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Abstract Current advances in neurosciences deal with

the functional architecture of the central nervous system,

paving the way for general theories that improve our

understanding of brain activity. From topology, a strong

concept comes into play in understanding brain functions,

namely, the 4D space of a ‘‘hypersphere’s torus’’, unde-

tectable by observers living in a 3D world. The torus may

be compared with a video game with biplanes in aerial

combat: when a biplane flies off one edge of gaming dis-

play, it does not crash but rather it comes back from the

opposite edge of the screen. Our thoughts exhibit similar

behaviour, i.e. the unique ability to connect past, present

and future events in a single, coherent picture as if we were

allowed to watch the three screens of past-present-future

‘‘glued’’ together in a mental kaleidoscope. Here we

hypothesize that brain functions are embedded in a

imperceptible fourth spatial dimension and propose a

method to empirically assess its presence. Neuroimaging

fMRI series can be evaluated, looking for the topological

hallmark of the presence of a fourth dimension. Indeed,

there is a typical feature which reveal the existence of a

functional hypersphere: the simultaneous activation of

areas opposite each other on the 3D cortical surface. Our

suggestion—substantiated by recent findings—that brain

activity takes place on a closed, donut-like trajectory helps

to solve long-standing mysteries concerning our psycho-

logical activities, such as mind-wandering, memory

retrieval, consciousness and dreaming state.

Keywords Hypersphere � Brain � Central nervous

system � Borsuk-Ulam theorem � Fourth dimension �
Manifold

How do thoughts flow in the brain? Current advances in

neuroscience emphasize the role of energetic landscapes

(Watanabe et al. 2014; Sengupta et al. 2013), a sort of

functional linens equipped with peaks, valleys and basins

made of free-energy, where thoughts move, following

erratic and/or constrained trajectories (Afraimovich et al.

2013; Zare and Grigolini 2013; Fraiman and Chialvo 2012;

Deco and Jirsa 2012). Such ‘‘dynamical systems’’ theories

lack however an explanation of the possible physiological

mechanisms underlying brain activity. General theories are

thus needed to further improving our knowledge of central

nervous system activity. This review, based on recent

findings, introduces the concept of a spatial fourth

dimension, where brain functions might take place, as a

general device underlying our thoughts’ dynamics. In

particular, we hypothesize that brain activity is shaped in

guise of a ‘‘3-sphere’’ which performs 4D movements on

the cortical layers, giving rise to a functional ‘‘Clifford

torus’’ where mental operations might take place. We will

discuss how thoughts follow constrained, donut-like tra-

jectories along preferential functional railways embedded

in the very structure of the human brain connectome. This

essay comprises five sections and an appendix organized as

follows. The very first section will be devoted to give as

simple as possible explanations of concepts from the far-
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flung branch of topology. Because this method of investi-

gation of the laws of biology diverges from what was

previously familiar, we prefer to use a language addressed

to a broad interdisciplinary audience which encompasses

experts from different fields (neuroscientists, medical

doctors, biologists, epistemologists). Sections two and

three will aim to enclose the concept of the 3-sphere in the

framework of brain activity, in order to demonstrate the

feasibility of our theory and to sketch a four-dimensional

brain model in a way that is empirically testable. Sec-

tion four, taking into account suggestions from recent

papers, will provide quantitative methods for an experi-

mental assessment of our hypothesis, which could be of use

to researchers that investigate network connectivity. The

final section discusses how a brain hypersphere could lead

to novel approaches to organized brain models, improving

our understanding of cortical functions and paving the way

to innovative research strategies. In order to show how our

theory can be operationalized, we also provide an appendix

as supporting information for technical readers. This latter

material unpacks 3-spheres and fourth dimensions afforded

by a mathematical point of view.

What is a hypersphere?

A n-sphere, also called Sn, is a n-dimensional structure

embedded in a n ? 1 space (Henderson 1996). For exam-

ple, a 1-sphere (S1) is the one-dimensional circumference

surrounding a 2-dimensional disk, while a 2-sphere (S2) is

the 2-dimensional surface of a 3-dimensional space (a

beach ball’s surface is a good illustration) (Henderson and

Taimina 2001). In mathematical terms, a 3-sphere (S3),

also called glome (from the Latin ‘‘glomus’’, meaning ball

of string), or generically hypersphere, is an artificial con-

vex structure enclosed in a Euclidean 4-dimensional space

called a 4-ball (Marsaglia 1972). The prefix ‘‘hyper’’ refers

to 3- (and higher-) dimensional analogues of n-spheres. A

3-sphere is thus the surface of a 4-dimensional ball, while a

4-dimensional ball is the interior (the content) of a

3-sphere, in the same way as a bottle of water is made of a

glass surface and a liquid content. How to build a glome?

In topology, a glome can be attained by superimposing two

2-spheres (two beach balls) whose opposite edges are

abstractly glued together: we obtain a structure called the

Clifford torus (Manetti 2015). A Clifford torus reminds a

lifebelt, with its donut-like shape (Fig. 1a), nevertheless

with an important difference: the Clifford torus displays the

same local geometry as an ‘‘ordinary’’ three-dimensional

space, but its global topology is different (Willard 1970;

Krantz 2009). Our torus is constantly in movement,

because it is equipped with intricate rotations called

quaternionic movements (Ozdemir and Özekes 2013;

Lemaı̂tre 1948). Imagine a skein made of rope circles,

where each rope takes a different rotation: the general

shape of the skein is always the same, but an ever changing

motion occurs inside it. The internal shape of the glome is

in ceaseless activity, depending on the number of ropes

Fig. 1 Different ways to depict a hypersphere. a How two 2-spheres

glued together along their spherical boundary give rise to a donut-

shaped Clifford torus. b Another way to depict a hypersphere: the

superimposition of two 2-spheres (which circumferences are glued

together) gives rise to a glome. Some of the quaternion rotations are

depicted by the straight and curved arrows. c 3D projection of a

hypersphere. The lines on the left enlarge in diameter, forming a

circle of increasing circumference on the left surface of the 3D space.

Conversely, on the opposite right side, the lines shrink and give rise to

a circle of decreasing circumference on the right surface of the 3D

space. See text for further details. The dotted lines and the black

spheres depict some of the possible antipodal points predicted by the

Borsuk Ulam Theorem (to give another example, J and -J are

antipodal points in a)
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taken into account and their trajectories. Complicated

motions occur indeed on a hypersphere: four pairs of points

opposite each other (called antipodal points 1, -1, k, -k, j,

-j and i, -i) give rise to the ‘‘quaternion group’’ (Hart and

Segerman 2014), which displays two possible types of

reciprocal 4D rotations (Fig. 1b). For a mathematical

treatment of hyperspheres, quaternions and the correlated

Lie groups, see Appendix, Section 1. The glome, requiring

four dimensions for its definition just as an ordinary sphere

requires three, is not detectable in the usual spatial 3-di-

mensions and is thus very challenging to assess. Fig-

ures 1a–c show the possible ways to cope with a 3D

visualization of a glome: observe how opposite sections of

the rim fit together, rather than trying to visualize the whole

thing at once the way you would visualize a common

sphere. Each apparent line segment is really two, one

arching upward into the third dimension and the other

arching downward. To better understand the concept of a

3-sphere, the images should be watched during their

complicated movements: a list of very useful videos is

provided in Appendix, Section 1.

Why an hypersphere to explain brain activity?

Experimental and theoretical clues allow us to conjecture

that the brain activities (at least some of them) are

embedded in a torus lying on the surface of a hypersphere.

The theoretical claims of brain multidimensionality are

widespread (Tononi 2008; Papo 2014; Ponce-Alvarez et al.

2015; Schoenberg and Speckens 2015). Models character-

ized by dimensionality reduction have been used in the

study of human central nervous system, particularly

through full-brain auto-regressive modelling (Garg et al.

2011). It has been demonstrated that high dimensionality

spontaneous activity structures—termed ‘‘lag threads’’—

can be found in the brain, consisting of multiple, repro-

ducible temporal sequences (Mitra et al. 2015). Moreover,

it has been shown that the exceedingly diverse nonlinear

selectivity in single-neuron activity in the prefrontal cortex,

which encodes distributed information about all task-rele-

vant aspects, is a signature of high-dimensional neural

representations: crucially, this dimensionality is predictive

of animal behaviour as it collapses in error trials (Rigotti

et al. 2013). In addition, recent findings suggest that ner-

vous structures process information through topological as

well as spatial mechanisms. For example, it is has been

hypothesized that hippocampal place cells create topolog-

ical templates to represent spatial information (Dabaghian

et al. 2014). We stated that a glome displays a donut-like

shape: it means that the trajectory followed by a particle

inside the torus is closed. To make an example, if you walk

along one of the curves of a 4-ball, you think are crossing a

straight trajectory, and do not recognize that your envi-

ronment is embedded in an higher dimension. The torus

may be compared with a video game with biplanes in aerial

combat: when a biplane flies off one edge of gaming dis-

play, it does not crash but rather it comes back from the

opposite edge of the screen. Mathematically speaking, the

display edges have been ‘‘glued’’ together. Our brain

exhibits similar behaviour, i.e., the unique ability to con-

nect past, present and future events in a single, coherent

picture (Fingelkurts and Fingelkurts 2014; Nyberg et al.

2010), as if we were allowed to watch the three screens of

past-present-future glued together in a mental kaleido-

scope. The same occurs during other brain functions, e.g.,

memory retrieval, recursive imagination and mind wan-

dering (Andrews-Hanna et al. 2014), in which concepts

flow from a state to another and appear to be ‘‘glued’’

together. As stated above, the torus is naturally visualized

intrinsically, by ignoring any extrinsic properties a surface

may have: it is thought that all the movements onto a torus

surface are performed just by trajectories internal to its

structure. For example, take a sheet of paper and bend it

into a half-cylinder: the extrinsic geometry of the paper has

obviously changed, but the paper itself has not been

deformed and its intrinsic geometry has not varied. What

would you see if you lived in a closed 4-dimensional

manifold? You should be able to see yourself, via the

intrinsic structure provided by the glued surfaces of a

hypersphere, in an otherwise unperceivable 4D space

(Weeks 2002). In the same way, we humans perceive our

thoughts intrinsically and naturally adopt ‘‘private’’, sub-

jective standpoints.

How to demonstrate the presence of a brain
hypersphere?

Brains equipped with a hypersphere is a counter-intuitive

hypothesis, since we live in a 3D world with no immediate

perception that 4D space exists at all. We need thus to

evaluate indirect clues of the undetectable fourth dimen-

sion, such as signs of the glome rotations on a familiar 3D

surface. In other words, rotations of a 4D torus embedded

in a 4-ball can be identified through their ‘‘cross section’’

movements on a more accessible 3D surface (Fig. 1c), as if

you recognized an object just from its shadow projected on

a screen. In Fig. 1c, the arrows illustrate the trajectories

followed by the 4D quaternionic movements of a Clifford

torus, when projected onto the surface of the 3D space in

which it has been artificially embedded. Note that the

arrows (representing the quaternions’ flows) follow the

external and medial surfaces of the 3D space in a way

that is predictable. It must be emphasized that just one of

the possible directions of the quaternion movements is
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displayed in Fig. 1c: the flow on a Clifford torus may

indeed occur in each of the four planes. The small circle

labelled T0 depicts one of the possible conventional start-

ing points of the flow. In Fig. 1c we showed just the tra-

jectory from right to left, starting from T0; however, also

the opposite trajectory, from left to right, and countless

others, can be exploited by the torus during its 4D

movements.

The presence of a glome can be detected invoking the

Borsuk-Ulam Theorem (BUT) from topology, which is

characterized by very helpful features (Borsuk 1933;

Matoušek 2003). BUT states that we can identify on a

n-sphere two ‘‘antipodal points’’ (i.e., points directly oppo-

site each other) (Fig. 2). To make an example, there always

exist a pair of opposite points on the earth’s equator (a

1-sphere) with the same temperature. It is worth of mention

that the two antipodal points display similar characteristics

and have matching descriptions (Cohen 1973; Giblin 2010).

Such two opposite points can be used not just for the

description of simple topological structures, but can also be

generalized to the description of two antipodal shapes or

signals. Thus, if you take into account physical and biolog-

ical phenomena instead of ‘‘points’’, BUT leads naturally to

the possibility of a region-based, not simply point-based,

geometry, in which we view collections of signals as surface

shapes, where one shape maps to another antipodal one

(Peters 2014; Collins 2004; Borsuk 1958–1959; Borsuk

1969; Borsuk and Gmurczyk 1980). A point on S2 (which is

embedded in R3) projects to two antipodal points on R4. It

means that the projection from a lower dimension Rn

(equipped with just one point) to an higher one Rn?1 gives

rise to two opposite, symmetrical points. It also means that

different phenomena (including brain activity) could be

studied in terms of antipodal points, if we embed them in just

one dimension higher than the usual one.

If we embed the brain in the 4D space of a Clifford

torus, the presence of antipodal (opposite) points or shapes

on 3D cortical surfaces could be evaluated (Fig. 3). We

need to stress again that the hypersphere’s location dis-

played in Fig. 3 is just one of the countless possible: being

the glome a functional structure equipped with many

rotations and trajectories, it can be placed in different

points of the brain surface. The antipodal points in the

fourth dimension evoked by BUT can be viewed as brain

signals opposite each other on the three-dimensional brain.

For example, when a surface ‘‘fires’’, the simultaneous

firing of the opposite one is a proof of a perceivable

‘‘passing through’’ of the fourth dimension onto the brain

3D surface. The mechanism, elucidated in Fig. 3, is the

following: the activation of a single point on the 3D brain

S2 surface (Fig. 3a) leads to the activation of two antipodal

points on the 4D brain S3 surface (Fig. 3b). In turn, the

activation of two antipodal points on S3 leaves on the 3D

brain S2 surface ‘‘hallmarks’’ (Fig. 3c) which can be

detected by currently available neuroimaging techniques.

For a mathematical treatment of the Borsuk-Ulam theorem,

shapes, homotopies and their applications, see the Appen-

dix, Section 2. In conclusion, the mathematical model of

antipodal points can be casted in a biologically informed

fashion, resulting in a framework that has the potential to

be operationalized and assessed empirically.

Are there proofs or clues of brain hypersphere?

Our brain hypersphere hypothesis could be corroborated

either by prospective investigations, or by retrospective

evaluation of published resting-state fMRI data, looking for

the hallmarks of the hypothesized BUT. Why resting- state

studies are more feasible for an evaluation of the possible

Fig. 2 The Borsuk-Ulam

theorem for different values of

Sn. S1 depicts a circumference,

S2 a common sphere, S3 a

hypersphere, while R1 portrays

a line, R2 a circumference and

R3 a common sphere. Note that

the two antipodal points in

every sphere Sn project to a

single point in the

corresponding space Rn, and

vice versa
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presence of a glome in brain activity? Spontaneous oscil-

lations are intrinsic, low-frequency fluctuations of cerebral

activity which cannot be attributed to the experimental

design or other explicit input or output (Fox and Raichle

2007). Among the networks exhibiting coherent fluctua-

tions in spontaneous activity, the ‘‘default-mode network’’

(DMN) is worth of mentioning, because it includes func-

tionally and structurally connected regions that show high

metabolic activity at rest, but deactivate when specific

goal-directed behavior is needed (Raichle et al. 2001).

Spontaneous oscillations recapitulate the topographies of

fMRI responses to a wide variety of sensory, motor and

cognitive task paradigms, providing a powerful means of

delineating brain functional organization without the need

for subjects to perform tasks (Mitra et al. 2014). To eval-

uate our BUT hypothesis, we favour studies focused on

intrinsic, instead of task-evoked activity, because the for-

mer is associated with mental operations that could be

attributed to the activity of a glome—mental ‘‘screens’’ are

glued together and the trajectories of particles (or

thoughts!) follow the internal surface of a Clifford torus.

For example, spontaneous brain activity has been associ-

ated with mind-wandering or day dreaming propensities

(Kucyi et al. 2014), construction of coherent mental scenes,

autobiographical memories (Conway and Pleydell-Pearce

2000), experiences focused on the future and dreaming

state (Domhoff and Fox 2015). Recent evidence also sug-

gests overlap between the DMN and regions involved in

self- and other-related mental operations—such as affec-

tive and introspective processes (Amft et al. 2015; Philippi

et al. 2015; Morewedge et al. 2014)—for a description of

the terminology, see Andrews-Hanna et al. (2014). It has

also been hypothesized that spontaneous functional con-

nectivity patterns at rest might constitute a ‘‘signature of

consciousness’’, reflecting a stream of ongoing cognitive

processes (Barttfeld et al. 2015). Spontaneous activity is

highly variable among individuals, depending on local

brain differences, somatosensory awareness, age span,

race, culture and so on (Gorgolewski and al 2014; Sadtler

et al. 2014). We speculate that such variability might be

correlated with those differences in Clifford torus’ struc-

ture and movements illustrated above. A brain 3-sphere has

the potential to represent a conceptual bridge, because it

exhibits both anatomical/functional (spontaneous brain

activity and DMN) and psychological correlates (sponta-

neous, deliberate, self-generated thoughts).

Several data (movies, figures and temporal series)

extrapolated from different available experimental studies

and/or meta-analyses describing brain spontaneous activity

seem to corroborate our hypothesis. To make some

examples:

(a) High dimensionality spontaneous activity struc-

tures—‘‘lag threads’’ -, consisting of multiple highly

reproducible temporal sequences, showed the fre-

quent occurrence of the antipodal points’ activation

at different times (Mitra et al. 2015) (Fig. 4).

(b) Decomposition of spontaneous brain activity into

distinct fMRI co-activation patterns displayed a

simultaneous activation of perisylvian and/or the

opposite medial occipito-parietal areas (Liu et al.

2013) (Fig. 5a).

(c) Karahanoglu and Van De Ville (2015) decomposed

resting-state fMRI using iCAPs, i.e. innovation-

Fig. 3 The concept of

hypersphere in the framework

of brain functional activity.

According to the Borsuk-Ulam

theorem, the activation of a

single point on the S2 brain

surface (Fig. 1a) leads to the

activation of two antipodal

points (corresponding in this

case to the quaternionic points J

and -J) on the S3 brain surface

(b). The simultaneous activation

of the S3 antipodal points

displayed in b can be also

evaluated on the 3D cortical

surface (c), provided the brain is

embedded in a 3D space

containing the 4D Clifford torus

(the same 3D space described in

Fig. 1c). The nomenclature is

borrowed from c

Cogn Neurodyn (2016) 10:189–199 193

123



driven co-activation patterns. Their results show

once again that opposite brain areas activate

together: in particular, the pattern was cleary visible

in bilateral posterior-frontal antipodal areas and in

bilateral perisilvian antipodal areas (Fig. 5b).

(d) Meta-analytic clusters of fMRI temporal activation

associated with mind-wandering and related sponta-

neous thought processes (Fox et al. 2015) clearly

displayed the simultaneous activation of two antipo-

dal zones (Fig. 5c).

Fig. 4 Video frames, modified

from Mitra et al. (2015),

showing lag threads computed

from real BOLD resting state rs-

fMRI data in a group of 688

subjects, obtained from the

Harvard-MGH Brain Genomics

Superstruct Project (see Mitra

et al. 2015 for further technical

details). Note the widely

diffused presence of BUT

hallmarks (black lines) at

different times and in different

brain projections
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(e) Unnoticed features of antipodal points’ activation can

be found also in other data sets. For example, see

Andrews-Hanna et al. (2014), Fox and Raichle (2007),

Raichle (2009), Power et al. (2014), Mao et al. (2015),

Harrison et al. (2015), Gusnard et al. (2001), Gravel

et al. (2014), Barttfeld et al. (2015), Ajilore et al. (2013).

In sum, it is possible to find in literature several data

confirming the occurrence of opposite brain zones’ activa-

tion, which is the sign predicted by BUT. The fMRI

sequences of brain region activations, apart from differences

depending on slight methodological distinctions among the

papers, exhibited a stereotyped topographical firing pattern,

such that brain loci are activated together with their opposite

zones. As a result, highly reproducible topography and

propagation through subsets of regions that are shared across

multiple trajectories can be found in different data sets: it

corroborates the prediction of BUT linked with the presence

of a brain hypersphere.

Fig. 5 Examples from

functional neuroimaging real

data showing how the predicted

antipodal points can be correctly

identified: given one point (a

brain signal), there is a second

point (another brain signal) at

the opposite end of a straight

line segment connecting them

and passing for the center (white

or black lines). a Decomposition

of Spontaneous Brain Activity

into Distinct fMRI Co-

activation Patterns (Liu et al.

2013). b Different clusters

during resting-state fMRI

scanning, evaluated through

innovation-driven co-activation

patterns (called iCAPs)

(Karahanoglu and Van De Ville

2015). c Significant meta-

analytic clusters of fMRI

temporal activation associated

with mind-wandering and

related spontaneous thought

processes (Fox et al. 2015)
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What now?

Our review uncovered evidence of hypersphere in experi-

mental fMRI series obtained during spontaneous activity,

raising the possibility that (at least some) brain functions lie

on a glome enclosed in 4D space. Brain activity is thus

temporally driven by a functional 3-sphere, intrinsic to the

brain and (probably) embedded in the very anatomical

structure of the connectome. Indeed, to evaluate glomes in

terms of framework for brain functions, we first need to

identify potential brain signal loci where quaternion rota-

tions might take place. The natural candidate is the spatially

embedded network of the human connectome (Sporns 2011;

Jarman et al. 2014), a non-stationary, highly dynamical

structure (de Pasquale et al. 2015; Fox et al. 2015) char-

acterized by complex topological features and an ever-

changing geometry (Roberts 2015). Me may thus state that a

4D cap surrounds the brain, equipped with trajectories

which follow quaternion movements along the nodes of the

connectome. The reproducibility of the BUT hallmarks in

different Authors suggests that this organizational feature is

essential to normal brain physiology and function.

Further studies are needed to evaluate what happens

when other techniques are used, e.g., EEG and diffusion

tensor imaging. Does evoked, task-related activity exhibit

the same features displayed by resting-state? Additional

investigations will elucidate whether, following the stim-

ulus onset (either external from the environment or internal

from the body melieu and the brain), the multidimensional

space outlined by cortical activity is invariant or reduced

(Papo 2014). Human fMRI studies have recently revealed

that a co-activation of sensory and fronto-parietal areas (in

particular, simultaneous firing of activated antipodal points

in somatosensory, lateral and medial frontal, posterior

parietal and in the cingulate cortex) is crucial for conscious

sensory perception in the several second time-scale of

BOLD signal fluctuations (Hirvonen and Palva 2015).

If you are embedded in a 4D torus containing a doll, you

see in front of you side-to-side reversal (and/or three-

quarters turn) doll’s images. To be into a glome looks like

to stand in front of a weird mirror: if you raise your left

hand, you see in infinitely many screens countless copies of

yourself raising the left hand, while other copies raise the

right one. Because such neighboring images of the same

object are related by glide reflections translations (Weeks

2002), it remains to be seen what the implications of the

glome would have for consciousness, perception of time

and nature of reality. Going a step further, our ‘‘deter-

ministic’’ account of linear transformations needs to be

contextualized, taking into account the suggestions of the

brain as an energy-sparing, complex, nonlinear system

equipped with attractors and/or random walks (Beggs and

Timme 2012; Friston 2010; Zhang et al. 2015). Also the

role of electromagnetic currents needs to be re-evaluated,

i.e., do spikes contain the message, or, as recently sug-

gested (Tozzi 2015), they serve other kinds of functions?

For example, it has been proposed that features of a brain

signal with spectral peaks in preferred bands (gamma, beta

and so on) provide a basis for feature vectors in a 4D

Euclidean space (Padhy et al. 2011). Further, the hyper-

sphere, due to different movements of the quaternionic

system, relentlessly varies its intrinsic structure: in this

context, it is reasonable to speculate that each mental state

corresponds to a different glome’s topological space. In

conclusion, our original approach to brain activity, starting

from such a completely new point of view, contains the

promise of great fruitfulness in the mere fact that it directs

us into new ways, opens out new perspectives and shows

how it is possible to get quite a new light upon the old

problems which are constantly being turned over and over

in the same way. Indeed, a deeper knowledge of a fourth

brain dimension via experimental confirm will lead to

novel approaches to organized biological models, will

improve our understanding of cortical functions and will

also pave the way to innovative therapeutic strategies.

Appendix

Section 1

Movements of particles on 3-spheres

At first, we need to mathematically define a hypersphere. It

is an n-sphere formed by points which are constant distance

from the origin in (n ? 1)-dimensions (Henderson and

Taimina 2001; Giblin 2010). A 3-sphere of radius r (where

r may be any positive real number) is defined as the set of

points in 4D Euclidean space at distance r from some fixed

center point c (which may be any point in the 4D space).

The notation Sn refers to an n-sphere, which is a gen-

eralization of the circle. A 1-sphere is a set points on the

perimeter of a circle in a 2D space, while a 2-sphere is a

sets of surface points in a 3D space and a 3-sphere is set of

points on the surface of what is known as a ‘‘hypersphere’’.

From a geometer’s perspective, we have the following

n-spheres, starting with the perimeter of a circle (S1) and

advancing to S3, which is the smallest hypersphere,

embedded in a 4-ball:

1-sphere S1 : x1
2 ? x2

2, embedded in R2 (circle perimeter,

the common circumference),

2-sphere S2 : x1
2 ? x2

2 ? x3
2, embedded in R3 (surface of

the common sphere, i.e. a beach ball),
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3-sphere S3 : x1
2 ? x2

2 ? x3
2? x4

2, embedded in R4 (the

smallest hypersphere surface),…,

n-sphere Sn : x1
2 ? x2

2 ? x3
2?… ? xn

2,embedded in Rn.

In technical terms, a map of a glome equipped with

Sp(1) or SU(2) Lie groups can be projected onto a 3-D

surface. The 3-sphere is parallelizable as a differentiable

manifold, with a principal U(1) bundle over the 2-sphere.

Apart S3, the only other spheres that admit the structure of

a Lie group are the 0-sphere S0 (real numbers with absolute

value 1), the circle S1 (complex numbers with absolute

value 1) and S7.

The 3-sphere’s Lie group structure is Sp(1), which is a

compact, simply connected symplectic group, equipped

with quaternionic 1X1 unitary matrices. The glome S3

forms a Lie group by identification with the set of

quaternions of unit norm, called versors (Ozdemir and

Özekes 2013). The quaternionic manifold is a cube with

each face glued to the opposite face with a one quarter

clockwise turn. The name arises from the fact that its

symmetries can be modeled in the quaternions, a number

system similar to the complex numbers, but with three

imaginary quantities, instead of just one (Lemaı̂tre 1948).

For an affordable, less technical treatment of quaternions,

see (Hart and Segerman 2014).

In addition: Sp(1) & SO(4)/SO(3) & Spin(3) & SU

(2).

Thus, Sp(1) is equivalent to—and can be identified

with—the special unitary group SU(2).

List of useful videos

They are very helpful in order to understand the hyper-

sphere’s movements in four dimensions.

(a) The superimposition of two 2-spheres (with circum-

ferences glued together) gives rise to a 3-sphere

equipped with quaternionic movements: https://

www.youtube.com/watch?v=XFW769hqa1U

(b) a stereographic projection of a Clifford torus,

performing a simple rotation through the xz plane:

https://en.wikipedia.org/wiki/Clifford_torus#/media/

File:Clifford-torus.gif)

(c) 3-D Stereographic projection of the ‘‘toroidal paral-

lels’’ of a 3-D sphere: https://www.youtube.com/

watch?v=QlcSlTmc0Ts

(d) The shape of the 3-sphere is ever-changing, depend-

ing on the number of circles taken into account and

their trajectories: http://nilesjohnson.net/hopf.html

(e) A video correlated with the above mentioned Hart

and Segerman’s paper (2014) illustrates the quater-

nions’ movements of… a group of monkeys: http://

blogs.scientificamerican.com/roots-of-unity/nothing-

is-more-fun-than-a-hypercube-of-monkeys/

Section 2

The Borsuk-Ulam Theorem

Continuous mappings from object spaces to feature spaces

lead to various incarnations of the Borsuk-Ulam Theorem,

a remarkable finding about Euclidean n-spheres and

antipodal points by K. Borsuk (Borsuk 1958–1959).

Briefly, antipodal points are points opposite each other on a

Sn sphere. There are natural ties between Borsuk’s result

for antipodes and mappings called homotopies. In fact, the

early work on n-spheres and antipodal points eventually led

Borsuk to the study of retraction mappings and homotopic

mappings (Borsuk and Gmurczyk 1980).

The Borsuk-Ulam Theorem states that:

Every continuous map f:Sn ? Rn must identify a pair of

antipodal points.

Points on Sn are antipodal, provided they are diametri-

cally opposite. Examples are opposite points along the

circumference of a circle S1, or poles of a sphere S2. An n-

dimensional Euclidean vector space is denoted by Rn. In

terms of brain activity, a feature vector x 2 Rn models the

description of a brain signal.

Borsuk-Ulam in brain signal analysis

In order to evaluate the possible applications of the Borsuk-

Ulam Theorem in brain signal analysis, we view the sur-

face of the brain as a n-sphere and the feature space for

brain signals as finite Euclidean topological spaces. The

Borsuk-Ulam Theorem tells us that for description f(x) for

a brain signal x, we can expect to find an antipodal feature

vector f(-x) that describes a brain signal on the opposite

(antipodal) side of the brain. Moreover, the pair of

antipodal brain signals have matching descriptions.

LetXdenote a nonempty set of points on the brain surface.

A topological structure onX(called a brain topological

space) is a structure given by a set of subsets s of X, having

the following properties:

(Str.1) Every union of sets in s is a set in s
(Str.2) Every finite intersection of sets in s is a set in s

The pair (X, s) is called a topological space. Usually,

X by itself is called a topological space, provided X has a

topology s on it. Let X, Y be topological spaces. Recall that

a function or map f: X ? Y on a set X to a set Y is a subset

X 9 Y so that for each x 2 X there is a unique y 2 Y such

that (x, y) 2 f (usually written y = f(x)). The mapping f is

defined by a rule that tells us how to find f(x). For a good

introduction to mappings, see (Willard 1970).

A mapping f: X ? Y is continuous, provided, when

A , Y is open, then the inverse f-1(A) , X is also open.

For more about this, see Krantz (2009). In this view of
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continuous mappings from the brain signal topological

space X on the surface of the brain to the brain signal

feature space Rn, we can consider not just one brain signal

feature vector x 2 Rn, but also mappings from X to a set of

brain signal feature vectors f(X). This expanded view of

brain signals has interest, since every connected set of

feature vectors f(X) has a shape. The significance of this is

that brain signal shapes can be compared.

A consideration of f(X) (set of brain signal descriptions

for a region X) instead of f(x) (description of a single brain

signal x) leads to a region-based view of brain signals. This

region-based view of the brain arises naturally in terms of a

comparison of shapes produced by different mappings from

X (brain object space) to the brain feature space Rn. An

interest in continuous mappings from object spaces to

feature spaces leads into homotopy theory and the study of

shapes.

Let f, g: X ? Y be continuous mappings from X to

Y. The continuous map H: X 9 [0, 1] ? Y is defined by

H(x, 0) = f(x), H(x, 1) = g(x), for every x 2 X.

The mapping H is a homotopy, provided there is a

continuous transformation (called a deformation) from f to

g. The continuous maps f, g are called homotopic maps,

provided f(X) continuously deforms into g(X) (denoted

byf(X) ? g(X)). The sets of points f(X), g(X) are called

shapes. For more about this, see Manetti (2015) and Cohen

(1973).

For the mapping H: X 9 [0, 1] ? Rn, where H(X, 0) and

H(X, 1) are homotopic, provided f(X) and g(X) have the

same shape. That is, f(X) and g(X) are homotopic, provided:

k f ðXÞ � gðXÞ k \ k f ðXÞ k; for all x 2 X:

It was Borsuk who first associated the geometric notion

of shape and homotopies. This leads into the geometry of

shapes and shapes of space (Collins 2004). To make an

example, a pair of connected planar subsets in Euclidean

space R2 have equivalent shapes, if the planer sets have the

same number of holes (Krantz 2009). The letters e, O, P and

numerals 6, 9 belong to the same equivalence class of sin-

gle-hole shapes. In terms of brain signals, this means that

the connected graph for f(X) with, for example, an e shape,

can be deformed into the 9 shape. This suggests yet another

useful application of Borsuk’s view of the transformation of

shapes, one into the other, in terms of brain signal analysis.

Sets of brain signals not only will have similar descriptions,

but also dynamic character. Moreover, the deformation of

one brain signal shape into another occurs when they are

descriptively near (Peters 2014).

A remark concerning brain activity on hyperspheres

One of the formulations of BUT (the third one, in Borsuk

1933) states that there is no antipodal mapping f : Sn ?

Sn-1. It is not completely true: in case of antipodal points

not represented by shapes or feature spaces, but by Lie

groups, we can detect the hints of the movements of S4 on

S3, because the Lie group has at least one point Sn \ Sn-1.

The main benefit here is that, according to the BUT dic-

tates, for each given brain signal we are allowed to find a

counterpart in the cortical surface’s antipodal position.
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