D that represents the noisy background. The

parameters a, b, c, d are dimensionless, various choices of

these parameters result in various intrinsic firing patterns

(Izhikevich et al. 2003). I stands for the externally applied

current, and I
syn
i is the total synaptic current through neuron i

and is governed by the dynamics of the synaptic variable sj:

I
syn
i ¼ �

XN

1ðj6¼iÞ gjisjðvi � vsynÞ

_sj ¼ aðvjÞð1� sjÞ � sj=s

aðvjÞ ¼ a0=ð1þ e�vj=vshpÞ

ð3Þ

here, the synaptic recovery function aðvjÞ can be taken as

the Heaviside function. When the presynaptic cell is in the

silent state vj\0, sj can be reduced to _sj ¼ �sj=s; other-
wise, sj jumps quickly to 1 and acts on the postsynaptic

cells. Here the excitatory synaptic reversal potential vsyn is

set to be 0. Other parameters used in this paper are a0 ¼ 3,

s ¼ 2, Vshp ¼ 5, D ¼ 0:1. In particular, the other parame-

ters are a ¼ 0:02; b ¼ 0:2; c ¼ �65; d ¼ 6 for regular

spiking neuron and for bursting neuron a ¼ 0:02; b ¼
0:2; c ¼ �50; d ¼ 2 (Izhikevich et al. 2003). The perfor-

mance of spiking and bursting dynamics on the capability

of liquid computing will be discussed in the following

section.

Results

In this section, a list of biologically relevant real-time

computational tasks are designed to compare the compu-

tational capability of LSMs with spiking or bursting

dynamics. In these tasks, target signals are chosen as

mathematical functions of the firing rate of the four input

streams, i.e. r1, r1 þ r3, r1 � r2 and r1 � r2 � r3. The com-

putational results are given in Fig. 3. It shows that readout

could be well trained for different computational tasks,

even for complex computing with high degree (Fig. 3c, d).

Besides, the output curve of LSMs with bursting dynamics

(black line) is much smoother with smaller fluctuations

than that of LSMs with spiking dynamics (red line), indi-

cating its higher accuracy of output approaching to the

target signal. To make it more clear, we use the mean

squared error(MSE) and standard deviation (SD) to quan-

tify the general computational capability. Figure 4 shows

the MSEs and the SDs for the above four tasks with dif-

ferent degree of complexity. It demonstrates that both

MSEs and SDs of the liquid with bursting activity are much

smaller than that of liquid with spiking activity, especially

when the complexity of computational tasks is increased.

This result illustrates that liquid network with bursting

activity has better computational capability for real-time
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Fig. 2 a Four independent input streams (left), each consisting of

eight spike trains generated by poisson process with randomly varying

rates riðtÞ; i ¼ 1; . . .4; The rates of four input streams are plotted in

curves with corresponding colors (right), where all rates are given in

the unit of Hz. b The firing activity of 400 neurons in the liquid

network with spiking dynamic (left) or bursting dynamic (right). c
Corresponding computational performance of the linear readouts (red

dashed line) which were trained according to the teaching signal

r1 þ r3 (blue line). (Color figure online)
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computations on complex input streams compared with the

spiking case. Further, the influence of network size and

synaptic weight from input to liquid network on compu-

tational performance are investigated. Results show that

computational performance can be improved with the

increase of network size and input weights (Fig. 5). The

results for each case are the average values from 20 times

independent runs. Note that during the whole parameter

range, bursting activity always show much better perfor-

mance than the spiking case, indicating the robust advan-

tage of bursting dynamic on computational capability.

Dynamic analysis

In order to get an insight into the underlying mechanisms

of prominent advantage of bursting dynamic, we analyzed

the distribution of activity size, which is measured as the

number of firing neurons in each time step. Figure 6a

compare the activity size of bursting dynamic with the

corresponding spiking dynamic. The data are cumulated

from 10000 time steps. It can be observed that activity size

of burst firing is much larger than that of spike firing. It can

also be clearly seen from Fig. 6b after the sorting of

activity size. Probability distribution of activity size for

two dynamic patterns are shown in Fig. 6c, d. It indicates

that the probability of large activity size for bursting

dynamic is much larger than that of spiking dynamic,

which means that large-scale neuronal firing happens more

frequently in the bursting pattern. Indeed, the larger

activity size and probability of firings means that more

neurons in the liquid are involved in the network activity to

better transmit input signal, which is benefit for encoding
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Fig. 3 Computational performance for different training tasks.

Outputs for spike and burst firing are shown as red and blue dashed

lines respectively. Without too many large fluctuations as shown in

the spiking network, the output for bursting dynamic is much

smoother and closer to the target signal. Here, the synaptic weight

from input to liquid network is 0.1, the synaptic weight in liquid is

0.001 and the input external current is 3. (Color figure online)
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Fig. 4 Comparison of MSE and SD for the above four tasks. liquid

with bursting dynamic has much better performance than the one with

spiking dynamic, especially when the complexity of tasks is increased
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Fig. 5 Influence of network size (a) and synaptic weights from input

to the liquid (b) on the performance of liquid computing with

different firing patterns. The results for each case are the average

values from 20 times independent runs. Error bars denote standard

error
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information and training the readout neuron with high

accuracy and leading to efficient computation.

Moreover, the fast firing pattern of bursting activity can

obviously enhance the efficiency of synaptic integration

from pre-neurons (Fig. 7a, b). Compared with the spiking

activity, the post-synaptic potential for bursting neurons

can be more easily potentiated with the continuous and fast

stimulus from pre-synaptic integrations before the decay-

ing synaptic currents disappear. It means that bursting

activity with higher firing frequency from a pre-synaptic

neurons can be reliably propagated to the post-synaptic

neuron than the spiking activity. That is, bursting dynamic

is beneficial for information encoding and propagation. The

probability distribution of inter-spike interval (ISI) (i.e. the

silent time interval between two neighboring spikes) has

been shown in Fig. 7c. It can be clearly seen that the

average ISI distribution of bursting dynamic is much

smaller than that of spiking dynamic, which results in the

more efficient synaptic integration temporally (as shown in

Fig. 7a). Besides, the complexity of network activity from

these two firing patterns is also compared and measured

based on the information entropy (H), which is defined as

H ¼ �
Xn
i¼1

pi log2 pi ð4Þ

where n is the number of unique binary patterns and pi is the

probability that pattern i occurs (Shew et al. 2011). For

calculation convenience, neuronal activities are measured in

pattern units consisting of a certain number of neurons. In

each time bin, if any neuron of the unit is firing then the event

of this unit is active; otherwise it is inactive. Figure 7d

shows that network with bursting dynamic has much larger

information entropy than that with spiking dynamic. This

result further demonstrates that the more efficient synaptic

integration for bursting dynamics enhances the diversity of

network activity, which benefits for improving the efficiency

of information transmission and computational capability.

The improvement of efficiency in signal processing for

networks with bursting dynamic can also be confirmed in

the performance on stochastic resonance (SR). SR

describes the cooperative effect between a weak signal and

noise in a nonlinear system (Benzi et al. 1981), leading to

an enhanced response to the periodic force (Wiesenfeld

et al. 1995; Kosko and Mitaim 2004; Gammaitoni et al.

1998; Saha and Anand 2003). The neuron model is an

excitable system, which can potentially exhibit SR. To

evaluate SR, we set the periodic input to be Iex ¼ B sinðxtÞ,
with B ¼ 2:5 and w ¼ 0:03. The amplitude of the input is

small enough to ensure that there is no spiking for all the

neurons in the absence of noise. Also, the frequency w is

much slower than that of the neurons inherent periodic

spiking (Li et al. 2007).

Fourier coefficient Q is used to evaluate the response of

out frequency to input frequency. It is defined as (Gam-

maitoni et al. 1998)

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

sin þ Q2
cos

q
;

Qsin ¼
x
2pn

Z 2pn
x

0

2ViðtÞ sinðxtÞdt;

Qcos ¼
x
2pn

Z 2pn
x

0

2ViðtÞ cosðxtÞdt;

ð5Þ
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neurons with spiking (a) or bursting dynamics (b). The variable s is

the fraction of receptors in the open state. c Probability distribution of
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Fig. 8 Stochastic resonance of liquid network with different dynamic

activities. a The performance index Q versus noise intensity D. b The

maximum value of Q (Qmax) versus the amplitude of input signal B.

The result was obtained by 10 independent trials. c, d Performance of
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Here, n is the number of periods 2p
x covered by the integration

time. Vi is the average membrane potential. The quantity Q

measures the component from the Fourier spectrum at the

signal frequency x. The maximum of Q shows the best

phase synchronization between input signal and out firing.

Again, bursting activity exhibits greater SR than spiking

activity (Fig. 8a). And the value of Qmax for network with

bursting dynamic is also much larger than that of spiking

network during the whole range of input intensity (Fig. 8-

b).The result was obtained by 10 independent trials. Fig-

ure 8c, d show that with appropriate noise intensity, bursting

network can achieve better phase synchronization between

input signal and out firing than spiking network. Thus,

bursting activity plays an important role in improving net-

work sensitivity and benefits for signal propagation.

Conclusions

In this paper, detailed comparisons between spiking and

bursting dynamics on the capability of liquid computing

have been investigated. Our results show that neural net-

works with bursting activity has much better computational

performance than those with spike firings. Both probability

and size of bursting activity are much larger than that of

spiking activity, meaning that the state of liquid with

bursting dynamic can contain much more input informa-

tion, which is benefit for training readout neuron with high

accuracy. Further analysis of the probability distribution

and entropy of network activity demonstrate that the fast

firing pattern of bursting dynamics can obviously enhance

the efficiency of synaptic integration from pre-neurons

both temporally and spatially. The bursting dynamic can

significantly enhance the entropy of activity patterns and

stochastic resonance (SR) of the entire network, implying

its high efficiency in information processing. Therefore, It

is believed that bursting activity is much efficient in per-

forming signal processing and computational tasks.

The simulation results of this paper have demonstrated

that neural networks with bursting dynamic have a better

computational performance for polynomial task. Another

topic worthy of future studying is the investigation on how

the network performs on tasks that require memory as

discussed in Dambre et al. (1995).
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