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Abstract Based on the neural efficiency hypothesis and

task-induced EEG gamma-band response (GBR), this study

investigated the brain regions where neural resource could

be most efficiently recruited by the math-gifted adolescents

in response to varying cognitive demands. In this ex-

periment, various GBR-based mental states were generated

with three factors (level of mathematical ability, task

complexity, and short-term learning) modulating the level

of neural activation. A feature subset selection method

based on the sequential forward floating search algorithm

was used to identify an ‘‘optimal’’ combination of EEG

channel locations, where the corresponding GBR feature

subset could obtain the highest accuracy in discriminating

pairwise mental states influenced by each experiment fac-

tor. The integrative results from multi-factor selections

suggest that the right-lateral fronto–parietal system is

highly involved in neural efficiency of the math-gifted

brain, primarily including the bilateral superior frontal,

right inferior frontal, right-lateral central and right tempo-

ral regions. By means of the localization method based on

single-trial classification of mental states, new GBR fea-

tures and EEG channel-based brain regions related to

mathematical giftedness were identified, which could be

useful for the brain function improvement of children/

adolescents in mathematical learning through brain–com-

puter interface systems.

Keywords Neural efficiency � Math-gifted adolescents �
Numerical inductive reasoning � EEG Gamma-band

response � Feature subset selection

Introduction

The neural efficiency hypothesis has suggested that ‘‘in-

telligence is not a function of how hard the brain works but

rather how efficiently it works,… this efficiency may

derive from the disuse of many brain areas irrelevant for

good task performance as well as the more focused use of

specific task relevant areas.’’ (Haier et al. 1992). By inte-

grating a large body of research using different neuro-

science measurement methods, Neubauer and Fink (2009)

have pointed out that brighter individuals might exhibit

lower (i.e., more efficient) brain activity while performing

cognitive tasks with low to moderate difficulties, resulting

in negative correlationship between brain activation and

performance in intelligence test. In rather complex tasks,

this relationship would probably be reversed; that is, a

positive correlation might be generated between brain ac-

tivation and intelligence score (Neubauer and Fink 2009).

The previous empirical studies have in general concluded

that task complexity is an important variable in modulating

this negative or positive relationship (Haier et al. 1988;

Neubauer and Fink 2003, 2008, 2009; Neubauer et al.

1999, 2002, 2004; Larson et al. 1995; Doppelmayr et al.

2005). Additionally, the effect of short-term learning is

also a considerable factor modulating efficient brain acti-

vation, under the influence of which a general decrease of

brain activation and behavioral advantage might be ob-

served over the duration of a task (Neubauer and Fink

2009). In Wartenburger et al.’s (2009) functional magnetic

resonance imaging (fMRI) study, the last third of trials of a
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geometric analogy task resulted in significant performance

improvement (shorter response time and higher accuracy)

and decreased blood oxygenation level dependent (BOLD)

signals as compared to the first third of trials, reflecting

increased processing efficiency of the brain due to rapid

learning. It is important to note that the brain activation

decrease in dependence on learning has been found cor-

relating with performers’ intelligence level, that is, the

brighter the individual, the more the activation is reduced

after learning (Neubauer et al. 2002, 2005; Neubauer and

Fink 2003, 2009; Xu and Wang 2014).

In educational and psychological researches, math-gift-

ed adolescents/children are characterized by above-normal

intelligence and domain-specific ability in mathematics.

This ability is composed of ‘‘computation, symbolic ma-

nipulation, memory for number facts, …, reasoning, and so

on’’ (Gardner 1985; Sternberg 2003; Livne and Milgram

2006). The previous neuroimaging studies revealed that

math-gifted adolescents had stronger functional activation

in prefrontal, frontal, parietal and temporal cortices while

performing reasoning or mental imagery tasks (Desco et al.

2011; O’Boyle et al. 2005), which indicated higher usage

of neural resource in cognitive processes. Conversely,

some electroencephalogram and event-related potential

(EEG/ERP) studies confirmed the occurrence of neural

efficiency in the math-gifted brain. For example, during

problem-solving and stimulus–response processes, math-

gifted adolescents exhibited faster response speed and less

event-related EEG power change in comparison with av-

erage-ability ones (Jaušovec 1996; Liu et al. 2011), sug-

gesting lower brain activity and more efficient neural

functions. In the past studies, the regions where neural

resource can be efficiently recruited in the math-gifted

brain have not been explicitly or consistently localized.

The integration of empirical evidence indicates that the

frontal lobe, especially the prefrontal cortex (PFC), has

been mostly pronounced in the studies on neural efficiency

(Jaušovec and Jaušovec 2004; Hoppe et al. 2012; Liu et al.

2011; Neubauer and Fink 2009). Not just in the frontal

lobe, the parieto-occipital cortex, parietal lobe, precuneus,

thalamus, temporal and frontal gyrus are also involved in

efficient brain activation (Jaušovec 1996; Wartenburger

et al. 2009). Besides, neural efficiency might be reflected

by the difference in functional connectivity between dis-

crete brain areas (Neubauer and Fink 2009). During a

simple speeded-processing task, except for less neural ac-

tivity in some PFC regions, the behaviorally faster-per-

forming subjects showed lower functional interactions

between the PFC and parietal cortex, reflecting higher

processing efficiency of the task-relevant information

(Rypma et al. 2006; Qu et al. 2014).

The aim of the present EEG study is to identify the re-

gions highly involved in efficiency-related activation pattern

of the math-gifted brain. Task-induced gamma-band re-

sponse (GBR) was employed to quantify the level of brain

activation. The past studies have demonstrated that wide-

spread 40 Hz GBR is induced by cognitive tasks through

augmented band power, with its amount modulated by

learning, memory, task complexity, phase synchrony, etc.

(Howard et al. 2003; Gruber et al. 2001; Simos et al. 2002;

Herrmann et al. 2010; Fitzgibbon et al. 2004; Schoenberg

and Speckens 2015). Moreover, task-induced GBR is sug-

gested to be strongly interwoven with sensation, attention,

decision-making, high-order cognition, etc. (Gaetz et al.

2013; Li et al. 2011; Muller et al. 2000; Ray et al. 2008;

Tanji et al. 2005). Because of the neural correlations with

cognitive functions, the difference in event-related GBR is

expected to be found between the math-gifted and average-

ability subjects. The evidence reviewed so far allows asso-

ciating the GBR with the modulating factors of neural effi-

ciency tested in this study, i.e., level of mathematical ability

of the subjects, task complexity, and the effect of short-term

learning. Importantly, Lachaux et al.’s study (2007) using

simultaneously recorded fMRI and intra-cranial EEG has

discovered that the recording sites of GBR modulations

show close spatial correspondence with the brain regions of

fMRI activation. Accordingly, the task-induced GBRs dis-

tributed on the scalp can be viewed as the appearance of

functionally activated brain areas.

To analyze the GBR-based mental states from the brain

activities affected by the three factors, we recruited both

math-gifted and average-ability adolescents performing two

numerical inductive reasoning tasks in our experimental

study. Based on the reviewed evidence, our study proposes

and tests the following research hypotheses: at the initial

stage of the experiment, when confronted with novel rea-

soning items with high- or low-complexity, the mathema-

tical ability level of the gifted and non-gifted subjects will

affect their usage of neural resource, resulting in different

mental states. Within each entire reasoning task, while the

subjects are processing the sequential items, the task diffi-

culty will subjectively decline because of the effect of short-

term learning, leading to changing mental states with gen-

erally reduced activation over the duration of the task.

Under the influence of each factor, the mental states with

distinguishable GBRs are expected to be generated in this

experiment. While one mental state is transitioned into

another state with more efficient activation pattern (i.e., a

general reduction in GBR changes), a combination of EEG

channels with the largest difference in GBRs between the

two states could be identified. Because of the most inhibited

neural activity during this transition process, the identified

EEG channel sites represent the brain regions highly in-

volved in the efficiency of cortical processing.

In this study, a feature subset selection method based on

the sequential forward floating search (SFFS) algorithm
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was applied to the channel-based identification of effi-

ciency-related brain regions. By iteratively promoting the

accuracy in single-trial classification of mental states, the

method can obtain a set of brain locations that optimally

discriminates neural responses under different cognitive

conditions. Since single-trial analysis of EEG data has been

suggested as an effective way to address the problem of

trial-to-trial variability of brain activity (Blankertz et al.

2011), it is expected that the method can result in more

informative brain locations than traditional trial-averaged

analysis while isolating different brain responses. Howev-

er, single-trial analysis suffers from the superposition of

task-relevant signals by task-unrelated brain activities,

which leads to a low signal-to-noise rate (SNR) and lacks

classification accuracy (Blankertz et al. 2011). In our study,

due to seeking the highest accuracy in binary-classification

of mental states, the identified combination of brain loca-

tions can best distinguish the response areas of interest

from the interfering noises, thereby maintaining relatively

high SNR in the single-trial analysis.

On the other hand, the activation measurements used in

the feature subset selection method are derived from the

scalp EEG recordings, which are actually produced by a set

of electric diploes in the brain. Thus, a cortical current es-

timation procedure was performed to obtain the locations

corresponding to the underlying event-related source pro-

cesses. According to the convergent results of the scalp

channel localization and the cortical current distribution,

the brain regions with efficiently recruited neural resource

in the math-gifted brain are suggested, whereby the relevant

psychological mechanisms are analyzed and discussed.

Methods

Subjects

Two groups of adolescent subjects were enrolled in this

experiment, without left handedness, neurological illness,

and history of brain injury. The EEG study was approved

by the Academic Committee of the Research Center for

Learning Science, Southeast University, China. With the

permission of their guardians, all the subjects read and

signed the informed consent about this EEG experiment.

The math-gifted group included eight adolescents (five

males and three females) aged 16.5 ± 0.7 (mean ± SD)

from the Science and Engineering Experimental Class at

Southeast University (Nanjing, China), who had passed the

special college entrance examination aiming at gifted stu-

dents with exceptional abilities in mathematics and natural

sciences. Moreover, they all had been awarded prizes in

nationwide or provincial mathematical competitions. The

control group consisted of seven students (five males and

two females) aged 16.3 ± 0.8 (mean ± SD) from the

Fourth High School in Nanjing, who had average-level

performance in their school mathematical tests. The Raven

Advanced Progressive Matrices (RAPM) test was em-

ployed to further determine the intelligence difference

between the two groups. The scores must be higher than 32

for the math-gifted subjects, and lower than 32 for the

control subjects.

Experimental paradigm

The experiment included a three-number inductive rea-

soning task and a four-number induction task (Lu et al.

2010; Jia et al. 2011; Fig. 1). On the left of Fig. 1a, three

numbers are located at different angles of a triangle, which

are associated with a certain calculation rule, such as

‘A ? B = C’ or ‘A ? C = B’. On the right side of

Fig. 1a, there are four numbers at four angles of a square,

which are associated with a calculation rule of relatively

high complexity, such as ‘A ? B = C ? D’ or

‘B = A?C ? D’. In the two sample tasks (Fig. 1b), three

triangles/squares illustrate two essential processes, i.e., rule

induction and rule application. The rule induction process

is located on the left side of an arrow, which aims to find a

common calculation rule from two triangles/squares, and

the validity of this calculation rule is verified by the third

triangle/square on the right side of the arrow, i.e., rule

application. In this experiment, the calculation rule only

involved ‘?’ and ‘-’, and the numbers were within 0–9.

Subjects were asked to judge whether the rules in the ap-

plication and induction processes were consistent or not.

Each task consists of 70 trials, forming a valid block (30

trials), an invalid block (30 trials), and an interferential

block (10 trials). The valid trials were constructed by the

congruent calculation rule between rule induction and rule

application. On the contrary, in the invalid trials, the rule of

application process was not consistent with the rule from

induction process. The interferential trials with incongruent

rules between the first two figures were designed in this

experiment to avoid the possibility that subjects could

obtain the calculation rule only from the first figure without

the consideration of the second figure. However, the trials

of the interferential block were not used in the data

analysis.

To avoid the effect of rapid skill development on the

neural response, there was no practice session designed in

this experiment. Before the formal experimental procedure,

the subjects read a written instruction including the detailed

rule, the procedure, and an illustration. After the subjects

had confirmed that they understood the experimental tasks,

they were asked to begin the formal procedure directly.

The total 140 trials of the two tasks were incorporated in a

session and presented randomly in the E-Prime 2.0
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experimental procedure. The numbers and figures were in

white with a black background to avoid visual fatigue. At

the preparation stage, the subjects put their left index finger

on key ‘‘D’’ and right index finger on key ‘‘K’’. The three

figures of each trial were presented sequentially along the

timeline, as shown in Fig. 1c, d. When the first two trian-

gles/squares were presented, subjects were asked to infer a

calculation rule. During the presentation of the third tri-

angle/square, they should judge whether the inferred cal-

culation rule was consistent or inconsistent to that of the

third figure as accurately as possible, by pressing ‘‘D’’ for

‘‘inconsistent’’ or ‘‘K’’ for ‘‘consistent’’. Because the cor-

relation of neural efficiency can be found only when the

processing time of a task is unrestricted, the rule applica-

tion process was timeless in our experiment and the end of

each trial was determined by button-pressing of subjects.

EEG recording and preprocessing

The EEG data were recorded by a 60-channel Neuroscan

international 10–20 system with a sampling rate of

1000 Hz (Fig. 2). Additionally, two reference channels

were located at the bilateral mastoids of subjects. Electro-

oculographic (EOG) signals were simultaneously recorded

by four surface channels to monitor ocular movements and

eye blinks.

The continuous EEG signals were band-pass filtered

with passband being 1–100 Hz. To construct the temporal

pattern of brain activation, the sequential trials of each task

were divided into three stages depending on the time pe-

riods to which they belong, i.e., early (the first third of

trials), middle (the middle third of trials), and late (the last

third of trials) periods over the course of a task. The EEG

epochs of trials with correct responses were extracted by

using a time window comprising 500 ms pre-stimulus and

4000 ms post-stimulus periods. Baseline-correction was

conducted according to the pre-stimulus interval, and

ocular artifacts were removed based on the simultaneously

recorded EOG signals. The artifact rejection procedure was

used to exclude the trials contaminated by eye blinks,

muscle and electrocardiogram noises. As a result, 195–231

trials were retained for each group under each task condi-

tion, with each subject having 26–43 trials. After that, the

retained trials from the same cognitive condition were

concatenated to form a sample set representing a specific

mental state. The number of retained trials of each mental

state is listed in Table 1. Besides, the independent com-

ponent analysis (ICA) in the EEGLAB toolbox was used to

further clear the visible artifacts, such as the components of

possible ocular and muscle movements.

Task-induced GBR activation and feature set

construction

For each mental state, GBR-based feature extraction was

conducted according to event-related synchronization/

desynchronization (ERS/ERD) in the 35–45 Hz frequency

interval of the brain activity, through computing the per-

centage of power increase/decrease in the task period as

compared to resting state:

ERS=ERDðf ;DtÞ ¼ ½Aðf ;DtÞ � Rðf Þ�=Rðf Þ� � 100% ð1Þ

Fig. 1 Experiment protocol: a a
triangle with three numbers and

a square with four numbers;

b samples of numerical

inductive reasoning tasks with

two levels of complexity;

timelines of stimuli

presentations of c low-

complexity task and d high-

complexity task. (Zhang et al.

2013b)
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where Dt represents a time window, A(f, Dt) is the power

spectral density (PSD) of an EEG signal at a specified

frequency band, R(f) is the PSD at the same frequency in

the pre-stimulus interval of the signal. In this study, the

PSD was estimated by using the Burg algorithm with a

seventh order autoregressive (AR) model.

Based on the total 60 EEG channels, the spatial GBR

distribution constituted a GBR feature set for each mental

state, with its dimension equal to (number of chan-

nels) 9 (number of trials).

Feature subset selection algorithm

For determining the efficiency-related brain regions across

the subjects, the SFFS algorithm (Pudil et al. 1994) was

employed to conduct channel-based localization for dis-

crimination between pairwise GBR feature sets of mental

states. The SFFS algorithm can obtain an optimum feature

subset (i.e., a combination of spatially distributed EEG

channels) by promoting the accuracy in classifying the

samples from different feature sets (Zhang et al. 2013a, b).

For the localization of task-activated brain areas, the EEG

channel sites selected by the method can well correspond to

the source positions resulted from the standardized low-

resolution electromagnetic tomography (sLORETA)

(Dyson et al. 2010).

Let Y be the feature space composed of D features:

Y ¼ yj j ¼ 1; . . .;Dj
� �

ð2Þ

where D = 60, representing the number of EEG channels.

Let Xk be the feature subset that consists of k features

selected from feature space Y:

Xk ¼ xj j ¼ 1; . . .; k; xj 2 Y
��� �

; k ¼ 0; 1; . . .;D ð3Þ

At first, Xk is initialized as an empty set with 0 feature,

i.e., X0 = /, (k = 0). The feature selection procedure is

conducted in ‘‘growing’’ and ‘‘pruning’’ phases alterna-

tively. During the growing phase, the best feature x? is

added to the selected feature subset as follows:

Xkþ1 ¼ Xk þ xþ; k ¼ k þ 1 ð4Þ

which makes the feature subset Xk?1 have the highest

discrimination, i.e.,

xþ ¼ argmax
x2Y�Xk

JðXk þ xÞ ð5Þ

where J is the mean classification accuracy achieved by

linear discriminant analysis (LDA) with cross-validation.

Fig. 2 EEG channel placement of NeuroScan international 10–20 system: a EEG channel locations; b head model

Table 1 Number of trials

(samples) of each mental state
Four-number induction task Three-number induction task

Early, middle, and late periods Early, middle, and late periods

Math-gifted group 71, 70, 76 75, 76, 71

Control group 64, 63, 67 72, 80, 79
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When k[ 2, the selection procedure enters into pruning

phase after growing in each iteration. During this phase,

some features in Xk will be removed in turn. If the removal

of x- in Xk results in better discrimination, i.e.,

JðXk � x�f gÞ[ JðXkÞ ð6Þ
x� ¼ argmax

x2Xk

JðXk � xÞ ð7Þ

this feature will be deleted from Xk as follows:

Xk�1 ¼ Xk � x�; k ¼ k � 1 ð8Þ

when k is up to the preset maximum number of selected

features (channels), the selection procedure will end. In the

final feature subset Xk, the corresponding k EEG channels

can be found. Because features (channels) producing the

highest classification accuracy were selected, Xk is viewed

as an ‘‘optimum’’ feature subset (channel combination) in

identifying the trial samples from different mental states.

In this investigation, feature selection was conducted for

discrimination between pairwise mental states with effi-

cient activation change. Given each experimental factor

tested in our study, the pairwise feature sets of mental

states and the related class labels were determined as

follows:

1. Level of mathematical ability (class labels: ‘‘gifted’’

vs. ‘‘non-gifted’’): The feature selection was performed

between the two groups in the early period of the four-

number induction task, when the mental states were

viewed as the initially effortful response of the subjects

for addressing novel problems;

2. Task complexity (class labels: ‘‘low’’ vs. ‘‘high’’): In

each group, the feature selection was conducted in the

early periods of the two tasks, since the mental states in

the two periods could reflect the differential cortical

effort that the subjects invested for responding to the

tasks with different levels of complexity;

3. Short-term learning over task course (class labels:

‘‘early’’ vs. ‘‘late’’): To ensure enough difference

between the mental states, the trials in the middle

period were excluded from the discrimination analysis.

In each group, the mental states in the early and late

periods of each task were analyzed to discover the

brain regions influenced by rapid learning.

For each selection, the maximum number of acceptable

EEG channels was set to 15 (a quarter of the total EEG

channels). Finally, an optimal scalp channel group com-

posed of all the channels resulted from the multi-factor

selections could be determined.

ANOVA statistical test

The between-groups difference in the RAPM score was

tested by the one-way analysis of variance (ANOVA).

Besides, to examine possible differences in task perfor-

mances and induced neural responses, three-way ANOVA

was performed for testing response accuracy, response time

of correct responses, and average global GBRs respec-

tively, with group (gifted vs. non-gifted) serving as the

between-subject factor and task complexity (low vs. high)

and task period (early vs. late) serving as the within-subject

factors.

Cortical current estimation of task-induced GBR

activation

In order to obtain the source activities underlying the task-

induced GBRs, the gamma-band EEG signals were trans-

formed into the cortical currents by using a source esti-

mation procedure in the Brainstorm toolbox (http://

neuroimage.usc.edu/brainstorm; Tadel et al. 2011).

The source analysis was composed of the forward and

inverse problem-solving processes. In the forward pro-

cess, the EEG signals were assumed to be primarily de-

termined by a block of electric dipoles located at the

cortical surface. Based on an averaged realistic head

model ‘‘Colin 27’’ constituted by four layers (scalp, outer

skull, inner skull, and cortex), the symmetric boundary

element method (BEM) in the open-source software

(http://www-sop.inria.fr/athena/software/OpenMEEG/;

Gramfort et al. 2010) was applied to the EEG channel

locations on the head model, to obtain the volume con-

ductor modeling of the subjects, i.e., the forward model

matrix. After that, the noise of the scalp sensors was re-

moved through computing the noise covariance matrix of

the signals in the pre-stimulus time interval. In the inverse

process, an inverse kernel matrix was produced by the

forward model and the whitened and depth-weighted

linear L2-minimum norm estimation algorithm, based on

which the raw EEG signals were transformed into the

cortical source currents.

After removing the pre-stimulus baseline activity of the

gamma-band cortical currents, the Student t tests of equal

variance were used to compare the difference in each pair

of selected mental states. For each comparison, the

threshold of statistical significance was set to 0.05. The

multiple comparisons for all cortical vertices generate a

statistical map with significant difference in cortical cur-

rents between mental states.
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Results

Behavioral performances and significant differences

Significant between-groups difference is firstly found in the

RAPM test (p = 0.0000), in which the average score of the

math-gifted group is 33.6 ± 0.9 (mean ± SD) and the

control group has an average score of 23.5 ± 4.6

(mean ± SD; Table 2).

In the tests for the behavioral performances, task com-

plexity shows significant main effect on both response

accuracy and response time in the two tasks. In the low-

complexity task, the subjects have obtained higher re-

sponse accuracy [three-number task vs. four-number task:

89.89 ± 3.92 vs. 85.33 ± 6.61 % (mean ± SD);

p = 0.0047; Table 3a], and shorter response time [three-

number task vs. four-number task: 694 ± 290 ms vs.

881 ± 440 ms (mean ± SD); p = 0.0000; Table 3b].

Besides, the ANOVA reveals significant main effect of

mathematical ability level on response time, in which the

math-gifted adolescents show faster response time com-

pared to the control subjects [math-gifted group vs. control

Table 2 One-way ANOVA for between-groups difference in RAPM

score

Source SS dF MS F p

Groups 377.34 1 377.34 39.06 0.0000

Error 125.59 13 9.66

Total 502.93 14

SS Sum of squares, dF degrees of freedom, MS mean square

p Significance level of the AVOVA

Table 3 Three-way ANOVAs
Source SS dF MS F p

(a) Response accuracy

Task period 0.0041 1 0.0041 1.88 –

Task complexity 0.0190 1 0.0190 8.77 0.0047

Math level 0.0030 1 0.0030 1.40 –

Task period 9 task complexity 0.0042 1 0.0042 1.92 –

Task period 9 math level 0.0001 1 0.0001 0.03 –

Task complexity 9 math level 0.0030 1 0.0030 1.40 –

Task period 9 task complexity 9 math level 0.0019 1 0.0019 0.85 –

Error 0.1133 52 0.0022

Total 0.1498 59

(b) Response time

Task period 2.2815E?05 1 2.2815E?05 1.73 –

Task complexity 5.3872E?06 1 5.3872E?06 40.87 0.0000

Math level 1.2152E?06 1 1.2152E?06 9.22 0.0025

Task period 9 task complexity 1.6562E?06 1 1.6562E?06 12.56 0.0004

Task period 9 math level 632.4 1 632.4 0 –

Task complexity 9 math level 7.5182E?04 1 7.5182E?04 0.57 –

Task period 9 task complexity 9 math level 6.2885E?05 1 6.2885E?05 4.77 0.0294

Error 7.4739E?07 567 1.3182E?05

Total 8.3440E?07 574

(c) Mean value of global GBRs

Task period 13.489 1 13.489 205.35 0.0000

Task complexity 0.3445 1 0.3445 5.26 0.0222

Math level 0.0624 1 0.0624 0.95 –

Task period 9 task complexity 0.0013 1 0.0013 0.02 –

Task period 9 math level 0.6277 1 0.6277 9.56 0.0021

Task complexity 9 math level 0.3681 1 0.3681 5.6 0.0183

Task period 9 task complexity 9 math level 0.604 1 0.604 9.19 0.0025

Error 37.2442 567 0.0657

Total 52.8971 574

SS Sum of squares, dF degrees of freedom, MS mean square

p Significance level of the AVOVA
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group: 658 ± 229 vs. 730 ± 336 ms (three-number task);

827 ± 373 vs. 941 ± 499 ms (four-number task;

mean ± SD); p = 0.0025; Table 3b].

The behavioral effect of short-term learning has been

tested by the comparison of response accuracy and response

timewithin the trials in the early and late periods of the tasks.

TheANOVA shows that there is no significant main effect of

task period on the behavioral performances, but the statisti-

cal result reveals significant effect of interaction between

task period and task complexity on response time (Table 3b).

As shown in Fig. 3a, the response time is significantly

shortened from early to late period of the four-number in-

duction task [Early period: 956 ± 480 ms; Late period:

812 ± 378 ms (mean ± SD); p = 0.0004]. The behavioral

performance improvement in the complex induction task

shows the expected learning effect when there are high task

demands.

Furthermore, for response time, there is statistically sig-

nificant three-way interaction among mathematical ability

level, task complexity, and task period (p = 0.0294;

Table 3b).

Significant GBR-based mental states related

to neural efficiency

In the brain electric activity maps of the gamma-band ERS/

ERD, the global GBR is manifested as the widely dis-

tributed power change with respect to the baseline activity

in the frontal, parietal, temporal, and occipital regions

(Fig. 4). The three-way ANOVA test for average global

GBRs shows a significant three-way interaction among

mathematical ability level, task complexity, and task period

(p = 0.0025; Table 3c).

The brain maps and the results of the ANOVA test indicate

that multiple modulating factors of neural efficiency can be

reflected by the GBR-based mental states, as show in

Table 3c, Fig. 3b–c, and 4. At first, neural efficiency influ-

enced by task complexity appears to occur in the four GBR

maps in the early periods of the two tasks (Fig. 4a1, b1, c1,

d1). At this stage, as compared with the non-gifted subjects,

themath-gifted adolescents show stronger cortical response in

the four-number induction items, but less cortical activity in

processing the three-number items. From complex to easy

reasoning items, this reversed relation between mathematical

ability level and neural response is rather consistent with the

findings of the previous neural efficiency studies. Further-

more, the ANOVA confirms significant main effect of task

complexity on global GBR (Table 3c). As shown in Fig. 3b,

the two groups of subjects show higher GBR in the four-

number induction task. Meanwhile, there is significant effect

of interaction between mathematical ability level and task

complexity on global GBR. In Fig. 3b, the math-gifted ado-

lescents show higher neural response in complex induction

task but lower activity in easy task than the control subjects.

In addition, the temporal pattern expressed as the se-

quential GBR maps also shows the globally decreasing

neural responses over the early–middle–late periods of the

tasks (Fig. 4a–d). The neural activities modulated by short-

term learning were tested by the comparisons of the GBRs

in the early and late periods of the tasks. The ANOVA

shows significant main effect of task period on global GBR

(Table 3c). It should be noted that there is significant effect

of interaction between mathematical ability level and task

period on global GBR. As shown in Fig. 3c, the math-

gifted group exhibits more significantly decreasing GBR

from the early to late period of the tasks than the control

group, especially over the course of the four-number in-

duction task (Fig. 4a1, a2, a3). These results collectively

suggest that the short-term learning exerts stronger influ-

ence on the brain activity of the math-gifted adolescents.

Optimum channel combination for discrimination

between pairwise mental states

In the early period of the four-number induction task, the

optimum channel combination with discrimination accuracy

Fig. 3 Significant interaction effect plots based on three-way

AVOVA tests with factors of mathematical ability level, task

complexity, and task period (p\ 0.05): a response time affected by

the interaction between task complexity and task period; b mean

value of global GBR affected by the interaction between task

complexity and mathematical ability level; c mean value of global

GBR affected by the interaction between task period and mathema-

tical ability level
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of 0.6808 between the two groups mainly covers the right-

lateral frontal–centroparietal regions, including left pre-

frontal (FP1), right inferior frontal (F6), right superior

frontocentral (FC2), right-lateral central (C1, C2, and C4),

and right-lateral centroparietal (CPZ and CP2) brain loca-

tions (Fig. 5a). The result indicates that, at the early stage of

Fig. 4 Brain electric activity mapping of GBR activation, with

positive value representing ERS and negative value ERD: a math-

gifted group and b control group in high-complexity task; c math-

gifted group and d control group in low-complexity task. The four

larger topological maps are derived from the mean ERS/ERD values

over total trials of a task. The three smaller maps below the larger

ones are from the trials in the early, middle, and late periods over the

task course respectively

Fig. 5 Optimal EEG channel combinations selected by the SFFS

algorithm: Top row math-gifted group; Bottom row control group.

The channels with the highest discrimination accuracy for identifying

a ‘‘gifted’’ against ‘‘non-gifted’’, b, f ‘‘high-complexity’’ against

‘‘low-complexity’’, c, g ‘‘early period’’ against ‘‘late period’’ mental

states in high-complexity task, and d, h ‘‘early period’’ against ‘‘late

period’’ mental states in low-complexity task; e, i overall distribution
of the selected channels, in which the blue channels were selected

once, the red channels twice, and the dark red channels three times.

(Color figure online)
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the complex task, the most significant activation difference

between the ‘‘gifted’’ and ‘‘non-gifted’’ subjects is located at

the anterior fronto–parietal brain regions, where the math-

gifted adolescents can recruit more neural resources to solve

the novel reasoning problems.

On the other hand, while the math-gifted adolescents are

confronted with the high- to low-complexity tasks, their

brain regions with the most inhibited neural activity are

characterized by the fronto–parietal EEG channels, in-

cluding the left superior frontal (F1), right superior frontal

(F2), right-lateral central (C1, CZ, and C4), right temporal

(T8), right parietal (P2), and right parietooccipital (PO4)

locations (Fig. 5b). The accuracy is 0.7110 in dis-

criminating the ‘‘high-complexity’’ and ‘‘low-complexity’’

trial samples. The result suggests that the coherent fronto–

parietal brain regions might be flexibly recruited by the

math-gifted adolescents in response to effortful cognitive

processing.

Over the course of the four-number induction task, the

brain regions with learning-related decrease of neural ac-

tivity in the math-gifted adolescents are also illustrated by

the fronto–parietal distribution of the EEG channels with

discrimination accuracy of 0.7444 between the ‘‘early pe-

riod’’ and ‘‘late period’’ trial samples, including left supe-

rior frontal (F1), right inferior frontal (F6), right-lateral

central (C1, C2, and C4), right temporal (T8), and right-

lateral parietal (PZ and P4) locations (Fig. 5c). During the

three-number induction task performed by the math-gifted

subjects, the brain regions with declined activation caused

by the rapid learning has obtained the lowest discrimina-

tion accuracy of 0.6712 among all the discriminations

tested in this experiment. The channel combination that

optimally discriminates the ‘‘early period’’ and ‘‘late peri-

od’’ trial samples is primarily located at the anterior brain

regions of the right-lateral cerebral hemisphere, including

the right prefrontal (FP2), right inferior frontal (F8), fron-

tocentral (FCZ), right-lateral central (CZ and C2), and right

temporal (T8) locations (Fig. 5d). The result indicates that,

when the task is easy enough for the math-gifted subjects,

the left hemisphere is not highly involved in the realloca-

tion of neural resources, and the dominant fine tuning oc-

curs in their right-lateral anterior brain regions.

By contrast, the ‘‘optimum’’ channels related to task

complexity and short-term learning of the control subjects

are mainly distributed in the left-lateral frontal and bilateral

parietooccipital brain regions (Fig. 5f–h, classification ac-

curacy: 0.6603, 0.6938, and 0.7059), which are consistent

with the results from an fMRI study on normal adolescents

(Wartenburger et al. 2009). Especially, unlike the math-

gifted adolescents, the channels at left prefrontal (FP1), left

frontal pole (AF3), and left inferior frontal (F5) brain lo-

cations show the ‘‘optimal’’ efficiency-related activation

variations in the average-ability subjects.

Selective recruitment of neural resource in the right-

lateral fronto–parietal system

In the integrative results from the multi-factor feature

subset selections, the optimal channel group presents a

coherent right-lateral fronto–parietal distribution network

(Fig. 5e). The channels at the right-lateral frontal lobe,

especially the right inferior frontal gyrus, have been se-

lected more than once by the SFFS algorithm in multiple

discriminations, which represent the most selectively re-

cruited brain regions with neural activity varying under

different cognitive conditions. Meanwhile, the right tem-

poral region has also been selectively used by the math-

gifted adolescents, which can be associated with the re-

sponsiveness of the temporofrontal system for the changing

language processing demands in the tasks.

In the comparisons of the gamma-band cortical source

currents (Fig. 6), significant difference in cortical activa-

tion can be observed in the left superior and middle frontal

gyri and the right superior and inferior frontal gyri

(Fig. 6e). Specifically, the strength of cortical currents in

the right superior and inferior frontal gyri varies with the

four comparison conditions (Fig. 6a–d), which indicates

the flexible recruitment of the right frontal cortical resource

in the math-gifted brain. Meanwhile, significant differences

are also found in the right frontal-parietal cortices and the

regions within the right temporal and occipital lobes, which

constitute the important fronto–parietal system of infor-

mation processing.

Discussion and conclusion

Efficiency-related GBR activation pattern

By using task-induced GBR to quantify the level of neural

activity, we investigated the brain regions where neural

resources were used in a most efficient manner under dif-

ferent cognitive conditions. As a result, in the subjects with

two levels of mathematical ability, neural efficiency oc-

curred at the initial stages of the tasks with two levels of

complexity, and was manifested as the declining GBRs

over the course of tasks.

Previous studies suggest that the emergence of neural

efficiency is often associated with decreased mental effort

for cognitive load in the working memory (Neubauer and

Fink 2009; Hoppe et al. 2012). Because the subjects started

the tasks without any practice in this experiment, the

strongly induced early GBRs can be associated with the

individual effortful processing for the novel information

taxed on the working memory system (Neubauer and Fink

2009). As becoming more skilled for the tasks, the subjects

can switch from an effortful processing mode to a more
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automated processing mode that needs less working

memory capacity and thus consumes less cortical resource

(Neubauer and Fink 2009; Rypma et al. 2006).

It is notable that the development of efficient cognitive

strategies depending on short-term learning is an important

factor for reducing cognitive load from task demands

(Neubauer and Fink 2009). In this experiment, while the

subjects were processing the numerical induction items, a

better-honed problem-solving strategy could be rapidly

formed to replace the originally required calculations with

numbers. For example, for the three-number induction task

(i.e., the case of ‘A ? B = C’ or ‘A ? C = B’ in Fig. 1a),

while the three triangles are presented, the subjects can

judge whether the largest numbers in the three triangles are

at the same locations or not to rapidly verify the consis-

tency of the calculation rules. For the four-number induc-

tion task, if the subjects can rapidly gain the insight into the

law of the task, they can first sort the four numbers in each

square. If the largest one is the sum of the other three

numbers (i.e., the case of ‘B = A ? C ? D’), they can just

compare the locations of the largest numbers in the three

squares, similar to the three-number induction task;

otherwise (i.e., the case of ‘A ? B = C ? D’), the largest

number can be matched with the smallest one in a square,

and the other two numbers are matched as well. After that,

the subjects just need to compare the locations of the

matched number pairs in the three squares to determine the

consistency of the rules.

Combining the behavioral performances and the GBR

changes, we find that a more significant behavioral ad-

vantage (reduced response time and increased accuracy) is

accompanied by rapid GBR decrease in the math-gifted

subjects, especially over the course of the four-number

induction task. The mental state changes indicate that the

math-gifted adolescents can devote more neural resource in

addressing novel problems. As time goes by, they can use

the brain circuitry in a more efficient manner, possibly

through developing a better-honed cognitive strategy for

Fig. 6 Significant difference in gamma-band cortical currents be-

tween pairwise mental states (p\ 0.05): After removing baseline

currents, the activation difference is estimated by a source analysis

procedure, regarding a mathematical ability level, b task complexity,

and short-term learning effects in c high-complexity task and d low-

complexity task; e the three maps indicate the mean difference from

the comparisons in (a–d). The circles on the cortical surface represent

the EEG channels selected by the SFFS algorithm

Cogn Neurodyn (2015) 9:495–508 505

123



the repeated stimuli with the same processing type, whilst

the non-gifted subjects’ learning speed for the four-number

task is relatively slow and the GBR changes are thus less

obvious in comparison with the math-gifted subjects. On

the other hand, as the three-number induction task was easy

enough, even at the initial stage, the processing capacity of

the subjects is not taxed strongly by this task. Therefore,

smaller change between mental states can be observed over

the course of this task.

The brain of a child has more adjustable characteristics

through specific training and other environmental variables

than the adult’s brain. In our study, the math-gifted ado-

lescents show stronger learning-induced changes in func-

tional brain response. Nevertheless, the plasticity of the

brain is not restricted to the functional characteristic of

brain activation. Under the influence of extensive training

and practice, structural gray matter changes might be ob-

served, at least in some brain regions (Neubauer and Fink

2009). Based on the malleability of the brain, cognitive

training of mental abilities is expected to affect functional

and structural improvements of the child’s brain, which

helps to further build or strengthen cognitive skills such as

processing speed, memory, and reasoning.

Right-lateral fronto–parietal system involved

in neural efficiency of the math-gifted brain

As an extended analysis of Zhang et al.’s (2013a, b) study,

the present investigation further constructed the temporal

pattern of the task-induced neural responses, in which the

effect of short-term learning was considered as an impor-

tant factor influencing GBR changes. Through integrating

the results from multiple feature subset selections, more

EEG channel sites were identified as the ‘‘optimal’’ brain

locations involved in neural efficiency of the math-gifted

brain, especially the channels located at central sensori-

motor area. As a result, the ‘‘optimal’’ EEG channels

identified by this study form a right-lateral fronto–parietal

distribution network, not just the right-lateral frontal and

bilateral superior parietal cortical regions reported by the

previous study (Zhang et al. 2013a, b).

General intelligence and specific aptitude (or talent)

may constitute specific giftedness (Gardner 1985). The past

neuroscience research has suggested different neural basis

common to general intelligence or specific to gifted ability

in mathematics (O’Boyle et al. 2005; Prescott et al. 2010).

Particularly in the frontal areas identified by this study, the

neural resources have been maximally used or inhibited by

the math-gifted individuals, which can be viewed as a

strong ability of top-down control on processing important

task-relevant information and inhibiting retrieval of ir-

relevant/repeated information (Klimesch et al. 2007). In

this experiment, the recruitment of frontal central executive

functions of the math-gifted subjects is actually affected by

the interplay of subjects’ intelligence and acquired exper-

tise in mathematics. Of particular interest is the fact that the

distribution of the channel sites presents the right hemi-

sphere lateralization, especially the right frontal lobe. For

the math-gifted adolescents, the substantial right hemi-

sphere involvement in information processing and the en-

hanced reliance on the right hemisphere function have been

suggested as the important indications of precocious

mathematical ability (Desco et al. 2011; O’Boyle et al.

2005; Prescott et al. 2010). Importantly, the cognitive

functions in right-lateral frontal lobe are related to gifted

thinking abilities in mathematics, including spatial infor-

mation processing, reasoning and creative thinking.

(O’Boyle et al. 2005). Therefore, the selective engagement

of right frontal brain regions might be the functional

characteristic of superior mathematical ability of the math-

gifted adolescents.

Additionally, we used a source analysis procedure to

transform the task-induced GBRs into the cortical dipoles

to estimate the cortical distribution of changed gamma-

band currents. While comparing the results from the two

methods, we find that the major scalp locations determined

by the SFFS method are consistent with the regions of

cortical current change, including the bilateral superior

frontal, right inferior frontal, right-lateral central and right

temporal locations (Fig. 6e). However, some regions lo-

calized by the SFFS algorithm are inconsistent with the

spatial distribution of cortical activation difference. As can

be seen in Fig. 6d, although the channels at the midline

frontal and precentral gyri have been selected as the opti-

mal learning-dependent sites in the low-complexity task,

these brain regions have not shown the highest cortical

current variations in the source analysis. In EEG studies,

the midline anterior brain locations are usually viewed as

the appearance of the activated anterior cingulate (AC). In

the past neuroimaging studies, the learning-related activa-

tion decrease in the AC has been reported consistently,

because of its correlation with cognitive controlling func-

tion of the brain (Chein and Schneider 2005). Since the

SFFS algorithm allows for a certain degree of trial-to-trial

variability, while discriminating the brain responses across

all the subjects and trials, the isolated brain response area

(e.g., the AC) may be more informative than that of the

trial-averaged source analysis.

Practical implication of the brain regions localized

by the SFFS feature subset selection method

In the locations involved in neural efficiency of the math-

gifted brain, the right frontal regions have great potentials

in developing the cortical resource of children and early

adolescents in mathematical learning, since the focus of
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their brain maturation is still on the relationship forged

between the frontal lobe function and higher-order cogni-

tions (Alexander et al. 1996). EEG-based brain–computer

interfaces (BCI) could provide a feasible approach to

functional improvement through on-line neurofeedback for

children or early adolescents. For example, attention

training and assessment of the PFC through BCI games are

useful for enhancing child’s attention concentration (Chen

et al. 2012). Through a BCI system, neurofeedback training

in EEG upper alpha frequency is expected to improve

child’s performance in working memory (Escolano et al.

2011). In addition, the laterality of the frontal cortical ac-

tivity can be manipulated by on-line neurofeedback train-

ing to improve individual’s neural response capacity

(Harmon-Jones et al. 2010). According to the findings from

our experiment and previous neuroimaging studies, future

on-line laterality training with more effective neurofeed-

back would be expected to mediate the functions of the

right frontal lobe that is most strongly associated with

gifted mathematical thinking activity and efficient neural

manipulations. The GBR pattern and the optimal EEG

channel combination identified by our study could provide

possibly more effective neural features and channel loca-

tions for training the frontal functions of children/adoles-

cents through future BCI systems.
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Jaušovec N (1996) Differences in EEG alpha activity related to

giftedness. Intelligence 23:159–173
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