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Abstract In recent years, there has been considerable

interest in visual attention models (saliency map of visual

attention). These models can be used to predict eye fixation

locations, and thus will have many applications in various

fields which leads to obtain better performance in machine

vision systems. Most of these models need to be improved

because they are based on bottom-up computation that does

not consider top-down image semantic contents and often

does not match actual eye fixation locations. In this study,

we recorded the eye movements (i.e., fixations) of fourteen

individuals who viewed images which consist natural (e.g.,

landscape, animal) and man-made (e.g., building, vehicles)

scenes. We extracted the fixation locations of eye move-

ments in two image categories. After extraction of the

fixation areas (a patch around each fixation location),

characteristics of these areas were evaluated as compared

to non-fixation areas. The extracted features in each patch

included the orientation and spatial frequency. After fea-

ture extraction phase, different statistical classifiers were

trained for prediction of eye fixation locations by these

features. This study connects eye-tracking results to auto-

matic prediction of saliency regions of the images. The

results showed that it is possible to predict the eye fixation

locations by using of the image patches around subjects’

fixation points.

Keywords Visual attention model � Saliency map � Eye
fixation � Bottom-up and top-down attention � Semantic

content � Eye tracking

Introduction

Recently, there has been much interest in the visual

attention models that they can be applied for prediction of

eye fixation locations. These models show a saliency map

for each visual image for the fixation points. The more

salient locations in the map present locations with high

probability of being eye fixation points (Fig. 1). Develop-

ing models that automatically predict the eye fixations,

imitate the human visual mechanism. So using these

models as a part of machine vision systems have many

advantages and applications (Zhang and Lin 2013). These

models can be used to obtain better performance in terms

of increasing the speed and reducing the data storage in

machine vision systems (Rajashekar et al. 2003). Some of

the applications of visual attention models includes auto-

matic object recognition and detection, automatic guidance

of vehicles, image compression, better performance in

human computer interaction, face recognition and partic-

ularly fast selection of the regions of interest (ROI) in

complex visual scenes (Geisler and Perry 1998; Wang et al.

2003; Viola and Jones 2001; DeCarlo and Santella 2002;

Jaimes et al. 2001; Wang et al. 2013; Itti and Koch 2001).

It is possible to recognize objects on different part of the

scene by focusing attention each time on different loca-

tions. Actually, we are not able to perceive everything

around us. The results of experiments indicate that a

detailed representation of our environments is not formed

in our brain and attention is a mechanism to perceive the

changes (Rensink et al. 1997). The visual attention directs
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the processing of the brain to focus on important regions of

visual field and to search a target in complex scenes

(Posner 1980). The two types of visual attention are namely

overt visual attention, which includes eye movements, and

covert visual attention, which does not need eye move-

ments (Henderson et al. 2007). In this study, by ‘‘visual

attention’’ we refer to the overt visual attention. Previous

studies (Yarbus 1967) have shown that attention depends

on both bottom-up information and top-down signals which

they maybe show two mechanisms of visual attention in the

brain. These two mechanisms are called bottom-up atten-

tion (exogenous) and top-down attention (endogenous).

Bottom-up attention is fast, involuntary and task-indepen-

dent while top-down attention is slow, voluntary, task-de-

pendent. Due to importance of visual attention mechanism

in visual information processing, modeling of attention has

been the focus of many studies in recent years (Filipe and

Alexandre 2013). The ‘‘Feature Integration Theory’’ of

Treisman & Gelade has been the basis of many theoretical

models in the past (Borji and Itti 2013). One of the early

models of visual attention was proposed by Koch and

Ullman (1985). They proposed a feed-forward model to

combine low-level features to create a saliency map that

represents conspicuousness of scene locations. A winner-

take-all neural network in their model selects the most

salient locations. A mechanism of inhibition of return then

permits the focus of attention to shift to the next most

salient location. Other models have been proposed based

on this idea that could process digital images (Borji and Itti

2013). Itti et al. (1998) proposed the first approach for

implementation of the Koch & Ullman model. Many more

implementations of visual attention model have been pre-

sented then after. For example, Yu et al. proposed a

computational model of visual attention based on a pulsed

principal component analysis (PCA) transform. This model

considers the signs of the PCA coefficients for creating

spatial and motional saliency. This idea was extended to a

pulsed cosine transform too, which was data-independent

and very fast (Yu et al. 2011). Bian and Zhang (2010)

proposed a biologically plausible model for visual saliency

detection, which is called frequency domain divisive nor-

malization. The proposed method is a fast frequency

domain saliency detection approach. In Gu and Liljenström

(2007) a neural network model for attention has been

proposed. The structure of this model consists of a multi-

scale network and is involved in many higher level infor-

mation processing tasks (Gu and Liljenström 2007). There

are two different views to computational models of bottom-

up visual attention (Le Meur 2014). One group assumes

that there is a unique saliency map (Koch and Ullman

1985; Li 2002). The other group thinks that there are

several saliency maps spread throughout the visual areas.

Different brain areas (such as LIP and MT cortex) are

considered to be the candidate for computation of the sal-

iency map (Le Meur 2014; Lanyon and Denham 2009).

The debate between these two groups become more

complicated as the term of the ‘‘saliency’’ is used differ-

ently in the literature. Some use it for bottom-up aspects of

prioritization and some others use salience and priority

interchangeably [see Borji and Itti (2013), Awh et al.

(2012) for more information].

The visual attention models can be grouped into three

general categories namely biologically inspired models,

probabilistic models and machine learning models (Borji

and Itti 2013; Le Meur 2014). Of course, a model can be

considered as a mixture of two or three classes mentioned

above (Zhang et al. 2008). In biologically inspired models,

the image features at different scales are grouped into a

saliency map and then a neural network scans the attended

locations based on the decreasing order of the saliency in

the map (Itti et al. 1998; Le Meur et al. 2006; Marat et al.

2009). The probabilistic models use a probabilistic

framework based on the information theory in their struc-

ture. Based on the studies in the human visual system, these

models consider the contextual information of the scene for

finding the informative regions of the images. The first

Fig. 1 a The original image (used in our experiment). b Eye fixation

points of fourteen individuals while viewing the typical image.

c Actual saliency map result of eye fixation points (the saliency map

created by convolving a Gaussian filter over the eye fixation locations

of all individuals)
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model in this category has been proposed by Oliva et al.

(2003; Zhang et al. 2008). Machine learning-based

approaches combine different low-level, mid-level and

high-level features for training a classifier. For example, in

Judd et al. (2009) different low-level features like the local

energy of the steerable pyramid sub-bands filters in dif-

ferent orientations and different scales, the values of the

red, green and blue channels and some other features were

used beside the support vector machine classifier to train

the model. In Shen and Zhao (2014) a model based on the

hierarchical structure of feature extraction in the ventral

stream in the visual cortex is proposed. The model predicts

the saliency by learning from the natural images and at

multiple stages of features. The features are integrated and

the weights of this integration are computed based on the

ground-truth fixation data. Although most of the proposed

models qualitatively work well, their use is limited because

their outputs do not meet well with actual human fixations

data (Judd et al. 2009). Most of these models do not con-

sider the top-down semantic information and they use just

the bottom-up features in their structure, so they need to be

improved to be able to match actual eye fixation locations

(Awh et al. 2012; as depicted in Fig. 2). There is also an

important distinction between top-down in the sense of

‘‘task-driven’’ and higher-level content. By top-down

models, we mean those models that consider higher-level

content. The Fig. 2 shows two samples of the images used

in our experiment, which compare real saliency map

(which is from eye movement data of participants in our

experiment) and the saliency map of Itti and Koch model.

In this study, we recorded the eye movements of four-

teen individuals while viewing the gray scale images of

two different semantic categories. We extracted the fixa-

tion locations of eye movements in two image categories as

patches of images around the eye fixation points. After

extraction of the fixation areas, characteristics of these

areas were evaluated and were compared to non-fixation

areas.

The extracted features include the orientation and spatial

frequency. After feature extraction phase, different statis-

tical classifiers were trained for predicting the eye fixation

locations in new images. Indeed, we explored the way in

which individuals look at images of different semantic

categories, and related those results to approaches for

automatic prediction of eye fixation locations. Our study

connects eye-tracking results to automatic prediction of

saliency regions of the images. The results show that it is

possible to predict the eye fixation locations by using of the

image patches around subjects’ fixation points. In addition,

the efficacy of the low-level visual features in attracting the

eye movements is affected by the high-level image

semantic information.

The rest of the paper has been organized as follows:

‘‘Procedure and methods’’ section presents the procedure

and methods of the experiment (participants, stimuli, pro-

cedure and paradigm) and describes the approach we have

applied to track the subjects’ eye movements. In ‘‘Con-

trolling low-level features of the image’’ section, we

compare the low-level features in the images of two dif-

ferent semantic categories that shown to the subjects. In

‘‘Definition and extraction of eye fixations data’’ section,

eye fixations data is defined and extracted. ‘‘Predicting eye

fixation locations’’ section is dedicated to methods (creat-

ing feature vectors, training different classifiers,…) and

results related to prediction of the eye fixation locations

and creating the saliency map (attention model). In ‘‘Per-

formance and evaluation’’ section, we evaluate the per-

formance of the model on our data set and Toronto data set.

‘‘The discussion and conclusions’’ section presents the

relevant discussion and conclusions.

Fig. 2 Left column original

images shown to the subjects,

middle column the resulting

actual saliency map of the

subject’s eye-tracking data and

right column Itti and Koch

saliency map for two sample

images. As can be seen, current

attention models do not

accurately predict people’s eye

fixation locations
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Procedure and methods

Participants

Fourteen subjects (four females and ten males, aged

between 22 and 30 years; standard deviation of 2.03 years)

participated in our experiment. The participants had normal

or corrected-to-normal visual acuity and had no history of

eye and muscular diseases. The participants were the stu-

dents and researchers at the school of Cognitive Science,

Institute for Research in Fundamental Sciences (IPM-

Tehran, Iran). All participants were naive to the purposes

of the experiment. Informed consent was obtained for

experimentation from the subjects. The work was carried

out in accordance with the Code of Ethics of the World

Medical Association (Declaration of Helsinki).

Stimuli

We used 18 gray scale images from each of two semantic

different categories (in total 36 images) as stimuli includ-

ing the natural images (included natural scenes such as

landscape, animal) and the man-made images (included

man-made scenes such as building, vehicles). Each image

had a size of 700 9 550 in pixels. A small size of several

images has been shown in Fig. 3. There were no artificial

object in natural images and no natural object in man-made

images.

Procedure

In order to record the eye movements of the participants in

the experiment, we have used the infrared, video-based eye

tracker system of EyeLink1000 (SR Research, Canada).

We set the sampling rate of eye tracker device in 1000 Hz

in the monocular (left eye) Pupil-CR recording mode. The

experiments were done in a small dark room that was

insulated in terms of light and sound (in order to eliminate

the distracters). We controlled the drift and did a new

calibration when necessary (while drift was larger than of

0.5� of visual angle). A chinrest was used in order to avoid

from participant’s head movements. Participants were

seated 57 cm from the screen of the monitor. The Images

were displayed on the center of an LG 21-inch flat panel

screen with a resolution of 1024 9 768 pixels and refresh

rate of 75 Hz. With these conditions, every 20 pixels of the

displayed image will be equivalent to 1� of visual angle.

Paradigm

Eye movement data of fourteen subjects were recorded

during the experiment as the subjects viewed images from

the two categories in three blocks of trials. In each block,

36 images (18 images from natural and 18 images from

man-made category) were shown randomly to the subjects

(totally, each subject viewed 108 images). At the beginning

of each block of the trials, the 9-point calibration and

11-point validation procedures were performed (in order to

ensure the lack of subjects’ head movement until the end of

each block). In each block after calibration and validation

procedures, the subjects were shown a fixation point with a

time duration of 1.5 s located in the center of the screen (to

ensure that the starting point of the eye movements begins

at the center of the screen for all images) and then each

image was displayed for 2 s. After this time, a page

appeared that asked the answer of the subjects (‘‘Answer’’,

in order to engage the persons to perform the task). The

subjects were instructed to press ‘‘left arrow’’ on the key-

board if the image was belonging to the natural category

and ‘‘right arrow’’ on the keyboard if the image was

belonging to the man-made category. One second after the

answer (in order to eliminate the effect of hand motion on

Fig. 3 Eight samples of the 36 images used in the experiment (from each of the two categories), top row natural category, bottom row man-made

category. They were resized for viewing here
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the eye movements) next fixation point was appeared and

was followed by the next image. This procedure was

continued until the end of the block. The experimental

steps are illustrated in Fig. 4. We recorded the subjects’

eye movements during the whole experiment. If the sub-

jects did not focused on the fixation point at the beginning

of the trials, their data was removed from the analysis for

those trials. All subjects fixated on fixation point at the

beginning of the trials and only one subject in two trials in

two different blocks, focused on distance away from the

fixation point. A radius distance more than six pixels from

the fixation point was the criterion for being ‘‘not focused’’.

The first fixation points on eye movements were eliminated

from the analysis.

Controlling low-level features of the image

We use the gray scale images because our purpose is to

predict fixation locations in visual scenes with different

semantic content, and as we know, the ‘‘contents’’ of image

is independent of the ‘‘color’’ of it. For example, we see the

image of a forest and we perceive it is a forest, either its

color is green or black and white (gray scale).

We intended to investigate the image semantic and

conceptual effects on the subjects’ eye movements. Indeed,

our purpose was predicting the eye fixation locations in the

visual scenes with different semantic contents. Required

for this claim is that we control the images’ low-level

features in two categories as far as possible and make sure

that these features are not significantly different between

the two categories of gray scale images. To achieve this,

we have investigated the mean of gray scale value, his-

togram distribution, spatial frequency and edge density

parameters in both sets of images. Clearly, there are some

other properties that controlling and unification of them is

not simply possible. It should be noted that property of

‘‘edge density’’ which is compared between images, could

be a criterion of number of objects in each image. The

more the objects, the more the intensity of edges in each

image (each object is mainly recognized by its edges).

The results of this control indicated that there was no

significant difference between two groups regarding the

mean of gray scale value (average value for all images ± the

standard error of the mean; natural = 97.56 ± 7.83, man-

made = 101.43 ± 7.25; T test: p = 0.72 and Wilcoxon

rank-sum test: p = 0.76, the degrees of freedom (df) = 2n-

2 = 34) and the spatial frequency (natural = 0.22 ± 0.01,

man-made = 0.2 ± 0.004; T test: p = 0.11 and Wilcoxon

rank-sum test: p = 0.22, df = 34) parameters. (Significance

level a = 0.05 and in a two-sided (two-tailed) test condition,

for all comparative tests in this paper). The method of

obtaining a measure of the images’ spatial frequency has

been mentioned in the following subsection.

Spatial frequency

To calculate and obtain a measure of the images’ spatial

frequency, first we applied the 2D Discrete Fourier

Calibration and 
Validation

View Image 
(2 Sec.)

Fixation Point 
(1.5 Sec.)

Subjects’ Response 

Next Trial

Answer?

Fig. 4 Paradigm design. At the

beginning of each block of trials

a calibration and a validation

procedure were performed.

After this, a fixation point was

appeared for a duration of 1.5 s

located in the center of the

screen, and then, each image

was displayed for 2 s. Then one

page was appeared that asked

for the answer of the subjects

‘‘Answer’’. The next fixation

point (next trial) was appeared

1 s after the answer and

followed by the next image
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Transform (2D-DFT) on each image. In digital image

processing, each image function f(x, y) is defined over

discrete instead of continuous domain, finite or periodic.

The transform of an N 9 N image yields an N 9 N

array of Fourier coefficients that completely represent the

original image. After obtaining the complex coefficients F

(u, v) (Real, R (u, v), and imaginary, I (u, v) parts; Eq. 1)

for each of the images, magnitude of all coefficients (am-

plitude spectrum, F u; vð Þj j; Eq. 2) are calculated:

F u; vð Þ ¼ R u; vð Þ þ jI u; vð Þ

¼ F u; vð Þj j exp j tan�1 Iðu; vÞ
Rðu; vÞ

� �� �
ð1Þ

F u; vð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 u; vð Þ þ I2 u; vð Þ

p
; ð2Þ

The number of Fourier coefficients that their amplitude

is larger than a threshold value was calculated for each of

the images separately, as a measure of the spatial frequency

of the image. We considered the threshold value equal to

the average amplitude of the Fourier coefficients for each

image separately. Finally, this measure was normalized to

the number of all the Fourier coefficients of each image

(equal to the number of all pixels of each image).

Image histogram

For image histogram parameters, due to the fact that most

of the images had a similar shape of the histogram distri-

bution (single-mode distribution), we matched all the

image histograms with the histogram of one of image.

Therefore, all the images (natural and man-made) had

almost a similar form of histogram (single-mode distribu-

tion). This caused the images have a similar shape of

histograms.

Edge density

Another important parameter is the edge density of the images

used in the experiment. To evaluate this parameter, first, the

edges of the image were extracted by applying Gaussian

derivative filters, and then, theWeibull probability distribution

function (Eq. 3;Geusebroek andSmeulders 2002)wasfitted to

the histogram of the images contained the information of the

extracted edges (Fig. 5). For each image Weibull function

parameters (scale parameter (a) and shape parameter (b)) were
extracted and the mean values of these parameters were

Image Histogram for δ: 2

Fr
eq

ue
nc

y

α: 3.996    β: 1.035

Intensity

(a)

(c) (d)

(b)

Fig. 5 a A sample image shown to the subjects. b The edges that were extracted from the image. c Histogram of the extracted edges and,

d Fitting a Weibull function to the resulting histogram
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compared between the two groups of images. The results

showed that there was no significant difference between

groups neither for a parameter (natural = 3.23 ± 0.3, man-

made = 3.38 ± 0.31; T test: p = 0.71 and Wilcoxon rank-

sum test: p = 0.68, df = 34) nor the b parameter (natu-

ral = 0.78 ± 0.05, man-made = 0.77 ± 0.04; T test:

p = 0.87 and Wilcoxon rank-sum test: p = 0.97, df = 34).

Fðx; a; bÞ ¼
b
a

x

a

� �b�1

x� 0

0 x\0

(
ð3Þ

Definition and extraction of eye fixations data

We plotted the subjects’ eye movement data on the

corresponding images and we derived the fixations and

rapid jumps of the eye movements (saccade) from the

data. In this study, our definition of fixation and saccade

was respectively as follows: A location was considered

as fixation when the eyes remained for at least 80 ms in

locations of images whit maximum space of 0.5� of

visual angle. Saccades were detected when the eyes were

displaced with minimum jump amplitude of 1.5� of

visual angle and minimum speed of 22� of visual angle

per second. Nevertheless, we used only the fixation

points in our analysis and in practice we do not deal with

saccades. In Fig. 6 (left), the path of eye movements has

been shown by blue dots for one of the subjects. In

addition, in Fig. 6 (right), Purple circles represent the eye

fixation areas and the cyan lines connecting the circles

represent the possible saccades (some of the lines and

not all of them by considering the conditions of the

amplitude and speed to eye movements). Temporal order

of the fixation points have been marked on image with

the numbers from 1 to 8. After extracting the subjects’

eye fixations points, the relevant image patches were also

extracted that we explain them in the rest of paper.

Predicting eye fixation locations

The aim of our research is to predict the eye fixation

locations in two image categories and ultimately, to create

a saliency map for each image (attention model). First step

of the analysis is allocated to the feature extraction phase.

In this step, we extract the actual subjects’ eye fixation

points and then the features from these points are extracted.

We control whether these features are different from the

features of the control points (random points) significantly.

After feature extraction step, we use the different classifiers

in order to classify the eye fixation and non-fixation loca-

tions in the images. Indeed, we propose to learn a visual

attention saliency model directly from the human eye

movement data.

Method and analysis

In the first part of the analysis, the goal is to extract the

features of the eye fixation locations that are different

between the fixation and non-fixation locations (control

locations) significantly. To this end, image patches with

different sizes from two different image categories were

extracted around the eye fixation points and around the

control points. For each image control patches (control

locations) were selected quite randomly, so that these

patches had no overlap or subscription with patches around

the fixation points (The extracted patches around the fixa-

tion points had not any overlap with those around the

control points). Each of the patches is used to form a

feature vector for each of the locations.

Modeling the simple and complex cells in the primary

visual cortex

The neurobiological studies on the neural mechanism of

vision showed that a multi-level network with a feedback

control can achieve orientation detection instantaneously

1
2

3

4

5

67

Fig. 6 Left the subjects’ pattern

of eye movements while

viewing an image (blue dots),

right the fixation locations of

the eye (purple circles) and

saccades (some of the cyan

lines). (Color figure online)
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and the results are finally stored in the primary visual

cortex (Wei et al. 2013). Here we give a brief description of

modeling the simple and complex cells in the primary

visual cortex which has been used as a part of feature

extraction.

The first cells in the cortex that analyze the visual

information are simple cells in the primary visual cortex

(Serre and Riesenhuber 2004). Gabor filters provide a good

model for cortical simple cell receptive fields (Serre and

Riesenhuber 2004; Serre et al. 2005; Riesenhuber and

Poggio 2000). The following equations describe the corti-

cal simple cell receptive field models mathematically:

Fðx; yÞ ¼ exp �
x20 þ Y2y20
	 


2r2

� �
� cos x0

2p
k

� �
ð4Þ

x0 ¼ x cos hþ y sin h and y0 ¼ �x sin hþ y cos h

ð5Þ

r ¼ 0:0036� s2 þ 0:35� sþ 0:18 that k ¼ r
0:8

ð6Þ

The five Gabor filter parameters, i.e., effective width

r, aspect ratio Y = 0.3, orientation h, wavelength k and

filter sizes s (RF size) were adjusted so that the tuning

properties of the corresponding simple units match the

V1 para foveal simple cells based on the data from two

groups: De Valois et al. (1982a, b) and Schiller et al.

(1976a, b, c). In this study, we arranged the simple filters

in two filter sizes of 11 9 11 and 13 9 13 pixels (Band

2). Although we tried other bands (Band 1 containing

two filter sizes of 7 9 7 and 9 9 9 pixels and Band 3

containing two filter sizes of 15 9 15 and 17 9 17 pix-

els) there was no significant difference in the perfor-

mance of our model, so we used the filters only from

Band 2. In addition, we considered four orientations (0�,
45�, 90� and 135�), thus leading to eight different simple

receptive field types in total (2 scales 9 4 orientations)

for each of the patches extracted from the images (the

fixation and control patches). This is a simplification in

the model but this has been shown to be adequate to

provide rotation and size invariance in good agreement

with recordings in infero-temporal cortex (IT) (Riesen-

huber and Poggio 1999).

The next step in the processing of visual information in

the cortex is performed by the cortical complex cells.

These cells are to some extent invariant to shift (position)

and size. They have larger receptive field as compared to

simple cells (Serre and Riesenhuber 2004). Complex cells

receive inputs from simple cells in the previous layer with

the same orientation and scale properties. The scale band

index of the simple units also determines the size of the

simple neighborhood N 9 N over which the complex units

pool (Eq. 7). This procedure was done for each of the four

orientations independently.

NBandiþ1
¼ NBandi þ 2; i ¼ 1; 2; . . .; 7 where

NBand1 ¼ 8
ð7Þ

The corresponding pooling operation is a MAX opera-

tion, which increases the tolerance to -D transformations

from layer simple to complex. So, the response of a com-

plex cell is obtained through the maximum response of its

N 9 N afferents from the previous simple layer such that:

r ¼ max xj that j ¼ 1; . . .;N � N ð8Þ

For each orientation, there are two simple maps (in

every one of the bands that we used from band 2): The one

obtained using a filter of size 11 9 11 and the one obtained

using a filter of size 13 9 13. The complex cell responses

are calculated by subsampling these maps using a cell grid

of size 10 9 10 (N = 10). A maximum value is then taken

from 100 elements in the grid. The max operation is finally

used over the two scales. The complex units overlapped by

an amount of five pixels (N/2). The parameters were fixed

according to the experimental data [see Serre et al. (2005)

for details].

Creating feature vectors

According to the explanations given, we created a feature

vector for each of the patches (fixation and control)

extracted from the images, in this way: first, we convolved

each image patch with two Gabor filters with filter sizes of

11 9 11 and 13 9 13 and for four orientations (0�, 45�,
90� and 135�) independently (Eqs. 4, 5, 6). Indeed, these

units play the role of the V1 simple cells. Therefore, the

result is the eight simple receptive fields. In other word, the

8 image patches for each of the original patches are

extracted from the images (the fixation and control pat-

ches). In the next step, for each orientation that contains

two simple maps, the complex unit responses were com-

puted by subsampling these maps using a window size of

10 9 10 pixels. One single value was obtained by taking

the maximum of all 100 elements in each grid cell (re-

places each pixel with the maximum of its 10 9 10

neighborhood). In the last step, a max operation was taken

over the two scales from within the same window by

storing only the maximum value from the two maps. The

windows overlapped by an amount of five pixels. The

overlap divides the dimensions of the original patches into

five. This operation reduces the dimensions of the feature

space in addition to obtaining useful information from the

original patches. For example, if the size of the extracted

original patch is 40 9 40 pixels, a patch with the size of

8 9 8 pixels is created for each of the four orientations.

Finally, a feature vector of length 256 is obtained for this

sample image patch (64 pixels 9 4 orientations; Fig. 7).

After creating the initial feature vector for each image
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patch, we used the principal component analysis (PCA)

algorithm in order to reduce the dimensionality of the

feature space by maintaining as much variance as possible.

In order to improve the results in the classification, it is a

popular preprocessing step, which suggests a lower number

of principal components instead of the high-dimensional

original data.

In this method, the free parameters are the ‘‘patch size’’

and the ‘‘number of components’’ in PCA. First, we

selected the number of the PCA components that contained

more than 90 % of the total variance in input data (initial

feature vector space). After calculating and plotting the

PCA eigenvalue spectrum it was found that, first 18 prin-

cipal components have more than 90 % of the total vari-

ance in the input data. We calculated the PCA eigenvalue

spectrum for the extracted patches with different sizes

(30 9 30, 40 9 40, 50 9 50, 60 9 60 and 80 9 80 pix-

els), and the results showed that the first 18 principal

components include the 90 % of the total variance in input

data. Therefore, we have a feature vector of length 18 for

every image patch (with any size) hereinafter. For instance,

assuming that the average number of fixation points for

each image is six (equivalent the six fixation patches), thus

for each image there is also a six control points and totally

there are twelve feature vectors for each viewed image.

With these assumptions, because each individual see 108

images, all data related to a person will be equal to 1296

feature vectors (108 images 9 12 patches).

Adding spatial frequency as another feature

In order to increase the accuracy of classification to sepa-

rate the fixation and non-fixation locations in previous

section, we looked for another feature that is quite different

between the two locations (in addition to the extracted

orientations). This feature is a measure of the spatial fre-

quency of the image patches. The experimental evidence

have shown that the visual cortex neurons respond more

robustly to sine wave gratings that are placed at particular

angles in their receptive fields than they do to edges (Shi
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Fig. 7 Visualizing the method of feature vector extraction. First,

patches (areas around the eye fixation and random points of the

image) are extracted. Second, each image patch is convolved with two

Gabor filters with filter sizes of 11 9 11 and 13 9 13 and for four

orientations independently. These units play the role of the V1 simple

cells. For each orientation that contains two simple maps, the complex

unit responses are computed by subsampling these maps using a

window of size 10 9 10 pixels that from each window, one single

measurement is obtained by taking the maximum of all 100 elements.

Because the size of the extracted original patch is 40 9 40 pixels, a

patch with the size of 8 9 8 pixels is created for every one of the four

orientations. Finally, a feature vector of length 256 is obtained for this

sample image patch. Finally, the PCA algorithm is used in order to

reduce the dimensionality of the features space
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et al. 2011). Indeed, most neurons in the V1 area of the

visual cortex have the best response when a sine wave

grating of a specific frequency is presented at a particular

angle in a particular location in their visual field (Issa et al.

2000; Martinez and Alonso 2003). In this case, the spatial

frequency is a measure of how often sinusoidal components

of the structure repeat per unit of distance. The spatial

frequency is expressed as the number of cycles per degree

of visual angle.

To calculate and obtain a measure of the patches’ spatial

frequency, first we applied the 2D-DFT on each image

patch (such as ‘‘Spatial frequency’’ section, spatial fre-

quency for image). The number of Fourier coefficients that

their amplitude is larger than a threshold value was cal-

culated for each of the image patches separately, as a

measure of the spatial frequency of the image patch. We

considered the threshold value equal to the average

amplitude of the Fourier coefficients for each image patch

separately (Fig. 8). Finally, this measure was normalized to

the number of all the Fourier coefficients of each patch.

In the next step, the spatial frequency feature (as a one-

dimensional feature) added to the feature vector obtained

from the orientations and by applying the PCA algorithm

for each image patch.

Training different statistical classifiers

After extracting the feature vectors for all fixation and non-

fixation patches for each of the images seen by any indi-

vidual separately, we labeled these patches. The fixation

patch label was set to be equal to ‘‘1’’ and the control patch

label was selected to be equal to ‘‘0’’. In order to specify a

label for each test image patch (fixation patch label = 1,

non-fixation patch label = 0), we take the advantage of a

classifier. To evaluate the model, we used the technique of

repeated random sub-sampling validation. This method

randomly splits the dataset into training and validation

data. For each such split, the model is fitted to the training

data and predictive accuracy is assessed using the

validation data. Then, the results are averaged over the

splits. So after extracting all feature vectors for each of

images seen by any individual, feature vectors corre-

sponding to 80 % of the observed images (all images

include the natural and man-made scenes; 29 images 9 3

blocks of the trials = 87) were considered randomly as the

training data. The classifier trained using these data. Fea-

ture vectors corresponding to 20 % of the outstanding

images 21 images were considered as the test data and

classification of these data will be evaluated. Breaking the

data into two parts training and test was performed 20

times randomly and we reported the average classification

accuracy for this 20 times for the data related to each

person separately. The same process was performed on the

data belonging to all individuals participated in the

experiment and at the end, this accuracy was averaged

across all individuals. We used four classifiers in classifi-

cation step: Naive Bayes, K-nearest neighbor, Support

Vector Machine with radial basis function as kernel func-

tions (RBF-SVM) and linear Support Vector Machine.

Results

The result of the average classification accuracy is calcu-

lated in this section. Free parameters of this method include

the image patch size. Therefore, performance was mea-

sured for different sizes of the extracted patches.

Average classification accuracy

The results of the average classification accuracy in across

all subjects are shown in Fig. 9. As can be seen in the

figure, K-nearest neighbor classifier for image patches with

a size of 120 9 120 pixels has the highest accuracy

(80.23 ± 0.92 %). Also, support vector machine with

radial basis kernel function (79.94 ± 0.62 %), linear sup-

port vector machine (79.84 ± 0.5 %) and Naive Bayes

(77.72 ± 0.78 %) classifiers for image patches with a size

of 40 9 40, 120 9 120 and 80 9 80 pixels have the
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Fig. 8 Calculating a measure of the spatial frequency where green circle shows fixation point and blue circle shows non-fixation point (control

point). (Color figure online)
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highest accuracy respectively (reported values are: aver-

aging the performance across all subjects ± the standard

error of the mean).

It should be mentioned that, we performed the same

random subsampling validation method in before adding the

spatial frequency feature condition. The average of classifi-

cation accuracies over 14 individuals for patches with sizes

of 40 9 40, 60 9 60, 80 9 80, 100 9 100 and 120 9 120

pixels was calculated. The K-nearest neighbor classifier for

image patches with the size of 120 9 120 pixels has the

highest accuracy (76.5 ± 0.99 %). Also, SVM with radial

basis kernel function (76.34 ± 0.49 %), linear support

vector machine (76.28 ± 0.51 %) and Naive Bayes

(74.84 ± 0.71 %) classifiers for image patches with a size of

40 9 40, 120 9 120 and 80 9 80 pixels have the highest

accuracy respectively (reported values are: averaging the

performance across all subjects ± the standard error of the

mean). This means that classification accuracies have been

increased between 3 and 4 % by adding the image patches’

spatial frequency features.

Pooling all subject’s data and create the saliency map

In this section we pooled the data across all subjects and

then we utilized the Repeated Random Sub-sampling

(RRS) method (splitting the dataset into training and vali-

dation data randomly) in order to evaluate the performance

of the classifiers. Total number of the image patches was

equal to 16,730 for the data relating to all subjects (8365

fixation image patches and 8365 control image patches).

Therefore, classifiers were trained with 13,384 image pat-

ches and were tested with the remaining 3346 image pat-

ches. The RRS method was implemented for 30 times on

the data of all the subjects. In this case the image patches

with size of 80 9 80 pixels were used because all classi-

fiers were in good agreement in this size (Fig. 9). In

addition, no significant difference in the classifiers per-

formance of this size was seen as compared with the

maximum performance for other sizes. In order to decrease

the run time of the algorithm, we do not want to use large

sizes. The results of the average classification accuracies

are shown in Fig. 10. The K-nearest neighbor classifier has

the highest accuracy equal to 76.9 ± 0.6 %. In addition,

support vector machine with radial basis kernel function

has accuracy of 76.2 ± 0.73 %. Linear support vector

machine and Naive Bayes classifiers have the accuracy of

75.4 ± 0.66 and 70.8 ± 0.71 % respectively (reported

values are: averaging the performance across thirty times

of running the RSS algorithm ± the standard error of the

mean).

In addition, we calculated the confusion matrices for

each of the four classifiers. The results were obtained by

averaging over thirty times splitting the data into train and

test portions with RSS method. A confusion matrix allows

visualization of the performance of classifiers that was

represented by a matrix that each row represents the

instances in a predicted class, while each column represents

the actual classes (Fig. 11). The cells in the confusion

Fig. 9 The mean accuracy of different classifiers for prediction of

eye fixation points for orientation and spatial frequency as features,

depending on the sizes of the patches extracted from the images.

Values are based on averaging the accuracy of the data relating to 14

subjects and the error bars indicate the standard error of the mean

across all subjects (±SEM)

Fig. 10 The results of the average classification accuracy as we pool

the data from all subjects for four different classifiers. The image

patches size was selected to be 80 9 80 pixels. Error bars indicate

the standard error of the mean across all the number of iterations to

run the RRS method. Dash line indicates the chance level
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matrix include the True Positives, False Positives, False

Negatives and True Negatives portions. Assuming that

class ‘‘1’’ is the same class of fixation patches and class

‘‘2’’ is the class of control patches, it can be seen from

Fig. 11 that performance of the four classifiers is more in

class ‘‘1’’ rather than class ‘‘2’’. For example, for K-nearest

neighbor classifier the average accuracy for class ‘‘1’’ is

equal to 81.2 % while the average accuracy for class ‘‘2’’ is

equal to 72.9 %. This means that the classifiers predict the

fixation locations with higher accuracy rather than control

locations and this cause that created saliency map be a little

noisy. In order to decrease this noise we proposed a method

that is explained in the next section.

In order to create a saliency map for each test image, at

the beginning the overlapping patches from the image were

extracted from the starting point of the image to the last

one. The overlapping patches size was 80 9 80 pixels (for

reasons mentioned earlier) with five pixels shift in X and Y

directions. Then the feature vectors created for all extracted

patches of the image. The classifier was trained with the

data of training images (105 images 9 14 subjects = 1470

images) and was tested with the feature vectors corre-

sponding to each patch in the training image separately.

The classifier determined the label of each test patch. If the

test patch label was equal to ‘‘1’’, the central pixels of the

patch was considered to be white in the corresponding

Fig. 11 Confusion matrices for each classifier. The results obtained by averaging over thirty times splitting the data into train and test portions

with RSS method
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saliency map otherwise (label is equal to ‘‘0’’) all pixels of

the patch were considered black (Fig. 12). According to the

results of the previous sections, the K-nearest neighbor

classifier showed the highest accuracy so we took the

advantage of this classifier to create the saliency maps. As

can be seen from Fig. 12, the obtained initial saliency map

includes the scattered white pixels that are like the salt

noises in the images. We have a tendency to remove these

pixels because the density of the pixels is very low and so,

the probability that these points are the points of fixation of

the eye is too low. Indeed, the eyes do not fixate on a

limited number of pixels and fixate on an area of pixels in

the image.

In order to reduce and remove the noise pixels in the

saliency map, we trained the classifier with data relating to

each subject separately and test the image patches

according to the data of each subject independently.

Accordingly, 14 labels were determined for each test image

patch. The final decision was taken based on voting pro-

cedure that predicts the test patch as a fixation point if the

patch gets at least 9 votes from the data of 14 classifiers

from different subject’s data. By applying this method the

noise pixels on the saliency map have been removed well

and only the pixels that are dense remains as fixation

points. In order to obtain a continuous predicted saliency

map for an image, we convolved a Gaussian filter (with

filter size = 50 and standard deviation (r) = 15, we found

r = 15 and filter size = 50 to work well in practice)

across the predicted fixation locations in the map resulting

of white and black pixels. We also created a continuous

human saliency map for each of the images by convolving

a Gaussian filter (with the same parameters as before)

across the eye tracking data of all subjects in all three

blocks for each image.

Performance and evaluation

In this section, we measured the performance of the pro-

vided saliency model by its Receiver Operating Charac-

teristic (ROC) curve, for the images used in our experiment

and for the Toronto data set (Bruce and Tsotsos 2009). This

data set contains data of eye tracking from 20 subjects that

have seen the 120 color images of outdoor and indoor

scenes (some with very salient items, others with no par-

ticular regions of interest) in the free viewing conditions.

Images were presented in random order for 4 s each with a

gray mask between each pair of images appearing for 2 s.

Finally, we compared the performance of our model with

the Itti, Koch, and Niebur model (Biologically inspired

models, 1998), for the two data sets (Bruce et al. and ours).

We used codes which Jonathan Harel (last updated July 24,

2012) has written for Itti and Koch model (http://www.

vision.caltech.edu/*harel/share/gbvs.php).

Performance on our data set

A qualitative comparison of the human saliency map, from

eye tracking data, with output maps of Itti et al. model and

our model for a variety of test images has been shown in

Fig. 13. As can be seen, output saliency maps of our model

(the fourth column from the left) are very similar to the

Initial Saliency Map

Feature Vector 
Extraction

The K-nearest neighbor 
Classifier that trained with image 
patches of the other 1470 images 
(approximately 16000 patches)

Test data

Patch 
Label?

Label “1”    white pixel
Label “0”    black pixel

Test Image

Fig. 12 Create an initial saliency map for a sample test image by label of each image patch that specified by the trained classifier
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actual saliency maps (the third column) than output maps

of the Itti et al. model (the last column). Indeed, our model

is able to predict properly the possible locations that can be

fixated by the subjects. The saliency maps obtained from

Itti et al. model includes many of the salient locations and

in fact, this model acts on our data set poorly. We intend to

evaluate the performance of the two models quantitatively,

on test images.

We measured performance of saliency models by their

ROC curves. A ROC curve plots the true positive rates as a

function of the false positive rates used to present the

classification results. In connection with our goal, the ROC

analysis is performed between a continuous saliency map

that is model output and a set of actual fixation points that

are obtained from the eye tracker device. Hit rate (True

Positive Rate) is measured in function of the threshold used

to binarize the saliency map (Torralba et al. 2006) and

(Judd et al. 2009; Hybrid method for comparison). We

applied thresholds over the saliency map that are obtained

from the models at n = 5, 10, 15, 20, 25, 30, 35, 40, 45 and

50 % of the image for binary saliency maps. For each

binary map, we found the percentage of human fixations

within the salient areas of the map as the measure of per-

formance. Notice that as the percentage of the image

considered salient goes to 100 %, the percentage of human

fixations within the salient locations also goes to 100 %.

We apply a threshold to the outputs of the models in

order to define predicted regions with a predefined size that

allows for comparing the different algorithms. The

threshold is set so that the selected image region occupies a

Fig. 13 A qualitative comparison of the human saliency map, from

eye tracking data, with output maps of Itti et al. (1998) model and our

model for a variety of test images. From left to right: Original image

shown to the subjects. Eye fixation points belonging to 14 viewers in

the three blocks of experiment (green, yellow and blue filled circles

are corresponding to block 1, block 2 and block 3 respectively). The

human saliency map, actual saliency map, computed by convolving a

Gaussian filter across the eye fixation points of all subjects in all three

blocks (Lighter areas correspond to regions that are more salient).

Saliency map as computed by our algorithm. Saliency map as

computed by the Itti et al. (1998) algorithm. (Color figure online)
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fixed proportion of the image size (set to 5, 10, 15, 20, 25,

30, 35, 40, 45 and 50 %). For example, the percent salient

30 % region corresponds to the 30 % of image pixels with

higher saliency (in other word, the density is thresholded to

select an image region with the highest probability of being

fixated that has an area of 30 % of the image size). The

efficiency of each model is determined by the percentage of

human fixations that fall within the predicted region.

After extraction ROC curves for each test image, we

averaged this curves across all images and calculated the

area under ROC curve (AUC) for two models, for our data

set. The mean of AUC for our model and Itti et al. model

was equal to 0.9055 ± 0.0134 and 0.7356 ± 0.0198 (av-

erage value for all images ± standard error of mean across

images) respectively. The difference was quite significant

between the two models (T test: p = 1.64 9 10-4 and

Wilcoxon rank-sum test: p = 1.27 9 10-4, df = 70). The

performance of both models were significantly higher than

the chance level (Mean of AUC = 0.55 ± 0.0153). Con-

sider that we have implemented the Itti et al. model when

the color channel (C channel) of the model deleted and

gray scale images given as inputs to the model. In addition,

we have implemented the model with original color images

without removing the models color channels that the result

presented in the discussion section.

Performance on Toronto data set

In Toronto data set, the mean of AUC for our model and

Itti et al. model was equal to 0.7603 ± 0.0127 and

0.7918 ± 0.0134 respectively. This difference was not

significant between the two models (T test: p = 0.094 and

Wilcoxon rank-sum test: p = 0.073, df = 238). There are

two reasons for the reduced performance of our model for

Toronto data set than our data set. First, as can be seen

from Fig. 14, many of the images used in the Bruce

experiment included the regions of interest (ROI) that were

created by drastic difference in the color of a particular

object with the background of the images. Therefore, it is

expected that the performance be less for this data set,

because the color feature has not been involved in our

model. Second, in the Bruce experiment, each image has

been displayed for 4 s whereas this duration was equal to

2 s in our experiment. Indeed, our model is trained with

2 s. It is obvious that subjects observe more locations of the

image in duration of 4 s.

The discussion and conclusions

In this study, we recorded the eye movements of individ-

uals who view gray scale images of two different semantic

categories. Images consisted of natural (e.g., landscape,

animal) and man-made (e.g., building, vehicles) scenes.

Eye movements of 14 subjects were recorded as they

viewed images from two categories in three blocks. In each

block, 36 images from two categories (18 images from

natural and 18 images from man-made category) were

presented randomly to the subjects (overall, each person

viewed 108 images). We extracted the fixation locations of

eye movements in two image categories by the means of

the patches of image that are around the eye fixation points.

After extraction of the fixation areas, characteristics of

these areas as compared to non-fixation areas were evalu-

ated. In other words, we extracted the features of the fix-

ation locations. These features caused the eyes to be

attracted toward those locations. The extracted features

include the ‘‘orientation’’ (in the directions of 0�, 45�, 90�
and 135�) and ‘‘spatial frequency’’. After feature extraction

phase, different statistical classifiers were trained to predict

the eye fixation locations in the new images. The results

show that it is possible to predict the eye fixation locations

Fig. 14 A few sample images from the Toronto data set. The ROIs created by the difference in color
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by using the image patches around the subjects’ fixation

points. Finally, we obtained the saliency map for images

and we compared the output of our model with the Itti et al.

model for our dataset and the Toronto dataset. We

observed that the performance of our model is much better

than Itti et al. model for our dataset. For Toronto dataset

the performance of our model decreased slightly (although

there was not a significant difference between the perfor-

mance of the two models). In the ‘‘Performance on Toronto

data set’’ section, we mentioned two reasons for the

reduced performance of our model for Toronto dataset as

compared with our dataset.

We calculated the performance of our model for two

categories (natural and man-made scenes) separately. The

mean of AUC for natural and man-made categories was

equal to 0.8547 ± 0.0233 and 0.9563 ± 0.0172 respec-

tively. The results of prediction for the man-made category

was significantly better than the natural one (T test:

p = 0.0183 and Wilcoxon rank-sum test: p = 0.0251,

df = 34). The results indicate that because we used the

‘‘orientation’’ and ‘‘spatial frequency’’ features for the

prediction of eye fixation locations therefore the efficacy of

the low-level visual features in attracting the eye move-

ments is affected by the high-level image semantic infor-

mation. In other words, ‘‘spatial frequency’’ and

‘‘orientation’’ are more effective in attracting the eye

movements in the man-made scenes as compared with the

natural scenes category.

We do not claim that the model is taken from biological

findings completely. In fact, our main concern is of

mathematical and computational aspects of the model.

In our experiment, the task of the participants is to

report whether the image presented for 2 s is natural or

man-made. This is a very easy task given how fast

human gist perception is (*100 ms). If we consider

very short time for image show (only few millisec-

onds), then the number of fixations would be so few or

even zero (regarding that the first fixation is removed

from the analysis and on the other hand, the determi-

nation of a minimum time duration of 80 ms for

existence of an eye fixation point). In the remaining

time, subjects would see the images in a way that they

see in free viewing experiment. It seems that eye

movements of subjects at the beginning of trial (first

200 ms) is task-dependant and after a time when the

subjects perceive the scene, eye movement is similar to

free viewing condition and is not task-dependant. All

the operations described in the paper can be run at the

level of milliseconds after the training phase and so

the method described here is suited to artificial

detectors.

This point should be considered in this study that whe-

ther the difference between the man-made and natural

scenes (just two categories) can cover the complex topic of

meaning detection and the semantic content of the visual

scenes. In another study, we have shown that the pattern of

subject’s eye movements are different over the two image

categories and this difference has been the effect of

semantic contents (As we have controlled the low-level

features of the images between the two categories). For this

aim we would like to consider images with more semantic

contents (categories with different meaning) for our future

study (For example considering different semantic contents

like sea, forest, and animal etc. for the category of natural

images).
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