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Abstract Many saliency computational models have

been proposed to simulate bottom-up visual attention

mechanism of human visual system. However, most of

them only deal with certain kinds of images or aim at

specific applications. In fact, human beings have the ability

to correctly select attentive focuses of objects with arbi-

trary sizes within any scenes. This paper proposes a new

bottom-up computational model from the perspective of

frequency domain based on the biological discovery of

non-Classical Receptive Field (nCRF) in the retina. A

saliency map can be obtained according to the idea of

Extended Classical Receptive Field. The model is com-

posed of three major steps: firstly decompose the input

image into several feature maps representing different

frequency bands that cover the whole frequency domain by

utilizing Gabor wavelet. Secondly, whiten the feature maps

to highlight the embedded saliency information. Thirdly,

select some optimal maps, simulating the response of

receptive field especially nCRF, to generate the saliency

map. Experimental results show that the proposed algo-

rithm is able to work with stable effect and outstanding

performance in a variety of situations as human beings do

and is adaptive to both psychological patterns and natural

images. Beyond that, biological plausibility of nCRF and

Gabor wavelet transform make this approach reliable.

Keywords Visual attention � Non-Classical Receptive
Field (nCRF) � Extended Classical Receptive Field

(ECRF) � Gabor wavelet � Whitening � 2D entropy

Introduction

The highly evolved human vision system enables us to

rapidly attend to the conspicuous locations within a scene.

It is attention mechanism that facilitates us to locate these

salient regions. The visual system of human being receives

an enormous amount of information from the outside world

at each moment. But the information conveyed to the high

level of brain is highly reduced through visual processing

in the fovea and the ganglion cells in the retina, the lateral

geniculation nucleus, the primary visual cortex V1 area and

so on. This mechanism can be adopted in computer vision

tasks like segmentation (Mishra et al. 2009), object

recognition (Liu et al. 2011), visual tracking (Mahadevan

and Vasconcelos 2009), image compression (Itti 2004), etc.

With regard to types of attention mechanism, top-down

models which are task-driven, and bottom-up models

which are stimuli-based, are two main branches. Virtually,

these two types of mechanism interact with each other.

Top-down attention refers to the process of biased visual

perception based on specific tasks or intentions. For bot-

tom-up models, the attended regions are in general suffi-

ciently distinct with respect to surrounding areas, in terms

of kinds of low-level features like intensity, color, orien-

tation or motion. Many existing models fall into this cat-

egory (Achanta et al. 2009; Guo et al. 2008; Itti et al.1998).

Among different kinds of bottom-up models, saliency map

(Koch and Ullman 1987), a topological map containing

global conspicuity information, is frequently assumed and

utilized as it directly demonstrates the attended locations or
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regions. In this paper, the focus is on computational model

in pure bottom-up manner.

The typical biologically inspired model named Neuro-

morphic Vision Toolkit (NVT) is proposed by Itti et al.

(1998) and it follows the Feature Integration Theory of

Treisman (Treisman and Gelade 1980). This model mainly

employs subtraction between filtered input with diverse

scales to simulate center-surround difference [Difference

of Gaussian (DoG) filter], which represents the on–off and

off–on effects of visual receptive fields on ganglion cells.

Besides, it adopts color opponents and Gabor filter of dif-

ferent orientations with multiple scales, simulating the

process of simple cells on visual cortex, to extract visual

features. After obtaining the across-scale difference, the

model normalizes each feature map to emphasize the active

location which is mainly inspired by cortical lateral inhi-

bition mechanisms. By doing so, it calculates saliency with

multiple channels and multiple scales on the mechanism of

center-surround difference. This model has biological

visual structure and basis in spatial domain, and the sal-

iency map is mostly coincident with the fixation focuses of

human being in both psychological patterns and natural

images.

However, since it employs center-surround differences

to simulate the ganglion cells’ processing of the retina,

some low-frequency information in scenes is largely dis-

carded, which causes the failure of extracting saliency

information of large regions that contain a lot of low-fre-

quency components. The operation of normalization (in-

hibition mechanism) makes high-frequency components

stand out as well. As a result, this model basically extracts

salient points instead of consistent area. There are actually

many other models derived from this baseline one (Harel

et al. 2007; Le Meur et al. 2007; Walther and Koch 2006).

Another category of models (Guo et al. 2008; Hou and

Zhang 2007; Bian and Zhang 2010; Yu et al. 2011; Li et al.

2013) are based on frequency domain analysis, which have

fast computational speed. Guo et al. propose the Phase

spectrum Quaternion Fourier Transform (PQFT) model

which pops out the edge information of objects, since phase

information is related to local properties (form and posi-

tion) of the image (Oliva and Torralba 2001). Li et al.

introduce Hypercomplex Fourier Transform (HFT) model,

in which multiple Gaussian filters with diverse scales are

used to filter the log-amplitude spectrum in order to high-

light the salient information. No evidences show the

occurrence of frequency operations in human brain, so such

models are basically not consistent with the visual system

of human being.

There are also some engineering application based

models which are designed for specific applications such as

large object segmentation, object recognition etc. From the

viewpoint of frequency band, object with large size covers

more low frequency components. So Achanta et al. pro-

posed a Frequency-Tuned Saliency (FTS) algorithm which

retains most of the frequency components of images in

order to realize better segmentation. It calculates saliency

in spatial domain by simple subtraction between Gaussian

filtered image and its global mean, i.e. most frequency

components are preserved except the direct current (DC).

This model is computationally efficient and has good per-

formance. However, this kind of models (Cheng et al.

2011; Perazzi et al. 2012) is only effective for large object

segmentation.

To our knowledge, it turns out that most existing models

focus on certain kinds of objects or only adapt to fixed

situations. For instances, the NVT model is merely able to

extract salient points with much high-frequency informa-

tion, while those engineering-based models are well

applicable to large objects recognition. The idea of the

paper is to build a computational model which has the

ability to automatically make adjustments according to

stimuli. So, this paper proposes a bottom-up model from

the perspective of frequency domain though manipulated in

spatial domain, based on the biological discovery of non-

Classical Receptive Field (nCRF) of the ganglion cells in

the retina. Thanks to the discovery of nCRF (Li et al.

1992), which complements and interacts with CRF

according to the stimuli, the low-frequency loss caused by

center-surround mechanism can be largely compensated by

the tuning of nCRF areas outside the CRF. The conception

of nCRF and CRF could be considered related to the pro-

cesses of magnocellular cells of lateral geniculate nucleus

(LGN) and those of parvocellular cells of LGN (Shi et al.

2011).

The phenomenal traits of the proposed model are: (1)

improving the classical Itti’s NVT model by employing

Gabor wavelet transform, taking multi-orientation and

multi-scale (Itti’s) into account, as well as retaining the

low-frequency components in order to better tune the

frequency bandwidth adaptively; (2) based the discovery

of nCRF, proposing one way to adaptively adjust the

frequency band according to diverse stimuli and a

method to select the optimal scale in Gabor wavelet

domain.

The rest of paper is organized as follows. In ‘‘Biological

background for the algorithm’’ section, the biological

background of the proposed model will be introduced. In

the next part, ‘‘The proposed algorithm’’ section, the pro-

posed algorithm will be described in detail including how

to decompose frequency bands with Gabor wavelet and

how to whiten and select them. Experimental results and

comparisons are followed in ‘‘Experimental results and

discussions’’ section with discussions on various models.

Finally, conclusions are made in ‘‘Conclusions and future

work’’ section.
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Biological background for the algorithm

As mentioned before, some spatial and spectral models

would fail in some scenarios especially when salient

regions are relatively large due to the center-surround

processing they employ or insufficient use of spectral

information. On the contrary, some engineering-oriented

models appear to be remarkable on larger objects while

small objects or psychological patterns are beyond their

reach. Therefore, to learn how human vision system really

works, the receptive field models of the ganglion cells in

the retina are examined here.

The Classical Receptive Field (CRF) is a center-sur-

round antagonism structure of the retinal ganglion cells and

Rodieck et al. propose the DoG function to depict it. In

frequency domain, the DoG structure is typically repre-

sented as a ring band shown in Fig. 1a (left). Many bottom-

up models, like NVT etc., adopt this structure in their

saliency computations, but it is actually flawed since it

merely contains certain high pass bands, while leaves out

the low-frequency components at center region shown in

Fig. 1a, even if several DoGs of different scales are

adopted. It might result in high lighting only small salient

regions or edges of large objects but failure to capture the

whole object.

Physiologists have found out in 1960s, however, that

center-surround CRF can be influenced by a larger region

outside the CRF (Ikeda and Wright 1972). This area is

regarded as non-Classical Receptive Field (nCRF) that can

inhibit the antagonistic effect of center-surround and

compensate the loss of low-frequency components. In

order to explain the relation between CRF and nCRF,

Ghosh et al. (2006) suggested the following equation

named ECRF using three zero-mean Gaussians with dif-

ferent variances:

ECRFðr1;r2;r3Þ

¼ACRF

1
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where ECRFð�Þ represents the response function, r1, r2
and r3 ðr1\r2\r3Þ are variances representing region size

of the center, the antagonistic surround and the extended

non-inhibitory surround respectively, ACRF and AnCRF

represent the corresponding amplitudes of both structures.

The first two terms refer to the classical center-surround

structure (DoG filter). The last term is the compensating

extended function which is a Gaussian with larger variance

in spatial domain.

Figure 1a shows frequency band of classical DoG filter

(the first two terms in Eq. (1)) with r2 ¼ 3r1 in 1D (right)

and 2D (left) cases. Figure 1b is the frequency band of

ECRF structure with r2 ¼ 3r1 and r3 ¼ 3r2. Note that in

Fig. 1b both structures have the same amplitudes that

ACRF ¼ AnCRF . In Fig. 1b, the central part of frequency

domain, which contains much of low-frequency informa-

tion, is well preserved. It should be noted that the DC

component (original point in Fig. 1b) is not necessary

which will be removed in subsequent processing. Although

the structure in Fig. 1a does not include the DC component

as well, it fails to contain the low-frequency information

around the DC component.

It is illustrated in Fig. 1 that the structure of nCRF is to

adjust the frequency bandwidth of DoG filter thus com-

pensate the loss of low-frequency information. That is why

human beings can easily pay attention to salient objects in

a scene with arbitrary size. In contrast, those models using

center-surround filters to calculate saliency actually do not

include low-frequency components. And the model like

PQFT, flatting the amplitude spectrum, is just to heighten

high-frequency components and extrude edges of object.

For the model like FTS, it always extracts the same range

of frequency band no matter what the stimulus is, in fact

however, the range of frequency bands should vary

according to the stimuli.

Our purpose of saliency computation is mainly to extract

certain frequency bands of input image according to the

input stimuli, which might be consistent with the idea of

grained-scale process and minute-scale process with M

(magnocellular) and P (parvocellular) pathway respectively

Fig. 1 Left frequency domain of DoG; right frequency domain of ECRF, the central part is the effective area of nCRF
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(Shi et al. 2011). In order to achieve this, the whole fre-

quency domain of input image is decomposed into several

bands in a discrete way. Based on these discrete bands,

some optimal bands containing meaningful saliency

information are selected to build the final saliency map. By

using decomposition and selection, it is convenient to take

into account both the multi-scale subtraction of center-

surround process employed by Itti’s model and the reten-

tion of low-frequency information which is not considered

in Itti’s model.

With regard to the method of frequency domain

decomposition, wavelet transform is utilized here to carry

out bands division. Discrete wavelet transform, which takes

both spatial and spectral information into consideration,

performs a logarithmic division of frequency domain. This

is more practical than FFT as low-frequency components

are always with low spatial resolution and thus need

detailed division in frequency domain. A fine division

made on low-frequency components can achieve a better

effect on saliency computation. In addition, wavelet

transform is of multi scales, representing different bands in

frequency domain, and it can categorize each frequency

band into different orientations that like simple cells do in

the primary visual cortex (except low-frequency part). This

also facilitates the calculation of saliency. These orienta-

tions of wavelet transform in each frequency band corre-

spond to different sub-bands. These sub-bands will be

whitened across channels to highlight the saliency infor-

mation, so do the low-frequency ones. After that, optimal

bands among high-frequency or low-frequency ones could

be selected. These operations can partly simulate the

mechanism of frequency bandwidth adjustment and

achieves the same effect of frequency band selection.

The proposed algorithm

The basic steps of proposed algorithm are band division,

whitening and band selection. The diagram is shown in

Fig. 2. Prior to the processing, the original color image is

converted to Lab color space to form three channel images.

For each channel image, Gabor Wavelet is employed to

decompose the channel into different feature maps corre-

sponding to different frequency bands. After whitening and

fusion, one or two local saliency maps corresponding to

certain frequency bands are selected to generate the final

saliency map. Each step in diagram of the algorithm is

shown in Fig. 2.

Gabor decomposition

With regard to different categories of wavelet functions,

Gabor function is adopted here to carry out decomposi-

tion because it is similar to the process, which is also

employed by Itti’s NVT model to analyze the orientation

information, of simple cells in the primary visual cortex.

Additionally, the low-frequency components of Gabor

wavelet domain are maintained. The illustration and

formula of Gabor filter are shown in Fig. 3 and Eq. (2),

respectively.

Fig. 2 Diagram of the

algorithm
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Therefore, 2D Gabor filter rather than Fast Wavelet

Decomposition is employed to accomplish wavelet

decomposition in order to obtain more information on

orientations. The 2D Gabor function is:

gðx; y; k; h; rÞ ¼ exp � x02 þ y02

2r2

� �
cos 2p

x0

k

� �
ð2Þ

where x0 ¼ x cos hþ y sin h, y0 ¼ �x sin hþ y cos h, and

h ¼ f0�; 45�; 90�; 135�g. And k is the wavelength, r2 is

the variance of the Gaussian envelope. Four band pass

filters and one low pass filter (when k approaches to

infinity), together amount to five 2D Gabor filters. These

five Gabor filters can almost cover the whole frequency

domain at each scale. They are shown in Fig. 3.

The diagram of Gabor decomposition with three scales

in one channel is shown in Fig. 4 and the relationships

between spatial feature maps (Fig. 4a) and spectral bands

(Fig. 4b) are also illustrated.

Please note that the actual sizes of feature maps fBx are

half of those of fAx and fCx are also half of those of fBx, for

x ¼ 1; 2; 3; 4 and sizes of feature maps at the same scale

are equal. Since these feature maps correspond to various

frequency components, selections made on these maps are

equivalent to those made on frequency components.

Therefore, this approach calculates saliency based on the

feature maps in spatial domain. In the following sections,

feature maps are used to represent frequency bands.

For Eq. (2), h ¼ f0�; 45�; 90�; 135�g and the scale is

r ¼ 7=5. The low-pass 2D Gabor filter sets k a large number

like klow ¼ 2:510, and four other high-pass ones set

khigh ¼ 2:5.Thesizes of thesefilters are 15� 15pixels (shown

in Fig. 3). Experimental results indicate that saliency map

computation is insensitive to the parameters ofGabor filters, as

long as the 5 Gabor filters could cover the whole frequency

domain. Many more orientations can be included as well.

Concretely, the input channel image is filtered to gen-

erate feature maps repeatedly with Gabor wavelet filters

and the low-frequency feature map is keeping down-sam-

pled until the height of decomposed map is less than 32

pixels. Besides, if the height of input image is greater than

256 pixels, the feature maps at first scale are discarded as

they contain less significant information even most can be

considered as noise. After filtering, four high-frequency

feature maps and one low-frequency feature map at each

scale (scale 1 to scale N, the typical value of N is 3–5

according to the original size of input image) shown in

Fig. 2 are obtained.

Whitening and computation of local saliency maps

The processing of feature maps includes whitening which

aims to extract saliency information and fusion which sums

the whitened feature maps to generate the local saliency

maps.

Fig. 3 Five Gabor 2D filters (top row) with their corresponding amplitude spectrum (bottom row). From left to right low-frequency part, high-

frequency part with 0�; 45�; 90�; 135� orientations

Fig. 4 Illustration of Gabor

decomposition and relationships

between feature maps and

bands. a High-frequency sub

feature maps and low-frequency

feature maps. b Corresponding

frequency domain
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At each scale for all channels, the high-frequency fea-

ture maps and low-frequency ones are whitened separately

using Zero-Phase Component Analysis (ZCA) whitening

(http://ufldl.stanford.edu/wiki/index.php/Whitening), a method

similar to Principal Component Analysis (PCA) whitening.

Whitening is the process of decorrelation and orthogonal-

ization between feature maps. After whitening, DC com-

ponent is removed and the variance is normalized for each

map. As a result, the unique part of data is underlined while

the redundancy is suppressed. The idea of whitening is also

employed in several works (Garcia-Diaz et al. 2012; Bian

and Zhang 2010). Then the square of whitened feature

maps is summed to get local saliency map. There are two

local saliency maps at each scale, corresponding to low-

and high-frequency bands respectively.

Whitening

ZCA-based signal whitening is operated on feature maps at

the same scale across channels for high- or low-frequency

bands separately, as shown in the dashed boxes of Fig. 2,

so that the resulting feature maps become orthogonal and

uncorrelated with each other. Let f i; i ¼ 1. . .n be the

vectorized feature map for a given scale. W 2 Rn�n is a

ZCA whitening matrix and the whitened result F0 is:

F0¼ WF;F ¼ ½f1; f2. . .fn�T ; f i 2 RM�1 ð3Þ

where n is the number of feature maps at the same scale,

n ¼ 4� 3 for high-frequency feature maps, and n ¼ 3 for

low-frequency feature maps.M is pixel number of a feature

map. It should be noted that for high- or low-frequency

feature maps at different scales, the whitening matrix is

quite differed. After whitening, each whitened feature map

has unitary variance and zero mean. Whitening can not

only remove the DC component which is not necessary for

further processing, as mentioned above, but can also

highlight the saliency information.

Figure 5 gives a target search example of psycholog-

ical pattern in conjunctional conditions, i.e. the unique

red 90� bar is inserted in red 0� bars and green 90� bars

with orientation disturbance. Most visual attention mod-

els would fail in this case but ours would not. By

whitening the feature maps of high frequency at scale i,

the unique bar is popped out in a channel while the

others are suppressed.

Computation of local saliency maps

For high-frequency whitened feature maps, the local sal-

iency map is the simple quadratic sum of all whitened maps

at each scale. The formula is:

Shi ¼
X3�K

j¼1

f 02hij ð4Þ

where Shi is the high-frequency local saliency map of ith

scale, K is number of orientations and is set as 4 here, f 0hij is

the jth whitened high-frequency feature map. After com-

putation according to Eq. (4), N local saliency maps for

Fig. 5 Illustration of whitening
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N scales in high-frequency bands are obtained shown in

Fig. 2, which correspond to N bands.

For low-frequency feature maps, the fusion strategy is

somewhat diverse. After whitening, the whitened feature

maps are combined with certain weights. The weight

function is monotonically decreasing with the increase of

2D entropy:

Sli ¼
X

j¼fL;a;bg
expð�0:5� ðentropy2Dðf

02

lijÞÞ
2Þ � f

02

lij ð5Þ

where Sli is the low-frequency local saliency map of ith

scale, f
0
lij is the jth whitened low-frequency feature map,

and entropy2Dð�Þ is the 2D entropy value calculated by

Eq. (7) (which will be detailed in the following section)

with quantization level setting to eight for compromise

between accuracy and computational cost.

The reason for taking weight into account is that large

objects are with low responses after whitening due to

unitary variance. If the sum is made with same weights like

Eq. (4), the larger salient objects will be suppressed. It will

be shown in Fig. 6 that a clear structure of large object has

low 2D entropy. By adding this weight, the importance of

feature maps containing large salient objects will not be

diminished. Thus, the saliency for large objects is popped

out by whitening and preserved by weighted summation.

As mentioned above, there are N local saliency maps for

low-frequency band.

Selection via importance measure

Dozens of local saliency maps covering different frequency

bands are obtained. Among them one or two maps (bands)

with most significant saliency information will be picked

out. Therefore, an importance measure criterion is set up to

complete the selection task. It incorporates two metrics:

one is the maximum response of feature map and the other

measures the clutter degree. The 2D entropy (Abutaleb

1989; Yang et al. 1996) is used in this paper to estimate the

clutter degree of a map.

To calculate 2D entropy, a 2D gray-level histogram

taking spatial relations into account is formed in advance

by comparing the original image f ðx; yÞ and the averaging

filtered version gðx; yÞ ¼ m � f ðx; yÞ, where m is a 2D mean

filter with 3� 3 pixels. The 2D histogram is a L� L square

matrix, where L represents number of gray levels. A pixel

located at ðx; yÞ in a map which refers to ith gray level in

f ðx; yÞ and jth gray level in gðx; yÞ contributes one counting
unit on rij, where rij denotes the number of pixels which are

at ith gray level of f ðx; yÞ and at jth level of gðx; yÞ. After
scanning all pixels, the element of 2D histogram pij is

calculated as follows:

pij ¼
rij

PNUM
ð6Þ

where PNUM represents total pixel number of a map. Then

the 2D entropy of a map can be calculated based on the

generated 2D histogram:

entropy2D ¼ �
XL
i¼1

XL
j¼1

pij log pij ð7Þ

where pij is calculated according to Eq. (6).

According to the definition, the 2D histogram mainly

takes edge change into account since uniform regions

scarcely alter their grey level after averaging filtering.

If a map is topologically compact, which means less

edge information, the averaged map may still contain

relatively less edge information. On the other hand,

when a scene is cluttered, smooth filtering may lead to

excessive gray level change which accordingly gener-

ates relatively greater value of 2D entropy. So, the

smaller the 2D entropy value is, the more significant a

map is.

Fig. 6 Illustration of selection

principle
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By conducting experiments, we find out that 2D entropy

value and maximum response of a map can be employed

together to be the criterion to select bands. Actually, 2D

entropy is defined to measure the clutter degree of an

image. The low-frequency part of a scene containing large

objects with compact structures usually has lower 2D

entropy value. As a result, we tend to choose feature maps

of low-frequency in this case. But an image with a single

small object appears to have higher response on high-fre-

quency side. So we are inclined to select high-frequency

components in this scenario. Taking both factors into

account, we set a criterion which favors maps with higher

responses and smaller entropy values to make selection.

Two examples are shown in Fig. 6, where the low-fre-

quency feature map in the left column has smaller 2D

entropy value and the high-frequency map in the right

column has higher response.

In other words, optimal local saliency maps with more

intensive response and smaller 2D entropy value are picked

out, which indicates less clutter or chaos, simultaneously.

These operations are meant to adjust the bandwidth infor-

mation so as to achieve better effect of saliency informa-

tion extraction. The selection of bands is based on the

importance measure of each local saliency map shown as

follows:

IM ¼ maxðmapÞ � expð�0:5� ðentropy2DðmapÞÞ2Þ ð8Þ

where IM is the importance of each map, maxð�Þ is the

function used to measure the maximum response of a map,

entropy2Dð�Þ is the 2D entropy value. And map represents

the local saliency map indicated in Fig. 2.

Suppose the original image is decomposed into N scales.

There are 2� N candidate local saliency maps to be

selected from, where N maps are related to low-frequency

part while the other N are related to high-frequency bands.

One or two local saliency maps with no overlapped bands

are picked out as optimal maps, either high-frequency or

low-frequency, or even both. The selection of optimal local

saliency maps depends on their importance values which

are calculated by Eq. (8).

To begin with, the local saliency map with the largest

importance value IMmax is picked out. If there are no other

maps with their importance values larger than 0:5� IMmax,

then the local saliency map is just the final saliency map.

But if there exist other maps with their importance values

larger than 0:5� IMmax, another one with the second lar-

gest importance value is selected. In this case, the final

saliency map is the result of equal combination of the two

maps if their bands are not overlapped. It is worth noting

that if the map with the second largest importance is

overlapped with the largest one, the third or fourth largest

one will be considered.

Experimental results and discussions

To make a comprehensive evaluation on the proposed

model, the testing databases include both natural images

and psychological patterns/images. Natural images contain

not only small sized salient objects but also large ones.

In order to better illustrate the superiority of the pro-

posed model, the comparisons are performed between our

model and several state-of-the-art models, including the

typical model in space domain, NVT (Itti et al. 1998), the

representative spectral model using FFT, PQFT (Guo et al.

2008), the large object segmentation oriented model on

engineering, FTS (Achanta et al. 2009) and the model

adaptive to various kinds of stimuli, HFT (Li et al. 2013).

Among all of these models, PQFT resizes input to the

resolution 64� 64 and HFT resizes input to 128� 128 as

optimal defaults while others do not carry out resolution

adjustment as well as our approach. It is proved that resize

of input may make the computation fast but probably leads

to irreversible information loss. This will be discussed

later.

Quantitative and subjective evaluation

For psychological patterns, the saliency results of several

common cases are listed to make a subjective evaluation

on each model. For natural data, the outputs of each

model are compared with the ground truth in a quantita-

tive manner.

The ground truth data are based on human visual

behaviors and mainly include two types: fixation maps and

labeled maps. A fixation map is record of human fixation

within one image by eye tracking apparatus. Data of this

kind are binary maps, with logical 1 (fixation points) dotted

over the whole image. Ground truth maps of the other kind

are also binary maps, but with consistent areas indicating

logical 1 which are labeled by a number of subjects. For the

fixation dataset, sAUC (shuffled Area under ROC Curve,

the larger is better) is used to measure the performance as it

eliminates the influence of center-bias (Tatler et al. 2005;

Zhang et al. 2008) while all other metrics are all suscep-

tible to center-bias effect. For the other dataset, segmen-

tation dataset, Precision/Recall is adopted to be a metric. In

the calculation of precision and recall, the saliency maps

are transformed to a binary map with varying threshold

from 0 to 1. Comparing the binary map with ground truth,

precision rate is calculated as the number of true positive

(intersection of predicted foreground and true foreground)

to the number of predicted foreground while the definition

of recall rate is the number of true positive to the number of

true foreground. A better model has larger area covered by

P/R curve.

262 Cogn Neurodyn (2016) 10:255–267

123



For all of these models, the final saliency maps are

blurred to get optimal effects. We use Gaussian filters with

different sigma parameters to blur the saliency maps and

pick out the optimal one for each model. The blurring

factor is chosen from 0.01 9 width to 0.1 9 width with

0.01 as interval.

Saliency prediction for natural images

The fixation datasets include Bruce’s (Bruce and Tsotsos

2005), Kootstra’s (Kootstra et al. 2008) and Judd’s (Judd

et al. 2009). They contain 120, 100 and 1003 natural

images, respectively. The segmentation datasets consist of

Achanta’s (Achanta et al. 2009), Li’s (Li et al. 2013) and

Zou’s (Zou et al. 2013). They have 1000, 235 and 1500

images, respectively. Zou’s dataset is derived from PAS-

CAL VOC 2012 segmentation challenging.

Some results for natural images are shown in Fig. 7. The

quantitative comparisons for fixation datasets and seg-

mentation datasets are shown in Table 1 and Fig. 8

respectively.

Table 1 shows the quantitative comparison between

models in terms of sAUC. The proposed model is proved to

be effective over all of these fixation datasets. Meanwhile,

PQFT also shows relatively good performance over such

type of datasets.

The first column of Fig. 7 consists of five original

images with different sizes. Their resolutions are

681 9 511, 400 9 300, 763 9 512, 400 9 300 and

333 9 500 from the first to the fifth row respectively. The

sizes of objects in these original images are also different.

The images of the first and third row include small objects

(a man stands by a tree, two people near to a snow

mountain), while the large sized objects are arranged on

second and fourth row. The image in the last row contains

multiple objects. Some models, except NVT, FTS and the

proposed, resize the input images (i.e. HFT resize to

256 9 256, PQFT resize to 64 9 64) for better perfor-

mance. Though NVT and FTS do not perform resizing of

input images, they are not effective for both small targets

and large ones simultaneously, i.e. NVT is effective only

for small ones and FTS only for large ones. It is worth

noting that the proposed model is not subject to the original

Fig. 7 Some saliency maps of different models

Table 1 sAUC comparison on fixation datasets

Datasets Ours HFT NVT PQFT FTS

Bruce’s (120) 0.7180 0.6852 0.6052 0.7108 0.5822

Kootstra’s (100) 0.6088 0.5945 0.5788 0.6031 0.5665

Judd’s (1003) 0.6849 0.6646 0.6132 0.6838 0.5862

Bold values indicate the highest performance
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size of input image (do not need to resize image for sub-

sequent process) and is able to pop out objects in diverse

sizes. The original height-width ratio is maintained during

the whole calculation process.

Figure 7 illustrates that our model is proved to be

effective on small salient regions, large ones and images

with multiple targets while PQFT and NVT only highlight

small objects or edges. FTS always fails when salient

objects are relatively small. The results of HFT are not very

satisfying. Besides, Fig. 8 indicates that the proposed

model is also able to deal with large salient objects. It is

worth noting that FTS only has good performance on its

own dataset. For Zou’s dataset (Zou et al. 2013), it contains

large amount of images with multi segments or objects of

different scales, which clearly shows that our model is

more robust than others (Fig. 8c).

In Table 2, the average time consumption of each model

by calculating 120 images of Bruce’s database is listed,

where images are uniformly of size 681� 511. All codes

are written in Matlab and the computer works on Windows

7 platform with an Intel i7-2600 CPU.

For unbiased comparison, the input images are resized

to 256� 256 for all models. PQFT and FTS are the fastest

as their processes are very simple. HFT is relatively slower

because it employs 8 scale spaces to analyze the frequency

domain. Time consumption of our model consists of

Fig. 8 Quantitative comparison on segmentation datasets. a Li’s dataset (235). b Achanta’s dataset (1000). c Zou’s dataset (1500)

Table 2 Average computational time per image

Models Ours HFT FTS PQFT NVT

Time (s) 0.3396 0.3605 0.0885 0.095 1.3091
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decomposition, whitening and map selection. The NVT

model is the most computationally expensive as it produces

too many features maps and uses iterative normalization.

In order to show the importance of band selection with

both 2D entropy and maximum response, we have con-

ducted experiments with different strategies. Several cases

are compared: the proposed model, bands simply combined

without selection, bands selected only using 2D entropy

and selected only with maximum response. Experiments

are conducted over the Bruce dataset (Bruce and Tsotsos

2005) and the comparison is shown in Table 3.

The comparison in Table 3 indicates that taking both 2D

entropy and maximum response of maps is the optimal

strategy to generate saliency map. And combining all the

frequency bands has the least satisfying effect since much

unnecessary information is included.

Saliency prediction for psychological patterns

Different types of psychological patterns construct another

test bench which is important criterion to measure the

performance of attention models. Figure 9 shows that the

proposed model can deal with all cases of psychological

patterns. All models fail case 1 and 3 except ours. The

reason is that the whitening process makes the unique color

component salient, thus our model is able to predict the

saliency of them. These patterns prove the biological

plausibility of the proposed model cogently.

PQFT fails some cases especially when distinct pattern

is relatively large. It turns out that HFT shows good

potential on these patterns as well as our model, except that

it fails the first and third rows. FTS focuses on image

segmentation and it fails most of these patterns naturally.

NVT is also less effective for these patterns.

Discussions

The proposed model is built on the basis of nCRF and it

takes the low-frequency information, which is mostly

ignored by existing models, into account by considering

range of frequency bands. This is, to some extent, consis-

tent with human visual system. The experimental results

also prove the feasibility of the proposed model.

A few parameters are involved in the proposed model.

The modification of parameters for Gabor filter does not

make much difference. And the number of scales decom-

posed is relatively fixed at 3–5. Besides, the process of

whitening is almost parameter free.

With regard to other models, PQFT totally discards the

amplitude information (by flatting the amplitude spectrum)

and only phase information is utilized for saliency map

construction, which leads to only edges being popped out.

Besides, top-down instructions are difficult to be contained

in this model because it employs quaternion and Fourier

transform.

For FTS, as it is only effective on its own database (most

images with large salient areas) but fails others, it indicates

that retaining most of frequency components is effective

for large objects (low-frequency components are crucial for

large objects and are contained in FTS). The key defect is

that it extracts fixed band width of information for all

images. Despite this strategy is effective for large objects,

but for small objects, specific bands are required even of

certain orientations. Retaining too much frequency infor-

mation is not necessary and may obstruct saliency predic-

tion in some cases.

The NVT model suffers the problem that center-sur-

round operations exclude much of the low-frequency

information, and this information actually contributes a lot

when the salient region is relatively large. However, this

model is a cognitive model based on biological plausibility

and top-down manner is easily manipulated in this kind of

model (Zhang et al. 2008).

About HFT, it utilizes Gaussian filters of different scales

to filter the log amplitude spectrum of input image to

calculate saliency, which lacks enough biological support

and the meaning remains unclear in spatial domain.

Conclusions and future work

The paper proposed a saliency model from the perspective

of frequency domain by selecting certain bands though

implemented in spatial domain. Three main steps are:

dividing input image to different feature maps (frequency

bands), whitening the feature maps to extract saliency

information and picking out optimal maps containing sig-

nificant saliency information according to the mechanism

of receptive field. Our approach turns out to be superior

compared with others on various kinds of stimuli, including

psychological patterns and natural ones with large or small

salient areas. Beyond that, top-down manners or prior

knowledge can be easily included. As images are divided

into many channels, scales and orientations, diverse

weights can be assigned to feature maps when specific

tasks are involved.

Table 3 Comparison of

different strategies
Method Proposed Simply combine Entropy only Max response only

sAUC 0.7180 0.6573 0.6958 0.7012

Bold value indicates the highest performance
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However, our model still suffers a couple of drawbacks.

For one thing, this algorithm requires a bit more compu-

tational cost compared to spectral methods. For another,

some points are not entirely consistent with specific bio-

logical mechanism, for example, 2D entropy as a measure

to select feature maps lacks of biological support.

The future work will make more emphasis on how to

better match with biological mechanism and how to

simplify the calculation of decomposing and selecting

bands since these processes are both spatially and tem-

porally complex. Moreover, top-down mechanism appears

to be more important as we have interest in target

detection in remote sensing images with attention models.

We will attempt to combine top-down mechanism with

this bottom-up model to deal with target detection tasks in

the future.
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