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Abstract Visual brain-computer interfaces (BCIs) are not

suitable for people who cannot reliably maintain their eye

gaze. Considering that this group usually maintains audition,

an auditory based BCI may be a good choice for them. In this

paper, we explore two auditory patterns: (1) a pattern uti-

lizing symmetrical spatial cues with multiple frequency

beeps [called the high low medium (HLM) pattern], and (2) a

pattern utilizing non-symmetrical spatial cues with six tones

derived from the diatonic scale [called the diatonic scale

(DS) pattern]. These two patterns are compared to each other

in terms of accuracy to determine which auditory pattern is

better. The HLM pattern uses three different frequency beeps

and has a symmetrical spatial distribution. The DS pattern

uses six spoken stimuli, which are six notes solmizated as

‘‘do’’, ‘‘re’’, ‘‘mi’’, ‘‘fa’’, ‘‘sol’’ and ‘‘la’’, and derived from

the diatonic scale. These six sounds are distributed to six,

spatially distributed, speakers. Thus, we compare a BCI

paradigm using beeps with another BCI paradigm using

tones on the diatonic scale, when the stimuli are spatially

distributed. Although no significant differences are found

between the ERPs, the HLM pattern performs better than the

DS pattern: the online accuracy achieved with the HLM

pattern is significantly higher than that achieved with the DS

pattern (p = 0.0028).

Keywords Auditory BCI � Auditory pattern � Spatial

cues � Diatonic scale

Introduction

Brain-computer interfaces (BCIs) are communication sys-

tems, which can be used to send messages or commands to

the external world without the brain’s normal output

pathways of peripheral nerves and muscles (Freeman

2007a, b; Wang et al. 2014a, b; Wolpaw et al. 2002).The

main goal of BCI technology is to improve the quality-of-

life of people who are locked-in (e.g., by end-stage amy-

otrophic lateral sclerosis brainstem stroke, or severe

polyneuropathy) or lack any useful muscle control (e.g.,

due to severe cerebral palsy) (Daly et al. 2013; Farwell

2012; Freeman 2007a, b; Hoffmann et al. 2008). Residual

senses, such as vision (Jin et al. 2011, 2014a, b; Wang et al.

2014a, b), audition (Daly et al. 2014), or touch (Kodama

et al. 2014) can be utilized to control a BCI. One of the

most frequently used brain potentials in BCI is the P300

event-related potential (ERP) (Hwang et al. 2013), which is

an enhanced positive EEG amplitude potential with a

latency of about 300 ms, that can be evoked by specific

events (Farwell and Donchin 1988). Farwell and Donchin

(1988) proposed the first visual P300-based BCI, called the

P300 speller. Since then, many studies have been done to
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improve the performance of visual P300-based BCIs (Li

et al. 2016; Yin et al. 2013).

However, people in different situations may experience

some limitations in using visual BCI systems. For example,

for people who have weak vision or who cannot control

their eye movements but keep audition, a visual BCI can

prove challenging or unusable, while auditory BCIs can

prove to be effective (Guo et al. 2010; Laghari et al. 2013;

Ide et al. 2013). Moreover, some amyotrophic lateral

sclerosis (ALS) patients can usually still hear clearly

(Hayashi and Kato 1989). In view of this, some studies

have focused on auditory-based-BCI systems, which can be

used by these patients. Although an auditory P300 speller

tested with four locked-in patients showed worse perfor-

mance compared with a visual P300 speller (Kübler et al.

2009), later studies have shown the practicality of the

auditory BCI paradigm (Dominguez et al. 2011; Wang and

Chang 2008).

A P300 auditory brain-computer interface that utilized a

6 9 6 speller and six different environmental sounds rep-

resenting different columns or rows was presented by

Klobassa et al. (Klobassa et al. 2009). It demonstrated the

high speed of the proposed system, with maximum bit rates

reaching about 2 bits/min.

Halder et al. (2010) showed that a paradigm with targets

varying in pitch achieved the best performance, while a

paradigm with targets varying in direction performed rel-

atively worse. Höhne et al. (2011) developed an auditory

BCI speller which used three tones varying in pitch and

direction and presented via headphones. Similarly, Käthner

et al. (2013) proposed an auditory BCI system, which used

pitch and direction as cues, and also investigated different

inter-stimulus intervals (ISIs). It was found that, for this

auditory BCI, the best performance was achieved with an

ISI under 400 ms. Auditory spatial paradigms have also

been well researched in other studies (Belitski et al. 2011;

Lelievre et al. 2013; Rutkowski et al. 2010).

Moreover, Muller-Putz et al. (2012) evaluated a novel

auditory single-switch BCI (ssBCI) in nine individuals who

were in a minimally conscious state (MCS). The task

consisted of a simple and difficult oddball pattern that

included two different tone streams with rarely appearing

deviant tones. The simple pattern contained one tone

stream, while the difficult pattern contained two tone

streams played at the same time. The results showed that

this auditory BCI could work for MCS patients. With

enough training time, an auditory BCI might perform as

well as a visual BCI (Nijboer et al. 2008).

Some studies utilized the auditory steady state response

(ASSR) in BCI paradigms and showed the usefulness of the

ASSR (Higashi et al. 2011; Kim et al. 2011).

Although different kinds of auditory patterns have been

investigated, some problems still exist, such as front-back

confusion [the phenomenon of a listener giving a response

to the opposite location to the stimulus in the vertical plane

(Makous and Middlebrooks 1990)] in multi class auditory

BCIs which use spatial cues (Schreuder et al. 2011), and

the low information content of the binary decision auditory

BCI (Schreuder et al. 2010). Therefore, we explored a new

auditory BCI system, which was designed to improve

performance and avoid the front-back confusion.

In this paper, we compared two patterns, which were

named the HLM (High Low Medium) pattern and the DS

(Diatonic Scale) pattern respectively. The frequencies of

human speech and sung vocalization are in the low fre-

quency range below 1000 Hz (Smith and Price 2014).

Thus, the HLM pattern used three different frequency

beeps at low (200 Hz), medium (500 Hz), and high

(1000 Hz) frequencies, to compare to the six notes of the

diatonic scale in the DS pattern, which were pronounced as

‘‘do’’, ‘‘re’’, ‘‘mi’’, ‘‘fa’’, ‘‘sol’’, and ‘‘la’’. It had been

shown that a paradigm with multiple spatially distributed

speakers performed better than a paradigm using a single

speaker (Schreuder et al. 2010). Accordingly, six loud-

speakers were arranged to play sounds in both paradigms.

In this study, we wanted to compare an auditory BCI

paradigm that used beeps with a paradigm that used music

notes.

Methods

Participants

Ten healthy volunteers (7 males and 3 females, ages 23–25,

mean age 24.3 ± 0.67) participated in this study, which

was approved by the Human Research and Ethics Com-

mittee of East China University of Science and Technol-

ogy. Nine of the participants were right handed, and one

male was left handed. All the participants were given

information about the experiments and signed consent

forms beforehand. They reported no problems of hearing or

neurological disorders now or previously. Their participa-

tion was paid 30 RMB per hour.

Auditory stimuli

The stimuli used in the HLM pattern were three pure tones

in different frequencies. The tones were generated with

200 Hz (low), 500 Hz (medium) and 1000 Hz (high) fre-

quencies by Matlab. The frequencies were chosen from a

subjective perspective to maximize the differences of the

tones. The six notes in the DS pattern were C3, D3, E3, F3,

G3, and A3, which were solmizated as ‘‘do’’, ‘‘re’’, ‘‘mi’’,

‘‘fa’’, ‘‘sol’’ and ‘‘la’’. These notes were synthesized using

the Luotianyi VOCALOID 3 Editor (Yamaha). All
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auditory stimuli were unified to the same loudness and

duration using Adobe Audition version 3.0.

In the HLM pattern, a symmetrical play mode was

executed. Six speakers were arranged in a semicircle

symmetrically around the participant (see Fig. 1). The high

tone was presented by speakers located at directions -90�
or 90�; the low tone was presented by speakers located at

directions -60� or 60�; and the medium tone was presented

by speakers located at directions -30� or 30�. In the DS

pattern, six notes were presented. The note ‘‘do’’ was

presented by the speaker located at -90� and the remaining

five notes were distributed to the other speakers in

sequence. In both patterns, six kinds of stimuli were pre-

sented and the possibility of a given stimuli being the target

was 1/6.

Each speaker presented only one kind of sound in both

patterns. Each stimulus lasted 200 ms and the stimulus

onset asynchrony (SOA) was 400 ms. Stimuli were pre-

sented in a random sequence. The next stimulus would not

begin until the present stimulus ended. The direction and

content of the stimuli were the major features to differen-

tiate them.

Experimental design set up

EEG was recorded with wet active electrodes (Ag–AgCl)

via a 64-channel ‘g.EEGcap’ EEG cap (Guger Technolo-

gies, Graz, Austria). We measured the EEG signals with a

‘g.HIamp’ amplifier (Guger Technologies, Graz, Austria)

with a sensitivity of 100 lV, band pass filtered between

0.1 Hz and 100 Hz, and sampled at 512 Hz (Laghari et al.

2013). This device uses wide-range DC-coupled amplifier

technology in combination with 24-bit sampling. Data were

recorded from a subset of 24 selected electrodes from a

larger set of 64 electrodes, which were placed in accor-

dance with the international 10–20 system. These were

located at positions Fz, C5, C3, Cz, C4, C6, TP7, CP3,

CPz, CP4, TP8, P7, P3, Pz, P4, P8, PO7, PO3, POz, PO4,

PO8, O1, Oz, and O2 (see Fig. 2) (Treder et al. 2014). The

electrode on the right earlobe was chosen as the reference,

and the frontal electrode (FPz) was chosen as the ground.

The impedance level of all electrodes was less than 30 KX.

The stimuli were played through programs designed in

Qt Creator (version 5.3) and controlled by Matlab (version

R2012a).

In the proposed design, a circular speaker arrangement

was used (Schreuder et al. 2010). However, it was found

that severe direction confusion resulted to an unaccept-

able accuracy with using a circular arrangement in the

testing phase. So we changed the circular arrangement to a

semi-circle with a radius of 1.5 m round the participant

(see Fig. 1), a similar design which was used in Belitski

et al. (2011). The angle interval of the speakers on the same

side was 30�.

Offline and online experiment task

In order to train the classification models for each partici-

pant, an offline experiment was implemented first. Each

participant sat in a comfortable chair with a relax posture

and was asked to silently count the number of target stimuli

in both patterns. Before the experiment, participants were

given an oral introduction in Mandarin, as follows: ‘‘In the

experiments, you will hear an audio-cue, which comes

from one of the six speakers; the direction of the cue is the

target direction and the sound appearing in the cue is the

target sound, these are what you need to focus on. The task

is to silently count the number of target sounds from the

target direction. Sounds from other speakers are non-target

stimuli, which you should ignore as much as possible.’’

In the offline experiment, there was an audio-cue (last-

ing about 1.5 s) before each run, which showed the target

to participants. The target stimulus was the sound, which

came from the same speaker as the audio-cue. For example,

if the speaker located at -90� played the audio-cue, it

meant the stimuli was the sound that came from the speaker

Fig. 1 The location of each

loudspeaker and the parameters

of the scene
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located at -90� and the content of the audio-cue would be

a high beep (1000 Hz) or ‘do’, depending on which audi-

tory pattern was been executed. In one run, only one sound

stimulus was the target and the others were non-target

stimuli. Each run contained twelve trials, and each trial

contained six stimuli. There were five runs in each block,

and there were three blocks in each session. When each run

ended, participants were asked to report the number of each

target they had counted to ensure they were focused on the

task.

After the offline experiment, an online experiment was

conducted to evaluate the actual performance of two

auditory patterns. The clear differences between offline

experiment and online experiment were: (1) During the

online experiment feedback was given to the participant

after each target selection, while this didn’t happen during

the offline experiment; (2) The online experiment was

faster than the offline experiment because the online

experiment needed fewer trials before the selection results

could be output. During the online experiment, 24 target

selections were carried out for each participant. The 24

target selections were constituted of 6 targets in the offline

experiment, which were chosen four times in the online

experiment. There were five trials in each run in the online

experiment. When participants finished one selection, the

selection result was reported by the corresponding speaker.

In the online experiment, participants still needed to count

the number of the target stimuli, but they were not asked to

report that number. Participants were told that they should

ignore the result to avoid affecting their current condition.

Feature extraction procedure

The raw data was filtered with a third order Butterworth

band pass filter between 0.1 and 30 Hz to remove high-

frequency noise. After filtering, the data was down-sam-

pled from 512 to 64 Hz by selecting every eighth sample

from the filtered data. The EEG data corresponding to the

first 1000 ms after a stimulus onset was used to extract the

feature. The size of each feature matrix was 24 9 64 (24

channels by 64 time points). 15-fold cross-validation was

used to estimate the average classification accuracy.

Fourteen fifteenths of the data were used for training a

Bayesian linear discriminant analysis (BLDA) classifier

and the rest were used to test the classifier.

Classification scheme

We used Bayesian linear discriminant analysis (BLDA) as

the classification algorithm, because it can solve the over-

fitting problem and get higher classification accuracies

compared to Fisher’s discriminant analysis (FLDA)

(Hoffmann et al. 2008). The details of BLDA can also be

found in (Hoffmann et al. 2008).

R-squared value

The r-squared value was calculated as a discriminant index.

The r-squared value was equal to the square ofr(x), which

was defined as (Birbaumer et al. 1999)

rðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi

N1N2

p

N1 þ N2

� mean xijli ¼ 1f g � meanfxijli ¼ 2g
std xijli ¼ 1; 2f g ;

where N1 and N2 denote the number of variables in the

class 1 (target) and class 2 (non-target) groups respectively,

meanwhile xi was the ith variable and li was the class label

of the ith variable.

Online accuracy of each participant

The online accuracy of each participant was calculated as

Acc ¼ T

F þ T
;

where T and F denote the number of true selection results

and the number of false selection results respectively,

F ? T was always equal to 24 (the number of total target

selections in the online experiment). Each selection result

was obtained by a BLDA classifier and Acc was the

Fig. 2 Configuration of electrode positions. The green electrodes

indicate recording channels and the black bold electrodes (Fpz and

A2) indicate the ground and reference channels. (Color figure online)
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accuracy of the BLDA classifier based on the EEG

features.

Average accuracy of each direction

To calculate the average accuracy of each direction based

on the accuracy above, the number of true and false

selection results of each direction for all participants in

both patterns was counted. The accuracy was then calcu-

lated as:

Accm ¼
P10

n¼1 Tmn
P10

n¼1 Tmn þ Fmnð Þ
;

where Tmn denotes the number of true selection results of

the nth participant in the mth direction (for convenience,

here directions from left to right were numbered corre-

sponding from 1 to 6 and m denotes the number of the

direction), and Fmn denotes the number of false selection

results of the nth participant in the mth direction.

Questions for feedback

Participants were asked to answer two questions.

1. Do you like these two patterns? Please rate each

pattern on a scale of zero to five according to your

feeling. The higher the score, the more you like the

pattern.

2. Are the two patterns difficult for you? Please rate each

pattern on a scale of zero to five according your

feeling. The higher the score, the more difficult the

pattern.

Experiment results and discussions

Five channels were chosen to show the average amplitudes

of target and non-target ERPs in both patterns in Fig. 3. We

did not find obvious differences in the early components

Fig. 3 Grand averaged ERP

amplitudes across 10

participants in the HLM and DS

patterns over five channels: C5,

Cz, CPz, TP8, and Pz. Red solid

lines indicate the target group

and red dashed lines indicate

the non-target group in the

HLM pattern. Blue solid lines

indicate the target group and

blue dashed lines the non-target

group in the DS pattern. (Color

figure online)
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between target and non-target amplitudes in the 0–400 ms

time period. In the period from 400 to 600 ms, a more

positive component was observed in the target amplitude

compared to the non-target amplitude in two patterns. The

latency of this component was longer than that of a stan-

dard P300 signal and here we considered it as a P300-like

component. Following the P300-like component, a distinct

negative wave appeared slightly before 800 ms and could

be observed in the target group but not in the non-target

group. The two components were the major differences

between target and non-target groups. The average peak

value of the P300-like component across 10 participants

was calculated at electrode Cz. Although no significant

difference was found between two patterns by a t test, the

DS pattern resulted in a higher mean peak value

(4.49 ± 1.45) than the HLM pattern (4.11 ± 1.22). In

addition, in the non-target condition, the DS pattern was

observed to have a higher mean peak value (3.20 ± 1.29)

than the HLM pattern (2.58 ± 1.05). The higher peak

value in the non-target group might lead to deterioration in

classification accuracy.

The same analysis was done on the late negative com-

ponent. Fz was chosen to compare the difference between

the two patterns. The mean peak values of the late negative

components were -4.40 ± 1.82 in the HLM pattern and

-3.22 ± 1.17 in the DS pattern. Comparing the non-target

amplitude in the same period with the late component, a

paired t-test was used to show a significant difference

between the two patterns (p = 0.0087). The mean peak

values in the non-target group were -3.43 ± 1.78 in the

HLM pattern and -1.98 ± 0.57 in the DS pattern.

To get some insight into the contribution of the EEG

features to the classification results, r-squared values were

computed to evaluate the contributions to the classification

accuracy of the EEG components. Figure 4 shows the

r-squared values of the early negative component, the

P300-like component, and the late negative component.

The early negative component showed little contribution to

the classification accuracy. The P300-like component and

late negative component were the critical components to

distinguish between targets and non-targets. The topo-

graphic map of r-squared values also illustrates the spatial

distributions of the EEG features: the P300-like component

appeared mostly over the frontal and central region but not

over the occipital region; the late component appeared over

the central region. This information could provide refer-

ences to choose appropriate channels without redundancy

in a future study.

The online results are shown in Table 1. The average

accuracy of the HLM pattern across ten participants was

above 70 %, which is regarded by some as the minimum

accuracy needed for a useful BCI system (Schreuder et al.

2010), while the DS pattern was considerably worse, with

an average accuracy of 60.85 ± 18.9 %. The highest

accuracy in the HLM pattern was 91.7 % and three par-

ticipants’ performances reached this level. A t-test was

applied to compare the online accuracies and a significant

difference was found between the patterns (p = 0.0028).

Participant P7 achieved the best accuracy in both two

patterns, while participant P8 achieved the worst accuracy.

We checked the ERP amplitudes of these two participants at

electrode Pz in both patterns and found that the apparent

distinction was in the late negative component. Higher

amplitudes were observed in the late negative component in

participant P7 than P8. Figure 5 presents the target ERPs

recorded from participants P7 and P8 at electrode Pz in two

patterns. It was apparent that participant P7 had a higher

peak than participant P8, especially in the late negative

component, which might be one of the reasons that partic-

ipant P7 achieved better performance than participant P8.

Table 2 shows the average accuracy achieved for each

of the six directions by all participants.

Fig. 4 The topographic map of

r-squared values for the HLM

and DS patterns across all 10

participants. The negative class

indicates the negative

component and the positive

class indicates the positive

component
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The accuracy of each direction was higher when using

the HLM pattern than when using the DS pattern. In both

patterns, -30� and 30� were the best, while -90� was the

worst in terms of accuracy. A t test was performed to show

that the ERP amplitude of non-target stimuli for the -90�
direction at electrode site Pz for the DS pattern was sig-

nificantly larger than of the corresponding ERP amplitude

recorded during the HLM pattern (t = -3.4, p\ 0.05)

when the target direction was -90�. The signals induced

by the non-target stimuli would lead to a defective influ-

ence on the classification accuracy. In this paper, in con-

trast to the design in the work of Schreuder et al. (2011),

we did not have an arrangement of speakers behind the

participants, and therefore the front-back confusion was

avoided. The errors appeared in the following cases: (1) the

symmetrical direction of the target direction like the -90�
versus 90�, -60� versus 60� and -30� versus 30�; (2) The

neighbors of the target direction, for instance -90� and

-60� were neighbors; (3) The directions were not sym-

metrical and neighboring to the target direction such as

-30�, 30� and 60� when -90� was the target direction. The

numbers of errors that appeared at symmetrical directions

were 17 in the HLM pattern and 10 in the DS pattern. The

errors in neighbor directions and non-symmetrical-neigh-

bor directions in the HLM pattern were less than the DS

pattern (22 errors for the HLM pattern and 34 errors for the

DS pattern of the neighbor directions and 23 errors for the

HLM pattern and 52 errors for the DS pattern of non-

symmetrical-neighbor directions) (see Fig. 6). The sym-

metrical sound distribution in the HLM pattern easily led to

confusion of the left and right directions for the partici-

pants. The fewer sounds and the clearer differences in

frequencies between sounds might be the reasons that

participants perform better with the HLM pattern than the

DS pattern.

Table 1 Online results achieved with the HLM and DS patterns

Participant Age Sex Online classification accuracy (%)

HLM pattern DS pattern

P1 25 M 70.8 66.7

P2 23 M 91.7 79.2

P3 24 M 91.7 66.7

P4 24 M 70.8 66.7

P5 25 F 58.3 50

P6 24 F 70.8 54.2

P7 24 F 91.7 83.3

P8 25 M 50 29.2

P9 24 M 87.5 79.2

P10 25 M 75 33.3

Avg 75.83 ± 15.47 60.85 ± 18.9

Fig. 5 The average ERP amplitudes of participants P7 and P8. The

red lines represent the HLM pattern and the blue lines represent the

DS pattern. Participant P7 is indicated by the solid line and participant

P8 is indicated by the dot-dash line

Table 2 The average accuracy of each direction of all participants

for the HLM and DS patterns

Accuracy (%)

-90� -60� -30� 30� 60� 90�

HLM pattern 65 77.5 82.5 80 80 70

DS pattern 47.5 60 65 67.5 57.5 65

Fig. 6 The horizontal axis indicates the six directions of stimuli and

the vertical axis indicates the number of errors appearing in each non-

target direction in the online experiment. a The errors in non-target

directions during the HLM pattern. b The errors in non-target

directions during the DS pattern
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Participant feedback

After all the experiments were completed, we collected

feedback from all participants about the two patterns.

The results are presented in Table 3. It may be seen

from Table 3 that the two patterns got approximately

similar average scores in terms of difficulty, but that the

majority of subjects preferred the HLM pattern to the DS

pattern. Oral feedback of the participants provided some

helpful information to optimize the system. For the HLM

pattern, some of the participants noted that the differences

between beeps of three frequencies were not clear enough

for them to catch targets well, for example, some partici-

pants could not discern the medium well. For the DS pat-

tern, some participants expressed the view that there were

too many kinds of sounds to remember, leading to confu-

sion. It is important to attempt to improve the auditory

stimuli according to this feedback in future work.

In summary, the results demonstrated that the HLM

pattern performed better than the DS pattern. However, no

significant differences were found between the patterns in

terms of brain signals, which meant the music notes might

be good auditory stimuli in more appropriate conditions

such as changing the way stimuli are presented to make

these music notes sound more melodious.

Conclusion

In this paper, an auditory BCI system using different

sounds with spatial cues was proposed. The results show

that the performance of the HLM pattern was better than

the DS pattern. However, the DS pattern showed potential

to become a good music paradigm: No significant differ-

ence in the ERPs with HLM pattern meant that the DS

pattern was able to induce good ERPs. Our further work

will be focused on the optimization of the DS pattern to

improve its performance and applicability.
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