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Abstract Even a single neuron may be able to produce

significant lognormal features in its firing statistics due to

noise in the charging ion current. A mathematical scheme

introduced in advanced nanotechnology is relevant for the

analysis of thismechanism in the simplest case, the integrate-

and-fire model with white noise in the charging ion current.
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In a recent review by Buzsaki and Mizuseki (2014) the

wide occurrence of lognormal-like distributions in the

structural organization parameters and the firing rate of

neurons were surveyed and their assumed functionalities

were explored. It was assumed that the lognormal distri-

bution of firing rates is the consequence of the specially

organized circuit connectivity and the high complexity of

the nervous system. Subsequently a preprint with addi-

tional study has been published by Scheler (2014).

The natural question emerges if the internal dynamics of

single neurons is already able to produce a lognormal firing

feature due to its inherent stochastic features.

At the first look, such assumption looks rather uncon-

ventional. For example, several works study stochastic

resonance with additive Gaussian noise (Bezrukov and

Vodyanoy 1995; Gingl 1995) in the membrane potential.

Due to the level-crossing properties of Gaussian noises,

such models obviously result in a distribution of firing rates

with no long-tail but exponential cutoff. Moreover, in

models with bifurcation theory (Izhikevich 2000) and sto-

chastic Hodgkin–Huxley channels (Ozer et al. 2009; Uzun

et al. 2014), interesting implications of spontaneous sto-

chasticity were found however the papers do not mention

lognormal dynamics.

Still, experimental observations of lognormal firing

statistics on lower levels of hierarchical organizations

(Hromadka et al. 2008) seem to justify the question. Below,

we present a quantitative example how the combination of

plausible statistical assumptions and the simplest neuron

model can lead to the appearance of lognormal firing rate

distribution on the level of single neurons.

One of the well-known mathematical ways that log-

normal distribution is obtained is a random walk on an

axis with logarithmic scale (geometric random walk)

resulting a growing Gaussian distribution over the axis,

which is (due to the exponential stretch) equivalent to a

lognormal distribution on the linear scale. Relevant

applications of this model are stochastic stone cracking

with fixed mean cracking fraction or its inverse process

via coagulation/aggregation of nanoparticles (Granqvist

and Buhrman 1976); both models result in lognormal

size distribution.

However, these old models cannot account for the log-

normal distribution of nanoparticle sizes at advanced vapor
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Uppsala University, P. O. Box 534, 75121 Uppsala, Sweden

A. Dér

Institute of Biophysics, Biological Research Centre of the

Hungarian Academy of Sciences, Temesvári krt. 62,
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based fabrication methods (Söderlund et al. 1998; Kiss

et al. 1999) where the growth is condensational (linear in

time) and when coagulation/aggregation is avoided. The

origin of lognormal distribution in such cases was

explained by a lognormal residence time distribution in the

growth zone (vapor zone) of nanoparticle fabrication.

Proceeding through the zone with a Brownian motion

superimposed on a constant drift velocity results in a log-

normal-like residence time distribution whenever the drift

is strong and the starting point of the zone has a reflecting

boundary (Söderlund et al. 1998; Kiss et al. 1999). The

discrete difference equation describing the progression

though the zone is given as:

xðkÞ ¼ xðk � 1Þ þ dþ fðkÞ
ffiffiffiffi

D
p

; ð1Þ

where k is discrete time (measured in computational steps);

x(k) is the position coordinate of the growing particle, d is

the drift velocity; f(k) is a random number with Gaussian

(or other fast-cut-off, such as uniform) distribution, zero

mean value, and unity variance; and D is the diffusion

coefficient, which is the mean-square of the velocity noise

resulting in the random-walk component superimposed on

the drift. When the f(k) random numbers are independent,

f(k) represents a band-limited white noise thus the resulting

random walk component is a Brownian motion.

The motion described by Eq. 1 begins at x(0) = x0 and

the first-passage time to the other end xth of the zone is a

random variable kth. When the xth B x(kth) is first satis-

fied, the growth process stops and kth is recorded thus kth is

the residence time in the growth zone, that is, time spent by

the linear growth. Here the threshold coordinate is given as

xth = x0 ? L, where L is the length of the growth zone.

The starting point x0 is a reflecting boundary, that is, the

x0 B x(k) condition is enforced during the whole motion.

The condition of strong drift means that the drift is greater

than the critical value d0:

Fig. 1 Histogram of density function (left), and cumulative distribu-

tion in log-Gaussian plot (right) of the sizes of 100 thousand

nanoparticles by condensational growth, without coagulation, due to

Brownian motion superimposed on linear drift in the growth zone

(based on (Söderlund et al. 1998; Kiss et al. 1999)). The log-Gaussian

plot is much more efficient than the histogram to follow the behavior

in the long tail and a straight line represents ideal lognormal

distribution. Drift: 16.6 times the critical drift
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Fig. 2 Histogram of density

function (left), and cumulative

distribution in log-Gaussian plot

(right) of photon burst sizes in

single molecule detection with

quantum dots (Kish and

Kameoka 2011). Even the

additional photon shot noise in

the model is unable to destroy

the lognormal characteristic.

Drift: 1.9 times the critical drift
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1\d=d0; ð2Þ

where the critical drift depends on the strength of the noise

and the length of the zone:

d0 ¼
D

L
: ð3Þ

In the case of d = d0, the noise-free drifting time through

the system is equal to mean first passage time due to the

noise at zero drift. At strong drifts (Eq. 2) the set {kth} of

residence time distribution is lognormal and, because the

particle size is a linear function of the residence time, log-

normal particle size distribution is the result, see Fig. 1.

To explain the observed lognormality in the single

protein molecule detection scheme with fluorescent quan-

tum dots, the same mathematical model was applied for

quantum-dot-marked-molecules drifting in a nanofluidic

channel through a zone exposed to a laser beam. Even the

additional photonic shot noise could not destroy the log-

normal feature in the size distribution of photon bursts

(Kish and Kameoka 2011), see Fig. 2.

There is a striking similarity between the model

described above and the integrate-and-fire model, the

simplest dynamical neuron model, if we suppose that there

is a band-limited white noise in the ion current, see Fig. 3

for its circuit representation.

Thus it is straightforward to apply the model as follows.

In the discrete-time model, the coordinate of the motion is

the membrane potential U, the drift velocity of potential is

d, and D is the mean-square of the noise in the ion current:

UðkÞ ¼ Uðk � 1Þ þ dþ fðkÞ
ffiffiffiffi

D
p

; ð4Þ

where k and f(k) are defined in the same way as in Eq. 1. In

accordance with Eqs. 2 and 3, the critical drift is given as:

d0 ¼
D

Uth � U0

; ð5Þ

where the initial potential value is U0 = U(0) and the

potential threshold of firing is Uth. The starting point U0 is

a reflecting boundary, that is, the x0 B x(k) condition is

enforced during the whole process. When the Uth B U(kth)

is first satisfied, the neuron fires, the membrane potential is

discharged and the whole charging process starts from the

beginning. The actual kth value is recorded; it is the time

interval between the former and the present firing events

Fig. 3 Circuit representation of the integrate-and-fire model: a

capacitor is charged by a current generator from the initial potential

level U0 up to the threshold potential Uth where the firing takes place

and the capacitor is discharged. In the noise-free case, the membrane

potential U(t) is drifting with d = I0/C velocity up to the firing

threshold, where I0 is the charging ion current and C is the

capacitance. The current noise DI(t), when it is a band-limited white

noise with Gaussian or other amplitude density of fast cut-off, results

in the sum of Brownian motion and a linearly drift in the membrane

potential U(t). With a reflecting boundary at the initial potential value

(or proper amplitude density of the noise to prohibit backward

propagation events) this is the same mathematical model as the one

leading to Fig. 1 (see Eqs. 1–3)

Fig. 4 Computer simulations of the integrate-and-fire model with

white noise in the ion current causing a random walk (Brownian

motion) superimposed on the linear drift of the potential. The same

random walk model with special parameters used as in getting Fig. 1.

The width and skewness of the resulting lognormal-like distribution

depend on the relative drift, which is the drift normalized to the

critical drift value. Because any power function of a lognormally

distributed random variable has also lognormal distribution, the

lognormal distribution of time intervals between firing implies a

lognormal distribution of firing frequency (in the limit when the time

spent for firing/discharging can be neglected). Drift: a 6 times and

b 24 times the critical drift
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(inter-spike interval). Here we assumed that the firing/

discharging process is negligibly short compared to the

inter-spike interval. Because Eqs. 1 and 4 and the mathe-

matical conditions are identical, in the strong drift limit

(see Eq. 2), the set {kth} has obviously lognormal distri-

bution. Furthermore, because any power function of a

lognormally distributed random variable is also lognormal,

not only the inter-spike intervals but also the firing fre-

quency will have lognormal-like distribution if the firing/

discharging process is negligibly short compared to the

inter-spike interval.

Figure 4 shows the histogram obtained by computer

simulations of the integrate-and-fire model with Eq. 4 with

U0 = -60 mV, Uth = -40 mV, and relative drifts d/
d0 = 6 and 24, respectively. Both the time and frequency

data show the familiar skewed shape.

It is open question if the additive noise in the ion current

is strong enough to yield the observed distribution of firing

frequency of single neurons. However, models and obser-

vations (Nestorovich et al. 2012) regarding the stochastic

closing and opening of ion channels indicate that the noise

can be sufficiently strong. It is also an open question and

subject of future studies how much does the distribution

deviate from lognormal in those cases when the noise

spectrum is 1/f (Bezrukov 1997; Siwy and Fulinski 2002)

instead of white and in the case of more advanced neuron

models.

Finally, we note that Longtin (Longtin 1993) studied

stochastic resonance phenomena in the time distribution of

firing events at sinusoidal excitation of the Fitzhugh–Na-

gumo neuron model. To introduce stochasticity, a white

noise term was added to the time derivative of the poten-

tial. In the case of no sinusoidal excitation, a skewed

density function (resembling lognormal) of the time inter-

vals between firing events can be seen. However, this fact

was not commented because it was considered only as the

base line of observations and the paper was focusing on the

induced periodicity and stochastic resonance at sinusoidal

driving in the presence of noise.
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