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Abstract Brain activity is a cooperative process among

neurons and involves the coupling relationship, which is

crucial to perform operational tasks in various specialized

areas of the nervous system. A finite signal transmission

speed along the axons results in a space-dependent time

delay. The central pattern generator (CPG) can in principle

produce basic locomotor rhythm in the absence of inputs

from higher brain centers and peripheral sensory feedback.

To study the dynamic performance of CPG with time delay

and its coupling relationship with the cerebral cortex, a

new CPG model with time delay and a model of the neural

mass model (NMM) and the CPG are developed. The

coupling model is based on biological experimental results.

Bifurcation theories and maximal Lyapunov exponent are

used to analyze the dynamic performance. From the results,

some CPGs are suggested to be embedded in limbs and

composed of the parameters space which corresponds to

the one of the cerebral cortex. This embodiment of humans

can reduce the burden of the brain and simplify the control

of the locomotion. The results also show that the phase

diagram of the CPG cannot keep the limit cycle, and that

the state of the NMM becomes increasingly chaotic as time

delay increases. This finding implies that a person with

slow reaction can easily lose the stability of his or her

locomotion.

Keywords Central pattern generator � Neural mass

model � Time delay � Cerebral cortex � Bifurcation

Introduction

Pfeifer et al. (2007) have suggested that locomotion control

is not only located in the brain, but that there is a tight

coupling between the brain, the body, and the environment,

an idea that is usually termed embodiment (Nakajima et al.

2013). The typical example is octopus which has a

relatively small central brain which controls the large pe-

ripheral nervous system of the arms. It is well known that

the nervous system of the octopus is highly distributed

throughout the entire body. A typical example showing the

effectiveness of this distribution of the nervous system is

the reaching behavior (Sumbre et al. 2001; Yekutieli et al.

2005a, b; Gutfreund 1998). Do humans have similar mor-

phological structure to reduce the burden of the brain and

control locomotion effectively? The central pattern gen-

erator (CPG) for locomotion has been shown to exist in the

spinal cord of many animals. The CPG is a neural circuit

that can produce rhythmic patterns of neural activity

without receiving rhythmic inputs. Many researchers have

established the CPG network, i.e., the arrangement of

CPGs to the biped robot. These adjacent CPGs are coupled

to one another with different values of joint angles (Yu

et al. 2014; Kim et al. 2009). This structure is similar to one

of the octopus. However, studies show that the locomotion

of animals is hierarchically controlled by the central ner-

vous system, from the cerebral cortex level, the brainstem

level, to the spinal cord level. In this paper, we study the

relationship between the cerebral cortex and the CPG and

suggest that some CPGs are embedded in limbs and com-

posed of the parameters space which corresponds to the

one of the cerebral cortex.

Central to produce rhythmic patterns is the functional

unit called the CPG (Yu et al. 2014; Kim et al. 2009; Lu

et al. 2014). Although the CPG can in principle produce
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basic locomotor rhythm in the absence of inputs from

higher brain centers and peripheral sensory feedback (Ry-

bak et al. 2006; Dominici et al. 2011), these inputs shape

the timing and magnitude of motoneuron activities, and

their processing is conversely influenced by the

CPG(Windhorst 2007). In previous works, a model (Lu and

Tian 2014) has been established and it showed the rela-

tionship between the small-world neural network and the

CPG. Other researchers have also studied the interaction

between the cerebral cortex and the locomotion (Harris-

Warrick 2011; Taga 1998; Sreenvasa et al. 2012; Tani and

Ito 2003). Harris-Warrick (2011) argued that neuro-

modulators determine the active neuronal composition of

the CPG, and that modeling the function of neural networks

without including the actions of neuromodulators is not

possible. Taga (1998) also showed that the neural rhythm

generator in the neural system is combined with a system

called the discrete movement generator, which receives

both the output of the rhythm generator and the visual

information regarding the obstacle and generates discrete

signals to modify the basic gait pattern. Investigating the

coupling relationship between the cerebral cortex and the

CPG is therefore important and can help to understand the

locomotion control. The main problem is to build a model

between the cerebral cortex and the CPG.

An analysis of brain activity reveals the presence of

synchronous oscillations. These oscillations are not an

epiphenomenon, but they play a crucial role in many im-

portant processes of the cortex. The oscillator can produce

a wide range of dynamics, including quasi-periodic limit

cycles, chaotic waveforms, and intermittent chaotic oscil-

lation (Kozma and Puljic 2013). Jansen and Rit (1995) built

the neural mass model (NMM), which simulates electrical

brain activity and its intricate cortical structures. Grimbert

and Faugeras (2006) investigated the dynamical behavior

of the NMM. In their analysis, the rhythmic activities of

alpha rhythm and epileptic wave were related to the

structure of a set of periodic orbits and their bifurcation.

Zheng et al. (2012) developed a model of the local field

potential based on the NMM and found that, as neural

responses adapt, so too do the excitatory and inhibitory

components adapt proportionately. By contrast, previous

studies have already revealed that time delays can

gradually affect the spatiotemporal dynamics in networks

of coupled neurons (Roxin et al. 2005). Cona et al. (2011)

and Ursino et al. (2010) showed that brain rhythms may be

transmitted to other regions via long range excitatory

connections and serve a pivotal role in learning and mo-

tion. Dhamala et al. (2004) showed that time-delayed

coupling facilitates the existence of the stable synchronized

states of two chaotic neurons. Balasubramaniam and Jarina

Banu (2014) described the problem of synchronization for

discrete-time complex dynamical networks with time-

varying delays in the dynamical nodes and the coupling

term. The NMM with time delay can therefore be used to

describe the dynamical behavior of the cerebral cortex.

This paper is organized as follows. In ‘‘Motivation of

the research and the new model’’ section, the motivation of

this research is introduced and a new model that shows the

coupling relationship between the NMM and the CPG with

time delay is presented. Bifurcation analysis is conducted

to describe the dynamic characteristics of the new model.

Detailed analysis of the parameters’ effects on the NMM

and the CPG is shown in ‘‘Analyses of the parameters’

effects’’ section. The conclusions and directions for future

study are made in ‘‘Discussion and conclusions’’ section.

Motivation of the research and the new model

Motivation of the research

The locomotor patterns are the product of neural processes.

The CPGs—spinal neuronal networks that control the basic

rhythms and patterns of motoneuron activation during lo-

comotion—have a crucial function (Lacquaniti et al. 2012).

The CPGs in the spinal cord produce motor patterns with

appropriate timing. Each generator is affected by sensory

feedback from the moving limb and is activated from the

locomotor command regions (Grillner 2011). The

supraspinal control of locomotion has been investigated in

animals (Drew et al. 2008). However, few mathematical

models have been established to explain the interaction

between the brain and the CPG.

The research discussed a model of the coupling rela-

tionship between the NMM and the CPG with time delay.

Bifurcation analysis and phase diagram were used to de-

scribe changes in the behavior of the system. The new

model developed in this work is beneficial in studying the

dynamic character of neural processes and help us to un-

derstand the relationship between the brain and the loco-

motion. In the NMM, the excitatory input is represented by

parameter p, and k means a latency times than the excita-

tory impulse response from local neurons. In the CPG,

parameter d represents the strength of self inhibition, w is

the strength of inhibition among CPGs and e represents the

excitatory tonic input. In the new model, changes in pa-

rameters k and p can lead to different dynamic behaviors of

the system. The influences of the changes in parameters

parameters d, e, and w on the NMM and the CPG were also

analyzed.

The coupling relationship between the NMM and the

CPG with time delay is complex, as shown in Fig. 1.

Many modes for NMM exist, and they are determined

by parameter p. Parameter k affects the state of the NMM

and CPG. With a change in parameter k, the state of the
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NMM changes from a chaotic to stable state. When the

value of parameters k and p are suitable, the phase diagram

of the CPG is the limit cycle, and the state of the NMM is

stable. At the same time, various values of w, d, and e can

affect the state of the NMM and the CPG.

The CPG model with time delay

The operator of the neural populations in Jansen’s model

transforms the average pulse density of action potentials

into an average postsynaptic membrane potential. The

impulse response function of time delay hd(t) (Huang et al.

2011) is given by

hdðtÞ ¼
Aadte

�adtðt� 0Þ
0ðt\0Þ

�
ð1Þ

where A determines the maximal amplitude of the postsy-

naptic potentials. The parameter ad lumps together the

characteristic delays of the synaptic transmission. If the

input is x(t), then the output is y(t) = hd 9 x(t).

This operator can be described as a second-order ordi-

nary differential equation.

€yðtÞ ¼ AadxðtÞ � 2ad _yðtÞ � a2dyðtÞ ð2Þ

It can also be written as follows:

_yðtÞ ¼ zðtÞ
_zðtÞ ¼ AadxðtÞ � 2adzðtÞ � a2dyðtÞ

�
ð3Þ

Choosing the CPG output (Matsuoka 2011) as the input of

Eq. (3), the state equation of the new CPG model is given

by.

_x1 ¼ x2
_x2 ¼ Aadgðx3Þ � 2adx2 � a2dx1
Tr _x3 þ x3 ¼ �dx4 þ e

Ta _x4 þ x4 ¼ gðx3Þ

8>><
>>:

ð4Þ

In Eq. (4), variables x1 and x2 correspond to y and z in

Eq. (3), respectively. Function g(�) is a piecewise linear

function defined by g(x) = max(0, x), which represents a

threshold property of the neurons. g(x3) is the output of the

CPG. The variable x3 represents the membrane potential,

and the self-inhibitory input x4 represents an adaptation or

fatigue property that ubiquitously exists in real neurons.

Neuron x3 receives an excitatory tonic input e ([0), which

induces the spontaneous firing of each neuron and an in-

hibitory input dx4 from the other neuron x4. The parameters

Tr and Ta are the time constants that determine the reaction

time of the variables x3 and x4, respectively. The linear

stability analysis is in previous studies (Lu et al. 2014).

Model between CPG and NMM with time delay

In the CPG model (Matsuoka 2011), the input x is a

membrane potential of the neuron body, and the output y is

the firing rate of the neuron. In the NMM model (Jansen

and Rit 1995; Grimbert and Faugeras 2006), the response

function h transforms the average pulse density of action

potentials into an average postsynaptic membrane poten-

tial, and the non-linear sigmoid function Sigm transforms

the average membrane potential into an average pulse

density. Synchrony in the networks of spatially distributed

neurons involves the signal transmission of time delays

The First Mode
(0 p 113)

The Second Mode
(113<p 137)

The Third Mode
(137<p 371)

The Fourth Mode
(371<p 569)

Neural Mass Model (Cerebral Cortex)
p, k p,k p,k

CPG (Gait Pattern)

k k k k

w,d,e, k

Fig. 1 Coupling relationship between NMM and CPG
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because of finite propagation speeds and axonal lengths

(Matsuoka 1985; David and Friston 2003). The new model

is based on these phenomena and constures the coupling

relationship between the CPG and the NMM with time

delay, as shown in Fig. 2.

In Fig. 2, the left and right parts show the CPG and

NMM models, respectively. In the CPG model, the vari-

ables x7 and x8 represent the membrane potential, and ye
and yf the firing rate of the neuron. The two variables x9
and x10 represent the adaptations or fatigue properties that

ubiquitously exist in real neurons. The parameters w and

d represent the strength of mutual and self-inhibition, re-

spectively. The output of the CPG model is ye–yf. In the

NMM, a single neural population is modeled by a

population of pyramidal cells that receive inhibitory and

excitatory feedback from local neurons and excitatory in-

put from far and near cortex areas with the connectivity

constants C1, C2, C3 and C4. The excitatory input is rep-

resented by an average pulse density p (Huang et al. 2011).

Considering the time delay (Adhikari et al. 2011), the CPG

output is transformed into an average postsynaptic mem-

brane potential by the function hd(t) and modulated by

constant k1. The average postsynaptic membrane potential

is then added into the NMM. By contrast, the output of the

NMM is tranformed by hd(t) and k2 and is fed back into the

CPG.

According to the state equation of the CPG (Matsuoka

1985, 2011) and NMM (Jansen and Rit 1995), the state

equation of the new model can be described by Eq. (5)

when the NMM output x2–x3 is attached to the input of the

CPG and the CPG output max(0, x7)–max(0, x8) is attached

to the input of the NMM with time delay. In Eq. (5),

ad = a/k means a latency k times than the excitatory im-

pulse response from the local neurons. Jansen and Rit

(1995) set these parameters to simulate the connection

between the prefrontal and occipital visual cortex. The two

connectivity constants, k1 and k2, attenuate the output of

one area, before it is fed back into the other. The values of

these two parameters are set as 1.

_x1 ¼ x4
_x2 ¼ x5
_x3 ¼ x6
_x4 ¼ AaSigmðx2 � x3Þ � 2ax4 � a2x1
_x5 ¼ AaC2SigmðC1x1Þ � 2ax5 � a2x2 þ Aaðpþ k1x12Þ
_x6 ¼ BbC4SigmðC3x1Þ � 2bx6 � b2x3
Tr _x7 þ x7 ¼ �dx9 � wmaxð0; x8Þ þ eþ k2x11
Tr _x8 þ x8 ¼ �dx10 � wmaxð0; x7Þ þ eþ k2x11
Ta _x9 þ x9 ¼ maxð0; x7Þ
Ta _x10 þ x10 ¼ maxð0; x8Þ
_x11 ¼ x13
_x13 ¼ AadSigmðx2 � x3Þ � 2adx13 � a2dx11
_x12 ¼ x14
_x14 ¼ Aad½maxð0; x7Þ �maxð0; x8Þ� � 2adx14 � a2dx12

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð5Þ

where SigmðvÞ ¼ 2e0
1þerðv0�vÞ. Here, e0 determines the max-

imum firing rate of the neural population, v0 the postsy-

naptic potential for which a 50 % firing rate is achieved,

and r the steepness of the sigmoidal transformation. x1, x2
and x3 are the outputs of the three postsynaptic potential

blocks, respectively. A and B determine the maximal am-

plitude of the excitatory and inhibitory postsynaptic po-

tentials, respectively. a and b are the lumped representation

of the sum of the reciprocal of the time constant of passive

Sigm C1C2

Sigm C3C4

Sigm he(t)he(t)

hi(t)

p

+
+ +

+ yx2

x3

x1

hd(t)

hd(t)

k1

k2

x8

x7x9

x10

Tr

TrTa

Ta

d

d

yfi=max(0,x7)

yei=max(0,x8)

e

w

Extensor Neuron

Flexor Neuron

+

+
+

-

e
+
+

-x12

x11

Central Pattern Generator
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+

Fig. 2 Model between NMM and CPG with time delay
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membrane and all other spatially distributed delays in the

dendritic network. x11 is the NMM output and x12 is the

CPG output with time delay.

Dynamic performance analysis

To analyze the dynamic performance of the new model, let

us consider the following four cases for system (5):

ðaÞmaxð0; x7Þ ¼ x7;maxð0; x8Þ ¼ x8: x7 [ 0; x8 [ 0

ðbÞmaxð0; x7Þ ¼ 0;maxð0; x8Þ ¼ 0: x7 � 0; x8 � 0

ðcÞmaxð0; x7Þ ¼ x7;maxð0; x8Þ ¼ 0: x7 [ 0; x8 � 0

ðdÞmaxð0; x7Þ ¼ 0;maxð0; x8Þ ¼ x8: x7 � 0; x8 [ 0

8>><
>>:

ð6Þ

Grimbert and Faugeras (2006) treated the input p as a

constant and analyzed the dynamic behavior of Jansen’s

model as a function of p. Let X = (x1, x2, x3, x4, x5, x6, x7,

x8, x9, x10, x11, x12, x13, x14)
T, then system (5) can be written

as

_X ¼ f ðX; pÞ ð7Þ

From f(X, p) = 0, the following fixed points are ob-

tained:

where x2 - x3 = y, which can be viewed as a function of

the parameter p. y1,y2,y3 and y4 can be thought of as rep-

resenting the electroencephalography (EEG) activity of the

unit in four cases and p is the parameter of interest.

To study the behavior of the system near the fixed

points, the system is linearized and calculated its Jacobian

matrix at the fixed point. The eigenvalues of J are com-

puted to analyze the stability of the family of equilibrium

points. The stability of the equilibrium point is determined

by the Jacobian matrix of system (5). The Jacobian matrix

all of whose eigenvalues have negative real parts indicates

that the equilibrium point is stable for x7 B 0, x8 B 0,

x7[ 0, x8[ 0 and x7 B 0, x8[ 0. One positive eigenvalue

exists for x7[ 0, x8 B 0, therefore, the equilibrium point in

this case is unstable.

A bifurcation is a drastic and sudden change in the behavior

of a dynamic system, which occurs when one or several of its

parameters are varied. Describing the behavior of the new

model is related to studying its bifurcations. The initial values

are set as [0.04 14.11 11.01-0.46-216.07-189.02-10.54

0.45 0.25 0.67 0.01 0.05 0.15 0.24] (Huang et al. 2011). The

fourth order Runge–Kutta method is used to solve system (5).

The bifurcation is obtained in Fig. 3, where the parameter p is

varied in the interval [-50, 400] at a step of 0.5.

Figure 3 clearly shows that the main branch changes to

two branches when p = 113. The two branches then merge

into one branch when p = 137. The system gradually be-

comes stable when p[ 371. In following Fig. 5, the three

values of parameter p are the dividing points between two

modes of the NMM.

Analyses of the parameters’ effects

Two aspects of the coupling relationship between the

NMM and the CPG are examined here. One aspect is the

effects of the NMM and the CPG when the parameter p of

the NMM and the parameter k of time delay are changed.

The other is the effects of the NMM and the CPG when the

three parameters d, e and w are varied.

Effects of CPG and NMM when parameters

p and k are changed

The standard values of these parameters are determined as

A = 3.25 mV, a = 100 s-1, B = 22 mV, b = 50 s-1,

r = 0.56 mV-1, e0 = 2.5 s-1, v0 = 6 mV, C1 = 1.25C2

= 4C3 = 4C4 = C=135 (Huang et al. 2011). NMM has

y1 ¼
A

a
C2SigmðC1SigmðC1

A

a
SigmðyÞÞÞ þ p

� �
� B

b
C4Sigm C3

A

a
SigmðyÞ

� �
: x7 [ 0; x8 [ 0

y2 ¼
A

a
C2SigmðC1SigmðC1

A

a
SigmðyÞÞÞ þ p

� �
� B

b
C4Sigm C3

A

a
SigmðyÞ

� �
: x7 � 0; x8 � 0

y3 ¼
A

a
C2SigmðC1SigmðC1

A

a
SigmðyÞÞÞ þ pþ k1A

ð1þ dÞad
k2A

ad
SigmðyÞ þ e

� �� �

�B

b
C4Sigm C3

A

a
SigmðyÞ

� �
: x7 [ 0; x8 � 0

y4 ¼
A

a
C2SigmðC1SigmðC1

A

a
SigmðyÞÞÞ þ p� k1A

ð1þ dÞad
k2A

ad
SigmðyÞ þ e

� �� �

�B

b
C4Sigm C3

A

a
SigmðyÞ

� �
: x7 � 0; x8 [ 0

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð8Þ
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four equilibrium points, as the parameter p is varied, as

shown in Fig. 4.

In Fig. 4a, the equilibrium point labeled with the red star

is defined as the first mode of the NMM. The equilibrium

point labeled with the blue star is defined as the fourth

mode, and its position is higher than the first mode. In

Fig. 4b, the spike-like epileptic activity labeled with the

red cycle is defined as the second mode. The alpha-like

activity labeled with the blue cycle is defined as the third

mode. Other parameters are set as Tr = 0.1, Ta = 1,

d = 1.6, e = 10, w = 1.1, k1 = k2 = 1, and k = 1000 (Lu

and Tian 2014; Matsuoka 2011).

The mode of the NMM changes when the parameter p is

varied (Huang et al. 2011). The corresponding relationship

between the NMM and the CPG when the parameter p is

varied is shown in Fig. 5. The first mode of the NMM

exists for p [ [0, 113]. At the same time, the CPG output is

periodic oscillation, and the phase diagram of the CPG is

the limit cycle, as shown in Fig. 5a for p = 60. The first

mode switches to the second mode for p [ (113,137], as

shown in Fig. 5b for p = 115. As the parameter

p increases, the second mode turns to the third mode, as

shown in Fig. 5c for p = 156. The third mode changes to

the fourth mode when p[ 372, as shown in Fig. 5d for

p = 431. Therefore, the four intervals [0, 113], (113, 137],

(137, 371], and (371, 569] correspond to the four modes,

respectively.

In this new model, the effects of variations in parameter

k on the CPG and NMM are discussed. The maximal

Lyapunov exponent (MLE) is used to show the chaotic

state of the NMM. The MLE describes the time asymptotic

rate of the separation of infinitesimally close trajectories. A

positive MLE is usually taken as an indication that the

system is chaotic. An MLE of zero indicates that a limit

cycle or a quasi-periodic attractor exists in the system and

that all the MLEs of a stable fixed point negative. The

parameter p is set as p = 60. At the beginning, the fourth

mode exists in the NMM, and the CPG output is constant,

as shown in Fig. 6a for k = 32. When k[ 35, the coex-

istence of the third and the fourth mode can be observed,

and the MLE is 0.012, as shown in Fig. 6b for k = 40. As

parameter k is increased, the second, third, and fourth

Fig. 3 Bifurcation diagram of

the model

Fig. 4 Four equilibrium points of NMM

428 Cogn Neurodyn (2015) 9:423–436

123



modes coexist, and the MLE is 0.011, as shown in Fig. 6c

for k = 45. When k[ 49, the coexistence of the four

modes can be observed and the MLE is 0.013, as shown in

Fig. 6d for k = 120. As parameter k is increased, the

coexistence of the first, second and third modes can be

observed, and the MLE is 0.005, as shown in Fig. 6e for

k = 165. When k = 194, the first and second modes

coexist, and the MLE is 0.002, as shown in Fig. 6f. As

parameter k is increased, the NMM gradually changes to

the first mode, as shown in Fig. 6g for k = 220. The phase

diagram of the CPG finally changes to the limit cycle, as

shown in Fig. 6h for k = 260.

In this section, the second case is discussed when

p = 115. At the beginning, the fourth mode exists in the

NMM, and the CPG output is constant, as shown in Fig. 7a

for k = 37. As parameter k is increased, the third and

fourth modes coexist, and the MLE is 0.01, as shown in

Fig. 7b for k = 50. When k[ 65, the coexistence of the

second, third and fourth modes can be observed, and the

MLE is 0.023, as shown in Fig. 7c for k = 160. When

k[ 225, the second and third modes coexist, and the MLE

is 0.038, as shown in Fig. 7d for k = 270. As parameter

k is increased, the NMM gradually changes to the second

mode, as shown in Fig. 7e for k = 400. The phase diagram

of the CPG finally changes to the limit cycle, as shown in

Fig. 7f for k = 557.

In the third case, p = 156. At the beginning, the fourth

mode exists in the NMM, and the CPG output is constant, as

shown in Fig. 8a for k = 44. As parameter k is increased, the

coexistence of the third and fourth modes can be observed,

and theMLE is 0.006, as shown in Fig. 8b for k = 90.When

k[ 290, the NMM changes to the third mode, as shown in

(a) (b)

(c) (d)

Fig. 5 Phase diagrams and output of the model. a p = 60. b p = 115. c p = 156. d p = 431
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6 Phase diagrams and output of the model with p = 60. a k = 32. b k = 40. c k = 45. d k = 120. e k = 165. f k = 194. g k = 220. h k = 260
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(a) (b)

(c) (d)

(e) (f)
Fig. 7 Phase diagrams and output of the model with p = 115. a k = 37. b k = 50. c k = 160. d k = 270. e k = 400. f k = 557
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Fig. 8c for k = 350. The phase diagram of the CPG changes

to the limit cycle, as shown in Fig. 8d for k = 820.

In the fourth case, the NMM maintains the fourth mode

as parameter k is increased. The phase diagram of the CPG

changes to the limit cycle for k = 890.

In these four cases, the CPG output is constant, and the

NMM is in the fourth mode at the beginning, which can

also be treated as its first state. As parameter k is increased,

the coexistence of many modes can be observed, and the

NMM state is chaotic because the MLE is positive. This

state is treated as the second state. When the phase diagram

of the CPG is the limit cycle, the NMM state is in a stable

mode, which can be taken as the third state. Therefore, the

changes in the parameter k of time delay lead to the

conversion of the NMM state and the CPG when the pa-

rameter p is fixed. Moreover, the switch of the NMM state

is affected by the spatial position. The trends are from high

position to low position. When the parameter k is large, the

NMM maintains one stable mode, and the phase diagram of

the CPG is the limit cycle. The state conversion then does

not exist. Moreover, the value of parameter k becomes

larger as soon as the value of parameter p becomes larger in

one interval corresponding to one stable mode of the

NMM. Taking the second NMM mode as an example, the

phase diagram of the CPG changes to the limit cycle when

p = 114 and k = 600. However, when p = 137, the value

of parameter k must be 9500 when the CPG output is a

periodic oscillation.

(a) (b)

(c) (d)

Fig. 8 Phase diagrams and output of the model. a k = 44, p = 156. b k = 90, p = 156. c k = 350, p = 156. d k = 820, p = 156
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Effects of NMM and CPG when parameters d,

e and w are varied

To analyze the effects of parameters d, e and w on the

NMM and the CPG, p is set at p = 115, which corresponds

to the second mode of the NMM. The parameter k of time

delay is set as k = 600. When d [ [0, 0.37], the output of

the CPG converges to zero, and the coexistence of the

second and third modes can be observed, as shown in

Fig. 9a for d = 0. As parameter d is increased, the phase

diagram of the CPG changes to the limit cycle, the am-

plitude of the CPG decreases, and the mode of the NMM

switches to the second one, as shown in Fig. 9b for

d = 1.6. The phase diagram of the CPG finally converges

to the zero plane, as shown in Fig. 9c for d = 200.

The effects of the parameter w are discussed in what

follows. When w [ [0, 1], the NMM is in the second mode,

and the phase diagram of the CPG is in a stable focus, as

shown in Fig. 10a for w = 1. As parameter w is increased,

the phase diagram of the CPG changes to the limit cycle, as

shown in Fig. 8b for w = 1.1. When w[ 1.9, the CPG

output converges to zero, and the coexistence of the second

and third modes of the NMM can be observed, as shown in

Fig. 10b for w = 15.6.

The effects of the parameter e are discussed in what

follows. The effects of parameter e on the NMM and the

CPG are weak for the whole interval when k = 600. To

observe the obvious effects, the parameter is set at

k = 490. When e [ [0, 0.2], the NMM is in the second

mode, and the phase diagram of the CPG is in a stable

focus, as shown in Fig. 11a for e = 0. As parameter e is

increased, the phase diagram of the CPG changes to the

limit cycle and the amplitude of the CPG output increases,

as shown in Fig. 11b for e = 800.

(a) (b)

(c)

Fig. 9 Phase diagrams and output of the model with the parameter d. a d = 0, p = 115. b d = 1.6, p = 115. c d = 200, p = 115
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From above analysis, the mode of the NMM and phase

diagram of the CPG vary as the three parameters d, e and

w are changed. Parameter d represents the strength of self-

inhibition. As parameter d is increased, the NMM changes

from a chaotic to a stable state, and the phase diagram of

the CPG switches to the limit cycle. When parameter

d increases, the phase diagram of the CPG converges to the

zero plane because of the strong inhibitory effect. Pa-

rameter w represents the strength of inhibition among

CPGs. When the value of parameter w is at an appropriate

interval, the CPG output is a periodic oscillation, and the

state of the NMM is in a stable mode. However, when the

value increases, the state of the NMM changes to be a

chaotic state. Parameter e represents the excitatory tonic

input and influences the amplitude of the CPG output.

Discussion and conclusions

Comparing with previous studies (Lu and Tian 2014; Lu

et al. 2014), the new model between the NMM and the

CPG can show the complex dynamic characters which help

us to understand the relationship between the brain and the

locomotion. The dynamic character of the new model

shows that the state of the NMM and the CPG can be

regulated by these parameters, and they have a

(a) (b)

Fig. 10 Phase diagrams and output of the model with the parameter w. a w = 1, p = 115. b w = 15.6, p = 115

(a) (b)

Fig. 11 Phase diagrams and output of the model with the parameter e. a e = 0, p = 115. b e = 800, p = 115
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corresponding relationship. Then the brain can control the

locomotor patterns through these parameters, when the

NMM is treated as the cerebral cortex and the CPG as the

locomotor patterns. Stable patterns are formed by many

interactions among the central nervous system, body seg-

ments, and the environment, and are consistent with the

dynamic behaviors in Figs. 6, 7, 8, 9, 10 and 11. Various

values of the parameters lead to changes in the state of the

CPG, which reaches the limit cycle given appropriate

values of the parameters. At the same time, the mode of the

NMM is in a stable mode, corresponding to the state of the

CPG. Some CPGs are suggested to be embedded in limbs

and composed of parameters space which corresponds to

the one of the cerebral cortex. This embodiment of humans

can reduce the burden of the brain and simplify the control

of the locomotion. This investigation is therefore beneficial

in the fields of motor neurology and motor control.

By contrast, the time delay can impair the stability of the

CPG and NMM. Reeves et al. (2011) used a simple task of

stick balancing to perform the control concepts. They showed

that the delay could impair human locomotion. Wang and Xu

(2010) used the single inverted pendulum model to demon-

strate that a person with a slow reaction can easily lose the

stability of his or her quiet standing. In the present study, with

an increase in the delay, the phase diagram of the CPG does

not maintain the limit cycle, and such effect becomes in-

creasingly strong. This result implies that a person with slow

reaction easily loses the stability of his or her locomotion.

Nassour et al. (2014) used the CPG model as the un-

derlying low-level controller of a humanoid robot to gen-

erate various walking patterns. However, there are no

effective application to realize the natural locomotion

control which shows the tight relationship between the

brain, the body, and the environment. Then the studies

which integrate the high-level regulator (brain) and low-

level controller (CPG) are deserved to investigate further.
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