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Abstract In this paper, a new synchronization problem

for the collective dynamics among genetic oscillators with

unbounded time-varying delay is investigated. The dy-

namical system under consideration consists of an array of

linearly coupled identical genetic oscillators with each

oscillators having unbounded time-delays. A new concept

called power-rate synchronization, which is different from

both the asymptotical synchronization and the exponential

synchronization, is put forward to facilitate handling the

unbounded time-varying delays. By using a combination of

the Lyapunov functional method, matrix inequality tech-

niques and properties of Kronecker product, we derive

several sufficient conditions that ensure the coupled genetic

oscillators to be power-rate synchronized. The criteria

obtained in this paper are in the form of matrix inequalities.

Illustrative example is presented to show the effectiveness

of the obtained results.

Keywords Power-rate synchronization � Genetic
oscillators � Unbounded time-varying delay � Matrix

inequality

Introduction

It is well known that gene expression is a complex process

regulated at several stages in the synthesis of proteins (Lewin

1999). DNA microarray technology has made it possible to

measure gene expression levels on a genomic scale, and has

therefore been widely applied to gene transcription analysis

(Fraser et al. 2004). With the available huge amount of mi-

croarray data, researchers have been trying to understand how

biological activities are governed by the connectivity of genes

and proteins, which is described in terms of genetic regulatory

networks (GRNs). A gene network consists of a group of

genes that interact among themselves in order to synthesize

certain products, i.e., proteins. The types and amount of

proteins produced by a gene network have a fundamental

effect on the development of the gene network itself, and on

the biological systems with which the network interacts.

Since genetic networks are biochemical dynamical systems,

mathematical modelling of genetic networks as dynamical

system models provides a powerful tool for studying gene

regulation processes in living organisms (Wang et al. 2008).

The study of genetic regulatory networks have become an

attractive area and received great attention over past decade

(Li et al. 2006a, b; Ren andCao 2008;Wang et al. 2010; Xiao

et al. 2014; Cao and Ren 2008; Ren et al. 2015).

Synchronization is an important dynamical behavior that

has been intensively investigated in the last decade (Wu and
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Chua 1995; Li and Chen 2004; Lu and Chen 2004; Wang and

Cao 2006; Li et al. 2014; Huang et al. 2008; Qiu and Cao

2009). There are many benefits of having synchronization in

some applications, such as secure communication, human

heartbeat regulation, chemical reaction, power systems pro-

tection, ecological systems and so on. Recently, it has been

discovered that the phase synchronization can also exist in

many biologically plausible systems and such synchroniza-

tion is a main mechanism to fulfil cellular communication.

Therefore, it is not surprising that the synchronization prob-

lem of coupled genetic oscillators has begun to attract a great

deal of research attention due to its potential applications in

GRNs. For example, in McMillen et al. (2002), Kuznetsov

et al. (2004), andWang andChen (2005), the synchronization

was studied in biological networks of identical genetic

oscillators and, in Garcia-Ojalvo et al. (2004), Gonze et al.

(2005) and Li et al. (2006b), the synchronization was inves-

tigated for coupled nonidentical genetic oscillators. In Li

et al. (2007), based on a system biology approach, the authors

provided a general theoretical result on the synchronization of

genetic oscillators with stochastic perturbations.

It is now well known that the slow processes of transcrip-

tion, translation, and translocation or the finite switching speed

of amplifierswill inevitably cause time delays, which should be

taken into account in the biological systems or artificial genetic

networks in order to havemore accuratemodels (Li et al. 2014,

2008). The effects of transcriptional delays should be assessed

in the dynamics of genetic networks whose time scales are

short and transcription is regulated by feedback (Wang et al.

2008). The time-delay can be of a discrete nature, which as-

sumes each macromolecule takes the same length of time to

translocate from its place of synthesis to the location where it

exerts an effect. The time-delay can also be time-varyingwhere

the delay changes as time changes. In the context of GRNs,

both discrete time-delays and time-varying delays have re-

cently been considered in Cao and Ren (2008), Monk

(2003), Grammaticos et al. (2006) and Wang et al. (2008).

It should be pointed out that, in most existing literature

considering delays in GRNs, only the stability has been

considered, and the important synchronization behavior has

not received much attention yet. Furthermore, almost all

relevant research works have assumed that the time delays

involved in GRNs are bounded. This is, unfortunately, not

always the case in practice. If movement of mRNA from a

transcription site to translation sites is an active process

with a significant range of transport times for individual

molecules, unbounded delay would be the proper modeling

framework. For example, it has been shown in Smolen

et al. (2000) that the time-delay can occur in a distributed

hence unbounded way. Therefore, it is of great interest in

both theory and applications to investigate the synchro-

nization problem of the genetic regulatory networks with

unbounded delays. To the best of the authors’ knowledge,

up to now, little effort has been made towards such a

challenging problem, which motivates the present study.

In this paper, we investigate a new synchronization prob-

lem for the collective dynamics among genetic oscillators with

unbounded time-varying delay. The dynamical system under

consideration consists of an array of linearly coupled identical

genetic oscillators with each oscillators having unbounded

time-delays. It is worth noting that, in Chen andWang (2007),

pioneering research has been carried out for the power-rate

stability of dynamical systems with unbounded time-varying

delays and neat results have been reported. Motivated by the

excellent work of Chen and Wang (2007), we put forward a

new concept called power-rate synchronization in order to

cater the unbounded time-delays in GRNs. Notice that the

power-rate synchronization is significantly different from the

traditional asymptotical synchronization and the exponential

synchronization. By resorting to the Lyapunov functional

method and properties of Kronecker product, we develop a

new matrix inequality approach to derive several sufficient

conditions under which the coupled genetic oscillators are

synchronized in the power-rate sense. Illustrative example is

presented to show the effectiveness of the obtained results.

The rest of this paper is organized as follows. In ‘‘Problem

formulation and preliminaries’’ section, problem formulation

and preliminaries are given. In ‘‘Power-rate synchronization’’

section, sufficient criteria are derived for the power-rate syn-

chronization of coupled genetic oscillators with unbounded

time-varying delay. In ‘‘Illustrative example’’ section, an ex-

ample is given to show the effectiveness of the proposed re-

sults. Finally, conclusions are drawn in the last section.

Problem formulation and preliminaries

Consider the genetic oscillator with unbounded time-

varying delay described by the following equation Li et al.

(2006b):

_xðtÞ ¼ AxðtÞ þ B1f xðt � sðtÞÞð Þ
þ B2eg xðt � sðtÞÞð Þ;

ð1Þ

where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; . . .; xnðtÞ�T represents the con-

centrations of proteins, RNAs and chemical complexes; A

and Bi are matrices in R
n�n while AxðtÞ includes the

degradation terms and all the other linear terms in the genetic

oscillator; f ðxðt � sðtÞÞÞ ¼ ½f1ðx1ðt � sðtÞÞÞ; . . .; fnðxnðt�
sðtÞÞÞ�T and egðxðt � sðtÞÞÞ ¼ ½eg1ðx1ðt � sðtÞÞÞ; . . .; egnðxn
ðt � sðtÞÞÞ�T with fiðxiÞ and egiðxiÞ being monotonic in-

creasing or decreasing regulatory functions that are usually of

the Michaelis-Menten or Hill form; the unbounded time-

varying delay function satisfies sðtÞ� gt with 0\g\1. In

this paper, we also assume that fiðxÞ is a monotonic in-

creasing function of the Hill form
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fiðxiðtÞÞ ¼
ðxiðtÞ=biÞ

Hi

1þ ðxiðtÞ=biÞ
Hi
;

and egiðxÞ is a monotonic decreasing function of the fol-

lowing form

egiðxiðtÞÞ ¼
1

1þ ðxiðtÞ=b�i Þ
H�

i

where Hi and H�
i are the Hill coefficients. We further as-

sume that the ith column of B1 and B2 are zeros if

fi; egi � 0.

Since

egiðxiðtÞÞ ¼
1

1þ ðxiðtÞ=b�i Þ
H�

i

¼ 1� ðxiðtÞ=b�i Þ
H�

i

1þ ðxiðtÞ=b�i Þ
H�

i

¼ 1� giðxiðtÞÞ;

system (1) can be rewritten as follows:

_xðtÞ ¼ AxðtÞ þ B1f ðxðt � sðtÞÞÞ � B2gðxðt � sðtÞÞ
þ B2 � en;

ð2Þ

where en ¼ ½1; 1; . . .; 1�T 2 R
n. Noticing that fi and gi are

monotonically increasing functions with saturation, we

have

0� fiðxÞ � fiðyÞ
x� y

�Fi; 0� giðxÞ � giðyÞ
x� y

�Gi;

for all x, y 2 R with x 6¼ y, where Fi and Gi are real

constants.

Remark 1 As indicated in Li et al. (2006a), the genetic

oscillator (2) can be regarded as a kind of Lur’e system that

can then be investigated by using the fruitful Lur’e system

method in control theory.

In this paper, we consider the dynamical system con-

sisting of N linearly coupled identical genetic oscillators

with each oscillator being an n-dimensional dynamical

system:

_xiðtÞ ¼ AxiðtÞ þ B1f xiðt � sðtÞÞð Þ
� B2g xiðt � sðtÞÞð Þ þ B2 � en

þ
X

N

j¼1

cijDxjðtÞ; i ¼ 1; 2; . . .;N;

ð3Þ

where xiðtÞ 2 R
n is the state vector of the ith genetic

oscillator, D ¼ ðdijÞ 2 R
n�n is inner coupling matrix. C ¼

ðcijÞN�N is the coupling configuration matrix representing

the coupling strength and the topological structures of the

network, in which cij ¼ cji is defined as follows:

cij ¼

a positive constant; if there is a link

from oscillator j

to oscillator i

ðj 6¼ iÞ;
0; otherwise.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

cii ¼ �
X

N

j¼1;j 6¼i

cij ¼ �
X

N

j¼1;j6¼i

cji:

ð4Þ

Remark 2 Similar to Li et al. (2006a), the synchroniza-

tion problem considered in this paper is actually for cou-

pled genetic oscillators with SUM regulatory logic, that is,

each transcription factor acts additively to regulate a gene

or, in other words, the regulatory function sums over all the

inputs. As explained in Li et al. (2006a), such a SUM logic

does exist in many natural genetic networks where an ad-

ditive input function is to provide a gene with multiple

promoters, each responding to one of the inputs.

In the following, we give the definition for power-rate

synchronization.

Definition 1 Suppose that there exist constants K, �[ 0

and T [ 0 such that kxiðtÞ � xjðtÞk�Kt�� for all t[ T and

i; j ¼ 1; 2; . . .;N. Then, the system (3) is said to be power-

rate synchronized.

To obtain our main results, some definitions and lemmas

in Wu and Chua (1995) and Wang and Cao (2006) are

introduced here, which will be used throughout this paper.

Definition 2 Let R̂ denote a ring and Mn�mðR̂Þ be the set
of n� m matrix with entries in R̂. TðR̂;BÞ is defined as the

set of matrices with entries in R̂ such that the sum of the

entries in each row is equal to B for some B 2 R̂.

Definition 3 MN
1 ð1Þ is composed of matrices with N

columns, and each row of ~M 2 MN
1 ð1Þ contains zeros and

exactly one entry ai and one entry �ai, ai 6¼ 0.

Definition 4 MN
1 ðnÞ is defined as MN

1 ðnÞ ¼ fM ¼ ~M	
Inj ~M 2 MN

1 ð1Þg, i.e., M 2 MN
1 ðnÞ is obtained by replacing

entry mij in ~M 2 MN
1 ð1Þ with mijIn, where In is the n-di-

mension identity matrix; the notation 	 indicates the

Kronecker product of two matrices; MN
2 ðnÞ are matrices M

in MN
1 ðnÞ such that for any pair of indexes i and j, there

exist indexes i1; i2; . . .; il with i1 ¼ i and il ¼ j, and

p1; p2; . . .; pl�1 such that Mðpq;iqÞ 6¼ 0 and Mðpq;iqþ1Þ 6¼ 0 for

all 1� q\l.

A nonnegative real-valued function is defined as follows

to measures the distance between the various nodes:

dðxÞ ¼ jjMxjj2 ¼ xTMTMx; M 2 MN
2 ðnÞ; ð5Þ
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From the property of M 2 MN
2 ðnÞ, dðxÞ ! 0 if and only if

jjxi � xjjj ! 0 for all i and j, 1� i; j�N, which implies

that the dynamical system (3) achieves synchronization

when dðxÞ ! 0. Especially, if we take

M1 ¼

In � In

In � In

. .
.

In � In

0

B

B

B

B

@

1

C

C

C

C

A

ðN�1Þ�N

;

then M1 2 MN
2 ðnÞ is a ðN � 1Þn� Nn real-valued matrix,

and dðxÞ ¼
P

N�1

i¼1

jjxi � xiþ1jj2.

Lemma 1 Let W be a N � N matrix in TðR̂;KÞ, then the

ðN � 1Þ � ðN � 1Þ matrix H defined by H ¼ MWV satis-

fies MW ¼ HM where M is the ðN � 1Þ � N matrix and V

is the N � ðN � 1Þ matrix

M ¼

1 �1

1 �1

� � �
1 �1

0

B

B

B

@

1

C

C

C

A

;

V ¼

1 1 1 � � � 1

0 1 1 � � � 1

. .
.

1

1 1

0 0 � � � 0 1

0 0 0 0 0

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

;

and 1 is the multiplicative identity of R̂. The matrix H can

be written explicitly as Hði;jÞ ¼
Pj

k¼1½Wði;kÞ �Wðiþ1;kÞ� for
i; j 2 f1; 2; . . .;N � 1g.

Lemma 2 A symmetric irreducible matrix B satisfies the

condition (4) if and only if there exists a p� N matrix

M 2 MN
2 ð1Þ such that B ¼ �MTM:

Lemma 3 (Wang et al. 2006) Let R, R, S be real matrices
of appropriate dimensions and R is positive definite. Then,

for any vectors x and y of appropriate dimensions, the

following inequality holds:

2xTRSy� xTRSR�1ðRSÞTxþ yTRy:

Lemma 4 [Schur complement (Boyd et al. 1994)]. The

following linear matrix inequality (LMI)

QðxÞ SðxÞ
STðxÞ RðxÞ

� �

[ 0;

where QðxÞ ¼ QTðxÞ, RðxÞ ¼ RTðxÞ, and SðxÞ depends

affinely on x, is equivalent to the following condition:

QðxÞ[ 0; RðxÞ � STðxÞQ�1ðxÞSðxÞ[ 0:

Power-rate synchronization

Theorem 1 The network (3) is power-rate synchronized

if there exist positive definite matrix P ¼ ðpijÞn�n 2 R
n�n,

positive definite diagonal matrices Q ¼ diagfq1; q2; . . .;
qng 2 R

n�n, R ¼ diagfr1; r2; . . .; rng 2 R
n�n, a symmetric

matrix D ¼ ðDijÞn�n 2 R
n�n, such that

X ¼
PAþ ATP� Dþ 2P PB1 � PB2

BT
1P � Q 0

�BT
2P 0 � R

0

B

@

1

C

A

\0; P
FQF; P
GRG;

ð6Þ

and

�NcijðPDþ DTPÞ þ D\0; 1� i\j�N; ð7Þ

where F ¼ diagfF1;F2; . . .;Fng and G ¼ diagfG1;G2; . . .;

Gng.

Proof Let eN ¼ ½1; 1; . . .; 1�T 2 R
N , J ¼ eNe

T
N , U ¼

J � NIN ; Then uij ¼ 1ði 6¼ jÞ, uii ¼ �ðN � 1Þ; i; j ¼ 1;

2; . . .;N. Obviously, U is an irreducible symmetric matrix

and satisfies condition (4). It follows from Lemma 2 that

there exists a p� N matrix ~M 2 MN
2 ð1Þ such that U ¼

� ~MT ~M. Let M ¼ ~M 	 In, then M 2 MN
2 ðnÞ and denote

fðxðt� sðtÞÞÞ ¼ ½f Tðx1ðt� sðtÞÞÞ; f T > ðx2ðt� sðtÞÞÞ; . . .; f T

ðxNðt� sðtÞÞÞ�T , gðxðt� sðtÞÞÞ ¼ ½gTðx1ðt� sðtÞÞÞ;gTðx2
ðt� sðtÞÞÞ; . . .;gTðxNðt� sðtÞÞÞ�T , xiðtÞ ¼ ½xi;1ðtÞ;xi;2ðtÞ;
. . .;xi;nðtÞ�T , xðtÞ ¼ ½xT1 ðtÞ;xT2 ðtÞ; . . .;xTNðtÞ�

T
, A¼ IN 	A,

�A¼ Ip 	A, B1 ¼ IN 	B1, �B1 ¼ Ip 	B1, B2 ¼ IN 	B2,
�B2 ¼ Ip 	B2, D¼ IN 	D, �D¼ Ip 	D, P¼ Ip 	P,

Q¼ Ip 	Q, C¼ C	D, u¼ ½ðB2 � enÞT ; ðB2 � enÞT ; . . .;
ðB2 � enÞT �T . We can rewrite the network (3) as follows:

dxðtÞ
dt

¼ AxðtÞ þ B1f xðt � sðtÞÞð Þ

� B2g xðt � sðtÞÞð Þ þ uþ CxðtÞ:
ð8Þ

Let yðtÞ ¼ MxðtÞ ¼ ½yT1 ðtÞ; yT2 ðtÞ; . . .; yTp ðtÞ�
T
, yiðtÞ ¼ ½yi;1

ðtÞ; yi;2ðtÞ; . . .; yi;nðtÞ�T , where yiðtÞ is assumed to be

aiðxi1ðtÞ � xi2ðtÞÞ with ai 6¼ 0, i ¼ 1; 2; . . .; p. We further let

�xjðtÞ ¼ ½x1;jðtÞ; x2;jðtÞ; . . .; xN;jðtÞ�T , then �yjðtÞ ¼ ~M�xjðtÞ,
j ¼ 1; 2; . . .; n.

By Lemma 4, condition (6) is equivalent to

PAþ ATP� Dþ PB1Q
�1BT

1Pþ PB2R
�1BT

2P

þ 2P\0;
ð9Þ

then we can find two sufficient small constants b[ 0 and

�[ 0 such that

eX ¼ bPþ PAþ ATP� Dþ PB1Q
�1BT

1P

þ PB2R
�1BT

2Pþ 2ð1� gÞ��
P� 0:

ð10Þ
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In addition, a sufficiently large constant T [ 0 can be

found such that

�

t
\b; for all t[ T: ð11Þ

We always assume that t[ T in the following proof.

Consider the following Lyapunov function

VðxðtÞÞ ¼ t�xTðtÞMTPMxðtÞ:

Defining a function SðtÞ as SðtÞ ¼ sups� t VðxðsÞÞ, we can

see that SðtÞ is non-decreasing, VðxðtÞÞ� SðtÞ and SðtÞ is

bounded. Furthermore, for all t
 T , one can obtain

SðtÞ ¼ SðTÞ. Clearly, for any t0 [ T , if Vðxðt0ÞÞ\Sðt0Þ,
then SðtÞ is non-increasing at t0. Now, suppose that

Vðxðt0ÞÞ ¼ Sðt0Þ, we will need to prove that SðtÞ is also

non-increasing at t0.

Calculating the time derivative of VðxðtÞÞ along the

trajectories of (8), one obtains

_VðxðtÞÞ jt¼t0 ¼ �t��1
0 xTðt0ÞMTPMxðt0Þ

þ t�0x
Tðt0ÞATMTPMxðt0Þ

þ t�0x
Tðt0ÞMTPMAxðt0Þ

þ 2t�0x
Tðt0ÞMTPM B1f xðt0 � sðt0ÞÞð Þ½

�B2g xðt0 � sðt0ÞÞð Þ þ u�
þ 2t�0x

Tðt0ÞMTPMCxðt0Þ
þ t�0x

Tðt0ÞMTMðD� DÞxðt0Þ:

It follows from the properties of M that

MA ¼ �AM; MB1 ¼ �B1M; MB2 ¼ �B2M;

MC ¼ �CM; Mu ¼ 0; MD ¼ �DM;

which leads to

_VðxðtÞÞ jt¼t0

¼ t�0x
Tðt0ÞMT ½P �Aþ �ATP� �Dþ �

t0
P�Mxðt0Þ

þ 2t�0 xTðt0ÞMTP �B1Mf xðt0 � sðt0ÞÞð Þ
�

�xTðt0ÞMTP �B2Mg xðt0 � sðt0ÞÞð Þ
�

þ 2t�0x
Tðt0ÞMTPMCxðt0Þ

þ t�0x
Tðt0ÞMT �DMxðt0Þ:

Noting that �
t0
\b, we obtain

_VðxðtÞÞ jt¼t0

� t�0x
Tðt0ÞMT P �Aþ �ATP� �Dþ bP

� �

Mxðt0Þ
þ 2t�0 xTðt0ÞMTP �B1Mf xðt0 � sðt0ÞÞð Þ

�

�xTðt0ÞMTP �B2Mg xðt0 � sðt0ÞÞð Þ
�

þ 2t�0x
Tðt0ÞMTPMCxðt0Þ

þ t�0x
Tðt0ÞMT �DMxðt0Þ:

An application of Lemma 3 yields

2xTðt0ÞMTP �B1Mf xðt0�sðt0ÞÞð Þ¼2
X

p

j¼1

ajðxj1ðt0Þ�xj2ðt0ÞÞ
T
PB1aj

� f ðxj1ðt0�sðt0ÞÞÞ� f ðxj2ðt0�sðt0ÞÞÞ
� �

�
X

p

j¼1

aj f ðxj1ðt0�sðt0ÞÞÞ� f ðxj2ðt0�sðt0ÞÞÞ
� �T

�Qaj f ðxj1ðt0�sðt0ÞÞÞ� f ðxj2ðt0�sðt0ÞÞÞ
� �

þ
X

p

j¼1

yTj ðt0ÞPB1Q
�1BT

1Pyjðt0Þ

�
X

p

j¼1

a2j ðxj1ðt0�sðt0ÞÞ�xj2ðt0�sðt0ÞÞÞT

�FQFðxj1ðt0�sðt0ÞÞ�xj2ðt0�sðt0ÞÞÞ

þ
X

p

j¼1

yTj ðt0ÞPB1Q
�1BT

1Pyjðt0Þ;

ð12Þ

and

�2xTðt0ÞMTP �B2Mgðxðt0�sðt0ÞÞÞ

¼�2
X

p

j¼1

ajðxj1ðt0Þ�xj2ðt0ÞÞ
T

�PB2aj gðxj1ðt0�sðt0ÞÞÞ�gðxj2ðt0�sðt0ÞÞÞ
� �

�
X

p

j¼1

aj gðxj1ðt0�sðt0ÞÞÞ�gðxj2ðt0�sðt0ÞÞÞ
� �T

�Raj gðxj1ðt0�sðt0ÞÞÞ�gðxj2ðt0�sðt0ÞÞÞ
� �

þ
X

p

j¼1

yTj ðt0ÞPB2R
�1BT

2Pyjðt0Þ

�
X

p

j¼1

a2j ðxj1ðt0�sðt0ÞÞÞ�xj2ðt0�sðt0ÞÞÞT

�GRGðxj1ðt0�sðt0ÞÞÞ�xj2ðt0�sðt0ÞÞÞ

þ
X

p

j¼1

yTj ðt0ÞPB2R
�1BT

2Pyjðt0Þ: ð13Þ

According to the assumptions that P
FQF and P
GRG,
one can obtain

X

p

j¼1

t�0a
2
j ðxj1ðt0�sðt0ÞÞÞ�xj2ðt0�sðt0ÞÞÞT

�FQFðxj1ðt0�sðt0ÞÞÞ�xj2ðt0�sðt0ÞÞÞ

�
X

p

j¼1

t�0a
2
j ðxj1ðt0�sðt0ÞÞÞ�xj2ðt0�sðt0ÞÞÞT

�Pðxj1ðt0�sðt0ÞÞÞ�xj2ðt0�sðt0ÞÞÞ
¼ t�0x

Tðt0�sðt0ÞÞMTPMxðt0�sðt0ÞÞ

¼ t0

t0�sðt0Þ

� ��

Vðxðt0�sðt0ÞÞÞ�ð1�gÞ��
Vðxðt0�sðt0ÞÞÞ

�ð1�gÞ��
Sðt0Þ¼ð1�gÞ��

Vðxðt0ÞÞ
¼ð1�gÞ��

t�0x
Tðt0ÞMTPMxðt0Þ; ð14Þ
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and

X

p

j¼1

t�0a
2
j ðxj1ðt0 � sðt0ÞÞÞ � xj2ðt0 � sðt0ÞÞÞT

� GRGðxj1ðt0 � sðt0ÞÞÞ � xj2ðt0 � sðt0ÞÞÞ

�
X

p

j¼1

t�0a
2
j ðxj1ðt0 � sðt0ÞÞÞ � xj2ðt0 � sðt0ÞÞÞT

� Pðxj1ðt0 � sðt0ÞÞÞ � xj2ðt0 � sðt0ÞÞÞ
¼ t�0x

Tðt0 � sðt0ÞÞMTPMxðt0 � sðt0ÞÞ

¼ t0

t0 � sðt0Þ

� ��

Vðxðt0 � sðt0ÞÞÞ

� ð1� gÞ��
Vðxðt0 � sðt0ÞÞÞ

� ð1� gÞ��
Sðt0Þ ¼ ð1� gÞ��

Vðxðt0ÞÞ
¼ ð1� gÞ��

t�0x
Tðt0ÞMTPMxðt0Þ: ð15Þ

It follows from (12), (13), (14) and (15) that

_VðxðtÞÞ jt¼t0 � t�0

X

p

j¼1

yTj ðt0Þ½PAþ ATP� Dþ bP

þ PB1Q
�1BT

1Pþ PB2R
�1BT

2P

þ 2ð1� gÞ��
P�yjðt0Þ

þ 2t�0x
Tðt0ÞMTPMCxðt0Þ

þ t�0x
Tðt0ÞMT �DMxðt0Þ: ð16Þ

Furthermore, one has

X

N

k¼1

uikckj ¼ ðuii � 1Þcij þ
X

N

k¼1;k 6¼i

uikckj þ cij

¼ � Ncij þ
X

N

k¼1

ckj ¼ �Ncij;

and

2t�0x
Tðt0ÞMTPMCxðt0Þ þ t�0x

Tðt0ÞMT �DMxðt0Þ
¼ 2t�0x

Tðt0Þð ~MT 	 InÞðIp 	 PÞð ~M 	 InÞ
� ðC 	 DÞxðt0Þ
þ t�0x

Tðt0Þð ~MT 	 InÞðIp 	 DÞð ~M 	 InÞxðt0Þ
¼ 2t�0x

Tðt0Þð ~MT ~MC 	 PDÞxðt0Þ þ t�0x
Tðt0Þ

� ð ~MT ~M 	 DÞxðt0Þ
¼ �2t�0x

Tðt0ÞðUC 	 PDÞxðt0Þ � t�0x
Tðt0Þ

� ðU 	 DÞxðt0Þ

¼ �2t�0

X

N

i¼1

X

N

j¼1

xTi ðt0Þð�NcijPDÞxjðt0Þ

� t�0

X

N

i¼1

X

N

j¼1

xTi ðt0ÞðuijDÞxjðt0Þ: ð17Þ

Hence, we gets

_VðxðtÞÞjt¼t0
� t�0

X

p

j¼1

yTj ðt0ÞeXyjðt0Þ

� 2t�0

X

N

i¼1

X

N

j¼1

xTi ðt0Þð�NcijPDÞxjðt0Þ

� t�0

X

N

i¼1

X

N

j¼1

xTi ðt0ÞðuijDÞxjðt0Þ

� t�0

X

p

j¼1

yTj ðt0ÞeXyjðt0Þ

� 2t�0

X

N

i¼1

X

N

j¼1;j6¼i

xTi ðt0Þð�NcijPDÞxjðt0Þ
 

þ xTi ðt0Þð�NciiPDÞxiðt0Þ
�

� t�0

X

N

i¼1

X

N

j¼1;j6¼i

xTi ðt0ÞðuijDÞxjðt0Þ
 

þ xTi ðt0ÞðuiiDÞxiðt0Þ
�

� t�0

X

p

j¼1

yTj ðt0ÞeXyjðt0Þ

þ 2t�0

X

N�1

i¼1

X

N

j¼iþ1

ðxiðt0Þ � xjðt0ÞÞTð�NcijPDÞ

� ðxiðt0Þ � xjðt0ÞÞ

þ t�0

X

N�1

i¼1

X

N

j¼iþ1

ðxiðt0Þ � xjðt0ÞÞTDðxiðt0Þ � xjðt0ÞÞ

� t�0

X

p

j¼1

yTj ðt0ÞeXyjðt0Þ

þ t�0

X

N�1

i¼1

X

N

j¼iþ1

ðxiðt0Þ � xjðt0ÞÞT

� ð�NcijðPDþ DTPÞ þ DÞðxiðt0Þ � xjðt0ÞÞ� 0;

ð18Þ

which implies that SðtÞ is also non-increasing at t0. It fol-

lows from above analysis that SðtÞ ¼ SðTÞ for all t
 T ,

which implies that kyðtÞk ¼ Oðt��
2Þ. This completes the

proof. h

Remark 3 If the time delay is bounded and differen-

tiable and _sðtÞ� s\1, following the similar method, we

can obtain a sufficient condition for the delayed coupled

genetic oscillators to be globally exponentially

synchronized:

ðiÞ PAþ ATP� Dþ ð1� sÞ�1
PB1Q

�1BT
1P

þ ð1� sÞ�1
PB2R

�1BT
2Pþ FQF þ GRG\0;

ðiiÞ � NcijðPDþ DTPÞ þ D\0; 1� i\j�N;

where the Lyapunov functional can be constructed as
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VðxðtÞÞ ¼ e2etxTðtÞMTPMxðtÞ

þ
Z t

t�sðtÞ
fTðxðsÞÞMTQMfðxðsÞÞe2esds

þ
Z t

t�sðtÞ
gTðxðsÞÞMTRMgðxðsÞÞe2esds:

The proof is similar and omitted here.

If the coupling matrix D is a diagonal matrix, then the

following result can be obtained.

Corollary 1 The network (3) is power-rate synchronized

if there exist diagonal matrices P ¼ diagfp1; p2; . . .;
png[ 0, Q ¼ diagfq1; q2; . . .; qng[ 0, R ¼ diagfr1;
r2; . . .; rng[ 0, D ¼ diagfd1; d2; . . .; dng and an irre-

ducible symmetric matrix U ¼ ðuijÞ 2 R
N�N satisfying

condition (4), such that

PAþ ATPþ 2P� D PB1 � PB2

BT
1P � Q 0

�BT
2P 0 � R

0

B

@

1

C

A
\0;

P
FQF; P
GRG; ð19Þ

and

pjdjðUC þ CUÞ þ djIN 
 0; ð20Þ

where F ¼ diagfF1;F2; . . .;Fng and G ¼ diagfG1;G2;

. . .;Gng.

Proof Since

2xTðt0ÞMTPMCxðt0Þ þ xTðt0ÞMTMDxðt0Þ

¼
X

n

j¼1

pjdj�xj
TðtÞ ~MT ~MC�xj þ

X

n

j¼1

�xj
T ~MT ~Mdj�xjðtÞ

¼ �
X

n

j¼1

�xj
TðtÞðpjdjðUC þ CUÞ þ djINÞ�xjðtÞ� 0;

and from (16), one has

_VðxðtÞÞ jt¼t0 � t�0

X

p

j¼1

yTj ðt0Þ PAþ ATP� Dþ b
�

P

þ PB1Q
�1BT

1Pþ PB2R
�1BT

2P

þ 2ð1� gÞ��
P�yjðt0Þ

�
X

n

j¼1

�xj
TðtÞðpjdjðUC þ CUÞ

þ djINÞ�xjðtÞ� 0: ð21Þ

This completes the proof. h

Theorem 2 The network (3) is power-rate synchronized

if there exist positive definite matrix P ¼ ðpijÞn�n 2 R
n�n,

positive definite diagonal matrices Q ¼ diagfq1; q2; . . .;

qng 2 R
n�n, R ¼ diagfr1; r2; . . .; rng 2 R

n�n, a symmetric

matrix D ¼ ðDijÞn�n 2 R
n�n, such that

~P ~Aþ ~AT ~Pþ 2~Pþ ~PHþHT ~P ~P ~B1 � ~P ~B2

~BT
1
~P � ~Q 0

� ~BT
2
~P 0 � ~R

0

B

@

1

C

A

\0;

ð22Þ

and

~P
F ~QF; ~P
G ~RG; ð23Þ

where F ¼ IN�1 	 F, G ¼ IN�1 	 G, H ¼ ~MCV , H ¼ H 	
D and V is defined in Lemma1 and ~M is defined in the

proof.

Proof Suppose that

~M ¼

1 � 1

1 � 1

. .
.

1 � 1

0

B

B

B

B

@

1

C

C

C

C

A

ðN�1Þ�N;

and ~M is a ðN � 1Þ � N real-valued matrix. Let

M1 ¼ ~M 	 In, yðtÞ ¼ M1xðtÞ ¼ ½yT1 ðtÞ; yT2 ðtÞ; . . .; yTN�1ðtÞ�
T
,

yiðtÞ ¼ ½yi;1ðtÞ; yi;2ðtÞ; . . .; yi;nðtÞ�T . According to the struc-

ture of M1, it is easy to show that yiðtÞ ¼ xiðtÞ � xiþ1

ðtÞ; i ¼ 1; 2; . . .;N � 1. We denote

~A ¼ IN�1 	 A; ~B1 ¼ IN�1 	 B1;

~B2 ¼ IN�1 	 B2; ~P ¼ IN�1 	 P;

~Q ¼ IN�1 	 Q; ~R ¼ IN�1 	 R;

C ¼ C 	 D; G ¼ IN�1 	 G;

F ¼ IN�1 	 F; ~X ¼ IN�1 	 eX;

u ¼ ðB2 � enÞT ; ðB2 � enÞT ; . . .; ðB2 � enÞT
� �T

:

By Lemma 4, condition (22) is equivalent to

~P ~Aþ ~AT ~Pþ ~PHþHT ~Pþ ~P ~B1
~Q�1 ~BT

1
~P

þ ~P ~B2
~R�1 ~BT

2
~Pþ 2~P\0;

ð24Þ

then we can find two sufficient small constants b[ 0 and

�[ 0 such that

X ¼ b~Pþ ~P ~Aþ ~AT ~Pþ ~PHþHT ~Pþ ~P ~B1
~Q�1 ~BT

1
~P

þ ~P ~B2
~R�1 ~BT

2
~Pþ 2ð1� gÞ�� ~P\0; ð25Þ

In addition, a sufficiently large constant T [ 0 can be

found such that

�

t
\b; for all t[ T: ð26Þ

Consider the following Lyapunov function
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VðxðtÞÞ ¼ t�xTðtÞMT
1
~PM1xðtÞ:

Following the same method in Theorem 1, one obtains

_VðxðtÞÞ jt¼t0 ¼ �t��1
0 xTðt0ÞMT

1
~PM1xðt0Þ

þ t�0x
Tðt0Þ MT

1
~P ~AM1 þMT

1
~AT ~PM1

� �

� xðt0Þ þ 2t�0x
Tðt0ÞMT

1
~P

� ~B1M1f xðt0 � sðt0ÞÞð Þ
�

� ~B2M1g xðt0 � sðt0ÞÞð Þ þM1u
�

þ 2t�0x
Tðt0ÞMT

1
~PM1Cxðt0Þ:

Let / yðt � sðtÞÞð Þ ¼ M1f xðt � sðtÞÞð Þ and u yðt�ð
sðtÞÞÞ ¼ M1g xðt � sðtÞÞð Þ; it follows from Lemma 3 that

2yTðt0Þ~P ~B1/ yðt0 � sðt0ÞÞð Þ� yTðt0Þ~P ~B1
~Q�1 ~BT

1
~Pyðt0Þ

þ /T yðt0 � sðt0ÞÞð Þ ~Q/ yðt0 � sðt0ÞÞð Þ
� yTðt0Þ~P ~B1

~Q�1 ~BT
1
~Pyðt0Þ

þ yT t0 � sðt0Þð ÞF ~QFy t0 � sðt0Þð Þ

and

� 2yTðt0Þ~P ~B2u yðt0 � sðt0ÞÞð Þ
� yTðt0Þ~P ~B2

~R�1 ~BT
2
~Pyðt0Þ

þ uT yðt0 � sðt0ÞÞð Þ ~Ru yðt0 � sðt0ÞÞð Þ
� yTðt0Þ~P ~B2

~R�1 ~BT
2
~Pyðt0Þ

þ yT t0 � sðt0Þð ÞG ~RGy t0 � sðt0Þð Þ:

Furthermore, since ~P
F ~QF and ~P
G ~RG, thus

t�0y
T t0 � sðt0Þð ÞF ~QFy t0 � sðt0Þð Þ
� t�0y

T t0 � sðt0Þð Þ~Py t0 � sðt0Þð Þ

¼ t0

t0 � sðt0Þ

� ��

V xðt0 � sðt0ÞÞð Þ

� ð1� gÞ��
V x t0 � sðt0Þð Þð Þ

� ð1� gÞ��
Sðt0Þ ¼ ð1� gÞ��

Vðxðt0ÞÞ
¼ ð1� gÞ��

t�0x
Tðt0ÞMT

1
~PM1xðt0Þ

¼ð1� gÞ��
t�0yðt0Þ

T ~Pyðt0Þ;
t�0y

T t0 � sðt0Þð ÞG ~RGy t0 � sðt0Þð Þ
� t�0y

T t0 � sðt0Þð Þ~Py t0 � sðt0Þð Þ

¼ t0

t0 � sðt0Þ

� ��

V xðt0 � sðt0ÞÞð Þ

� ð1� gÞ��
V xðt0 � sðt0ÞÞð Þ

� ð1� gÞ��
Sðt0Þ ¼ ð1� gÞ��

Vðxðt0ÞÞ
¼ ð1� gÞ��

t�0x
Tðt0ÞMT

1
~PM1xðt0Þ

¼ ð1� gÞ��
t�0yðt0Þ

T ~Pyðt0Þ:

Denote X1 ¼ b~Pþ ~P ~Aþ ~AT ~Pþ ~P ~B1
~Q�1 ~BT

1
~Pþ ~P ~B2

~R�1 ~BT
2
~Pþ 2ð1� gÞ�� ~P, one has

_VðxðtÞÞjt¼t0
� t�0y

Tðt0Þ
�

t0
~Pþ ~P ~Aþ ~AT ~Pþ ~P ~B1

~Q�1 ~BT
1
~P

�

þ ~P ~B2
~R�1 ~BT

2
~Pþ 2ð1� gÞ�� ~P

�

yðt0Þ
þ 2t�0x

Tðt0ÞMT
1
~PM1Cxðt0Þ

� t�0y
Tðt0Þ b~Pþ ~P ~Aþ ~AT ~Pþ ~P ~B1

~Q�1 ~BT
1
~P

�

þ~P ~B2
~R�1 ~BT

2
~Pþ 2ð1� gÞ�� ~P

�

yðt0Þ
þ 2t�0x

Tðt0ÞMT
1
~Pð ~M 	 InÞðC 	 DÞxðt0Þ

¼ t�0y
Tðt0ÞX1yðt0Þ

þ 2t�0x
Tðt0ÞMT

1
~Pð ~MC 	 DÞxðt0Þ

¼ t�0y
Tðt0ÞX1yðt0Þ

þ 2t�0x
Tðt0ÞMT

1
~PðH ~M 	 DÞxðt0Þ

¼ t�0y
Tðt0ÞX1yðt0Þ

þ 2t�0x
Tðt0ÞMT

1
~P½ðH 	 DÞð ~M 	 InÞ�xðt0Þ

¼ t�0y
Tðt0ÞX1yðt0Þ þ 2t�0x

Tðt0ÞMT
1
~PHM1xðt0Þ

¼ t�0y
Tðt0ÞX1yðt0Þ

þ t�0x
Tðt0ÞMT

1 ð~PHþHT ~PÞM1xðt0Þ
¼ t�0y

Tðt0ÞXyðt0Þ� 0;

which implies that SðtÞ is also non-increasing at t0. It fol-

lows from above analysis that SðtÞ ¼ SðTÞ for all t
 T ,

which implies that kyðtÞk ¼ Oðt��
2Þ. This completes the

proof. h

According to the proof of Theorem 2, one has the fol-

lowing corollary.

Corollary 2 The network (3) is power-rate synchronized

if there exist positive definite matrix P ¼ ðpijÞn�n 2 R
n�n,

positive definite diagonal matrices Q ¼ diagfq1; q2; . . .;
qng 2 R

n�n, R ¼ diagfr1; r2; . . .; rng 2 R
n�n, a symmetric

matrix D ¼ ðDijÞn�n 2 R
n�n, such that

PAþ ATP� Dþ 2P PB1 � PB2

BT
1P � Q 0

�BT
2P 0 � R

0

@

1

A\0; ð27Þ

and

P
FQF; P
GRG; ~PHþHT ~Pþ ~D\0; ð28Þ

where F ¼ IN�1 	 F, G ¼ IN�1 	 G, H ¼ ~MCV , H ¼ H 	
D and V is defined in Lemma 1 and ~M is defined in The-

orem 2, and ~D ¼ IN�1 	 D.

Remark 4 Likewise, if the time delay is bounded and

differentiable and _sðtÞ� s\1, following the similar
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method, we can obtain a sufficient condition which is a

minor revision of Theorem 2 for the delayed coupled ge-

netic oscillators to be globally exponentially synchronized:

ðiÞ PAþ ATP� Dþ ð1� sÞ�1
PB1Q

�1BT
1P

þ ð1� sÞ�1
PB2R

�1BT
2Pþ FQF þ GRG\0;

ðiiÞ ~PHþHT ~Pþ ~D\0;

where the Lyapunov functional is constructed as

VðxðtÞÞ ¼ e2etxTðtÞMT
1
~PM1xðtÞ

þ
Z t

t�sðtÞ
fTðxðsÞÞMT

1
~QM1fðxðsÞÞe2esds

þ
Z t

t�sðtÞ
gTðxðsÞÞMT

1
~RM1gðxðsÞÞe2esds:

The proof is omitted.

Remark 5 A new synchronization problem for the collec-

tive dynamics among genetic oscillators with unbounded

time-varying delay is investigated. A new concept called

power-rate synchronization, which is different from both the

asymptotical synchronization and the exponential synchro-

nization, is put forward to facilitate handling the unbounded

time-varying delays. An LMI-based sufficient condition is

derived for the existence of the desired synchronization,

which ensures the power-rate stability in the presence of

time-delays. The synchronization of the addressed genetic

oscillators can be readily checked by the solvability of a set

of LMIs, which can be done by resorting to the Matlab LMI

toolbox. It should be mentioned that, in the past decade,

LMIs have gained much attention for their computational

tractability and usefulness in many areas because the so-

called interior point method has been proven to be nu-

merically very efficient for solving the LMIs. In next section,

an illustrative example will be provided to show the appli-

cation potential of the proposed techniques in a population of

N coupled SCN neuron model oscillators.

Illustrative example

Example. In the following, we consider a population of N

coupled SCN neuron model oscillators. The single cell or

genetic oscillator is described by the classical Goodwin

model (Goodwin 1965). In this model, a clock gene mRNA

(X) produces a clock protein (Y), which activates a tran-

scriptional inhibitor (Z). Z inhibits the transcription of the

clock gene, completing the cycle. The oscillators coupled

through the release and receiving of neurotransmitter

among neurons. The release of the neurotransmitter is

supposed to be fast with respect to the 24 h timescale of the

oscillators. In this paper, we assume that the light L ¼ 0. V

describes the evolution of the neurotransmitter in the

neuron. The equation for each oscillator is given as

follows:

_XðtÞ ¼ v1
1

1:3þ Zðt � sðtÞÞm � v2XðtÞ;

_YðtÞ ¼ v3XðtÞ � v4YðtÞ;
_ZðtÞ ¼ v5YðtÞ � v6ZðtÞ;
_VðtÞ ¼ v7XðtÞ � v8VðtÞ

ð29Þ

where v1, v2, v3, v4, v5, v6, v7, v8 are positive constants. The

concentrations are express in nM, and the parameters are

set as m ¼ 12, v1 ¼ 1 nMh�1; v2 ¼ v5 ¼ v6 ¼ 1:2 h�1;

v3 ¼ 2 h�1; v4 ¼ 1:5 h�1; v7 ¼ 0:2 h�1; v8 ¼ 2 h�1;

sðtÞ ¼ 0:1t, N ¼ 10; the coupling matrix C are given as:

cii ¼ �2þ 2
10
; cij ¼ 2

10
; i 6¼ j; and the inner linking matrix

D ¼ ðdijÞ with d14 ¼ 3 and other elements are 0.

By applying Theorem 1 and using Matlab LMI Toolbox,

we can find the feasible solutions for (6) and (7), which

indicate that the coupled network can achieve power-rate

synchronization. In Fig. 1a, we plot the time evolution of the

mRNA concentrations (X) of all the uncoupled oscillators

with random initial values. In Fig. 1b, we show the error of

the uncoupled oscillators. From Fig. 1a, b, we can see that
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Fig. 1 Time response of all the uncoupled oscillators with random

initial values
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there is no synchronization between the oscillators without

coupling. Figure 2a shows the time evolution of the mRNA

concentration (X) of all the coupled oscillators with random

initial values. Also, Fig. 2a shows that the synchronization is

realized between the oscillators with linear coupling. So,

linear coupling is an effective way to achieve synchroniza-

tion. Figure 2b shows the time evolution of the synchro-

nization error, which further confirms that the coupled

network can achieve power-rate synchronization.

error ¼
X

N�1

i¼1

½ðXi � Xiþ1Þ2 þ ðYi � Yiþ1Þ2

þ ðZi � Ziþ1Þ2 þ ðVi � Viþ1Þ2�;

where Xi, Yi, Zi describe the dynamics of the oscillator in

ith neuron, and Vi describes the evolution of the neuro-

transmitter in the ith neuron.

In our future research, it would be very interesting to see

how promising it would be to apply our developed results

to other well-known genetic oscillators, e.g. the ones de-

scribed in Elowitz and Leibler (2000). Genetic regulatory

network is a dynamical system that consists of a finite

number of different subsystems rather than a single, iso-

lated system. For example, there are many genomes in a

cell which leads to the existence of different regulatory

network. These regulatory networks are activated in the

internal and external conditions which is variable. That is

to say, in certain biological environment, gene regulatory

network is a hybrid system. Therefore, in the near future,

we will discuss the dynamics of switching GRNs.

Conclusions

In this paper, we have investigated the synchronization

problem on the genetic oscillators with unbounded time-

varying delays. Some criteria are given to ensure the

power-rate synchronization of the coupled genetic oscilla-

tors. The obtained conditions are derived in terms of matrix

inequalities. Synchronization with some power conver-

gence rate is first proposed on genetic oscillators. From

Chen and Wang (2007) and the concept of synchronization,

we know that there indeed exist some dynamical systems

which are power-rate synchronized but not exponentially

synchronized. We have employed a simulation example to

illustrate the effectiveness of the proposed results.
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