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Abstract The paper is devoted to the investigation of

synchronization for an array of linearly and diffusively

coupled inertial delayed neural networks (DNNs). By

placing feedback control on a small fraction of network

nodes, the entire coupled DNNs can be synchronized to a

common objective trajectory asymptotically. Two different

analysis methods, including matrix measure strategy and

Lyapunov–Krasovskii function approach, are employed to

provide sufficient criteria for the synchronization control

problem. Comparisons of these two techniques are given at

the end of the paper. Finally, an illustrative example is

provided to show the effectiveness of the obtained theo-

retical results.

Keywords Inertial delayed neural networks � Pinning

synchronization � Matrix measure � Lyapunov–Krasovskii

function

Introduction

Complex dynamical networks (CDNs), which are coupled

by a large collection of dynamic nodes, can emerge some

captivating phenomena, such as synchronization, consen-

sus, swarming, flocking and rendezvous. Synchronization

of CDNs is always the central topic among these collective

behaviors which has received much attention in the past

decade (Yu et al. 2013; Jeong et al. 2013; Shen and Cao

2011; Hu et al. 2014). In literature, numerous synchroni-

zation patterns have been introduced and studied, such as

complete synchronization, local synchronization, general-

ized synchronization, projective synchronization, partial

synchronization, lag synchronization and cluster synchro-

nization. We are interested in the global complete syn-

chronization in this paper. On the other hand, for general

CDNs, due to the existence of weak coupling or discon-

nected communication in the network, synchronization

phenomena cannot be achieved autonomously most of the

time. And therefore, to reach a global synchronization,

some extra controllers need to be designed and imposed on

nodes of the network. Recently, pinning control has

become a popular choice for synchronization control of

CDNs (Wang and Chen 2002; Chen et al. 2007) since such

a scheme can greatly reduce the cost of control by con-

trolling only a small fraction of the nodes instead of all the

nodes in the network.

As for neural networks, most of the previous publica-

tions mainly concentrated on stability analysis and periodic

or almost periodic attractors for different kinds of neural

networks with or without time delays (Forti and Tesi 1995;

Arik 2000; Hu et al. 2013). While authors in Chen et al.

(2004) investigated the global synchronization of linearly

and diffusively coupled identical delayed neural networks

(DNNs) by Lyapunov functional methods and Hermitian

matrix theory. Synchronization of coupled neural networks

means multiple neural networks can achieve a common

trajectory, such as a common equilibrium, limit cycle or

chaotic trajectory. Based on Lyapunov functional method
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and linear matrix inequalities (LMIs), exponential syn-

chronization was studied in Lu and Chen (2004) for

coupled connected neural networks with delays. Drive–

response synchronization of neural networks with or

without time-varying delay was considered in Cao and Lu

(2006) based on adaptive feedback control method. By

introducing the delayed coupling term, the global expo-

nential synchronization was discussed in Cao et al. (2006)

for an array of DNNs with constant and delayed cou-

plings. Furthermore, the hybrid coupling case was con-

sidered in Cao et al. (2008), where constant, discrete and

distributed-delay couplings coexist. Sufficient conditions

were derived for local synchronization of coupled DNNs

with discontinuous activation functions (Liu and Cao

2011). Based on sampled-data control, synchronization of

neural networks with time-varying delays was investi-

gated in Wu et al. (2012). Drive–response exponential

synchronization was formulated in Yang et al. (2014) for

a class of neural networks with mixed delays and dis-

continuous activations. Synchronization for coupled

memristive neural networks with time-varying delays was

considered recently (Zhang et al. 2013; Wen et al. 2013;

Wang et al. 2014). For more studies concerning syn-

chronization of neural networks, see Wu and Park (2013),

Yang et al. (2014), Fang and Park (2013) and references

cited therein.

In literature, neural network models are always descri-

bed by first-order differential equations; while inertial

electronic neural networks, which are modeled by second-

order differential equations, were introduced in Babcock

and Westervelt (1987) with small scale number of neurons,

such as one-or two-neuron models. It was found that when

the neuron coupling was of an inertial nature, the dynamics

can be more complex compared with the simpler behavior

displayed in standard resistor-capacitor variety. Further-

more, some local stability and Hopf/Bogdanov–Takens

bifurcation problems of a single delayed neuron model

with inertial terms were investigated in Li et al. (2004), Liu

et al. (2009), He et al. (2012). Most of the published

investigations concerning the inertial neural networks are

always focusing on small-scale neural networks with only

one or two neurons with/without time delays, and the

general inertial neural network coupled by multiple neu-

rons is rarely seen. Recently, the authors in Ke and Miao

(2013) considered the stability and existence of periodic

solutions for inertial bidirectional associative memory

(BAM) neural networks with time delays. Furthermore,

stability analysis was carried out in Ke and Miao (2013) for

inertial Cohen–Grossberg-type neural networks with time

delays. While in Cao and Wan (2014), the stability of an

inertial DNN was investigated by matrix measure strategies

and drive–response synchronization was considered as an

application at the end of the paper.

Pinning synchronization of coupled neural networks is

another interesting research area, which has received much

attention. Such as, based on adaptive pinning control, the

synchronization problems were investigated in Zhou et al.

(2008), Song et al. (2012) for a general weighted neural

network with coupling delay. Cluster synchronization

problem was studied in Li and Cao (2011) for an array of

coupled stochastic delayed neural networks by using pin-

ning control strategy. By pinning impulsive control,

exponential synchronization was considered in Yang et al.

(2013) for an array of linearly and diffusively coupled

reaction-diffusion neural networks with time-varying

delays. Robust synchronization problem for the coupled

neural networks with mixed delays and uncertain parame-

ters was investigated in Zheng and Cao (2014) by inter-

mittent pinning control. For more studies concerning

pinning synchronization of neural networks, we refer to Lu

et al. (2009), Wang et al. (2013), Shi et al. (2014) and

references cited therein.

Motivated by the above discussions, this paper is

intended to investigate the synchronization of coupled

inertial delayed neural networks by pinning control. To the

best of our knowledge, there are very few studies on the

synchronization problem of the coupled inertial DNNs. We

shall investigate the pinning synchronization (i.e., leader-

following synchronization) for an array of linearly and

diffusively coupled inertial delayed neural networks by

matrix measure strategy and Lyapunov functional method,

respectively. Matrix measure technique has been widely

utilized to deal with synchronization problem for complex

networks (Sun and Zhang 2004; Chen 2006; Juang and

Liang 2009) and neural networks (He and Cao 2009; Cao

and Wan 2014). It has been shown that the matrix measure

approach has several advantages, such as without needing

to construct Lyapunov function or functional, making full

use of matrix elements’ information and simple stability

criteria (Cao and Wan 2014). We will provide several

sufficient synchronization criteria for the coupled inertial

DNNs in terms of matrix measure and LMIs. Furthermore,

we conclude that the matrix measure may not be appro-

priate to deal with synchronization of large-scale coupled

network with high-dimensional node. The main contribu-

tions of this article are listed as follows: (1) leader-fol-

lowing synchronization of inertial neural networks is

considered; (2) pinning feedback control is introduced to

synchronize the coupled inertial DNNs to the objective

trajectory; (3) two different kinds of synchronization cri-

teria are provided by matrix measure and Lyapunov func-

tional methods, respectively.

The rest of this paper is structured as follows. In ‘‘Model

description and preliminaries’’ section, model description and

some preliminaries are briefly outlined. In ‘‘Main results’’

section, main theorems are given for the synchronization of
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the coupled inertial DNNs by pinning control. Illustrative

example is provided in ‘‘Illustrative example’’ section to

demonstrate the utility of the theoretical results. Finally,

conclusions are drawn in ‘‘Conclusions’’ section.

Model description and preliminaries

Notation Throughout this paper, Rn and R
n�m denote the

n-dimensional Euclidean space and the set of all real n� m

matrices, respectively. In denotes the n� n identity matrix

and diagfxgðx ¼ ½x1; . . .;xn�T 2 R
nÞ is the diagonal

matrix with diagonal entries x1–xn. Matrix A is called

Hurwitz if all the eigenvalues of A lie in the open left half-

plane. The notation P[Q, where P and Q are symmetric

matrices, means that the matrix P� Q is positive definite,

while P� 0 denotes P is a positive semidefinite matrix.

Matrices, if their dimensions are not explicitly stated, are

assumed to be compatible for the algebraic operations.

Consider an array of linearly coupled inertial DNNs

consisting of N identical nodes with the dynamics of the ith

node described by the following equation:

d2xiðtÞ
dt2

¼ �D
dxiðtÞ

dt
� CxiðtÞ þ Af ðxiðtÞÞ

þ Bf ðxiðt � sðtÞÞÞ þ IðtÞ

þ c
XN

j¼1

GijC
dxjðtÞ

dt
þ xjðtÞ

� �
; i ¼ 1; . . .;N;

ð1Þ

where xiðtÞ ¼ ðxi1ðtÞ; . . .; xinðtÞÞT 2 R
n is the state vector

of the ith neural network and D ¼ diagfd1; . . .; dng;C ¼
diagfc1; . . .; cng are constant positive definite matrices.

A ¼ ðaijÞn�n and B ¼ ðbijÞn�n denote the connection weight

matrix and the delayed connection weight matrix, respec-

tively. The nonlinear function f ðxiÞ ¼ ðf1ðxi1Þ; . . .; fnðxinÞÞT
is the activation function for the inertial neural network;

IðtÞ ¼ ðI1ðtÞ; . . .; InðtÞÞT is the external input vector. The

second derivative of xiðtÞ is called an inertial term of

system (1). The positive constant c is the network coupling

strength and C is the inner coupling matrix; G ¼ ðGijÞN�N

is the constant coupling configuration matrix defined to be

diffusive: Gij � 0ði 6¼ jÞ and Gii ¼ �
PN

j¼1;j 6¼i Gij. The

coupling matrix G is not required to be symmetric or

irreducible.

The initial conditions associated with system (1) are

given as xiðxÞ ¼ /iðxÞ 2 Cð1Þð½�s; 0�;RnÞ, i ¼ 1; . . .;N,

where Cð1Þð½�s; 0�;RnÞ denotes the set of all n-dimensional

continuous differentiable functions defined on the interval

½�s; 0� with s ¼ supt� 0fsðtÞg.

To proceed, the following assumptions, definitions and

lemmas are given.

Assumption 1 The activation function fið�Þ : R !
Rð1� i� nÞ is bounded and satisfies Lipschitz condition,

i.e., there exist constants ji and Mi such that

jfiðxÞ � fiðyÞj � jijx� yj and jfiðxÞj �Mi

hold for all x; y 2 R.

Assumption 2 The time delay sðtÞ� 0 in (1) is a bounded

and differentiable function of time t satisfying _sðtÞ� q\1

for all t� 0, where q[ 0.

Remark 1 The above Assumption 1 is used to ensure the

existence and uniqueness of the solution of inertial DNNs

(2) with Lipschitzian activation functions without assum-

ing their monotonicity or differentiability (Cao and Wan

2014).

Definition 1 The coupled inertial neural network (1) is

said to be globally asymptotically synchronizable to the

goal trajectory sðtÞ if the following discriminant relations

limt!1kxiðtÞ � sðtÞk ¼ 0; i ¼ 1; 2. . .;N;

hold for all initial functions.

Definition 2 For a matrix A 2 R
n�n, the matrix measure

is defined as follows:

lpðAÞ ¼ lime!0þ
kIn þ eAkp � 1

e
;

where k � kp is an induced matrix norm on R
n�n with

p ¼ 1; 2;1;x. The corresponding matrix norms and

measures are given as follows,

Matrix norm Matrix measure

kAk1 ¼ maxj
Pn

i¼1 jaijj l1ðAÞ ¼ maxj ajj þ
Pn

i¼1;i6¼j jaijj
n o

kAk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðATAÞ

p
l2ðAÞ ¼ 1

2
kmaxðAT þ AÞ

kAk1 ¼ maxi

Pn
j¼1 jaijj l1ðAÞ ¼ maxi aii þ

Pn
j¼1;j 6¼i jaijj

n o

kAkx ¼ maxj
Pn

i¼1
xi

xj
jaijj lxðAÞ ¼ maxj ajj þ

Pn
i¼1;i6¼j

xi

xj
jaijj

n o

where xi [ 0; i ¼ 1; 2; . . .; n are any constant numbers.

Remark 2 Note that the x-matrix measure was introduced

in Cao (2004), which is the generalization of the 1-matrix

measure l1ð�Þ. On the other hand, a simple interpretation

for matrix measure is that the measure lpðAÞ is the deriv-

ative of the norm of expðAtÞ at t ¼ 0. It is easy to see that if

lpðAÞ\0, then A is ‘‘instantaneously norm-contractive’’

and, consequently, Hurwitz stable (Bolzern et al. 2006).
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Lemma 1 (Halanay 1966) Let xð�Þ : ½t0 � s;1Þ !
½0;1Þ be a continuous function such that

DþxðtÞ� � axðtÞ þ b�xðtÞ

is satisfied for t� t0. If a[ b[ 0, then

xðtÞ� �xðt0Þe�kðt�t0Þ; t� t0

where �xðtÞ ¼ supt�s� s� txðsÞ, and k[ 0 is the unique

positive real root of the equation �aþ kþ beks ¼ 0.

Lemma 2 (Horn and Johnson 2012) For a nonsingular

matrix A 2 R
n�n, the following statements are equiv-

alent:

1. A is a nonsingular Minkovski matrix (M-matrix).

2. The off-diagonal elements of matrix A satisfy aij � 0

and A�1 exists with each entry of A�1 is nonnegative.

3. A is a positive stable matrix (all eigenvalues of matrix

A have positive real parts, i.e., RðkiðAÞÞ[ 0 for all

i ¼ 1; 2; . . .; n).
4. There exists a diagonal matrix H ¼ diagfh1; . . .; hng

[ 0 such that HAþ ATH[ 0.

Main results

In this section, we investigate the global synchronization of

the coupled inertial DNNs by pinning control, which means

that the feedback injections are only placed on a small

fraction of total network nodes and most of network nodes

are not directly controlled. The isolated node of network

(1) is given by the following inertial delayed DNN:

d2sðtÞ
dt2

¼� D
dsðtÞ

dt
� CsðtÞ þ Af ðsðtÞÞ

þ Bf ðsðt � sðtÞÞÞ þ IðtÞ;
ð2Þ

where sðtÞ ¼ ðs1ðtÞ; . . .; snðtÞÞ 2 R
n. The initial condition

for system (2) is given as sðxÞ ¼ uðxÞ 2 Cð1Þð½�s; 0�;RnÞ.
The pinning controlled network is given as follows:

d2xiðtÞ
dt2

¼ �D
dxiðtÞ

dt
� CxiðtÞ þ Af ðxiðtÞÞ

þ Bf ðxiðt � sðtÞÞÞ þ IðtÞ

þ c
XN

j¼1

GijC
dxjðtÞ

dt
þ xjðtÞ

� �

� criC
dðxiðtÞ � sðtÞÞ

dt
þ xiðtÞ � sðtÞð Þ

� �
;

ð3Þ

where i ¼ 1; . . .;N; and ri ¼ 1 if the node i is pinned,

otherwise ri ¼ 0.

By letting the synchronization error eiðtÞ ¼ xiðtÞ � sðtÞ,
one can derive the following error system:

d2eiðtÞ
dt2

¼ �D
deiðtÞ

dt
� CeiðtÞ þ AgðeiðtÞÞ þ Bgðeiðt � sðtÞÞÞ

þ c
XN

j¼1

GijC
dejðtÞ

dt
þ ejðtÞ

� �

� criC
deiðtÞ

dt
þ eiðtÞ

� �
; i ¼ 1; . . .;N;

ð4Þ

where gðeiÞ ¼ ðf1ðei1 þ s1Þ � f1ðs1Þ; . . .; fnðein þ snÞ � fn

ðsnÞÞT .

Next, by introducing the following variable transformation:

riðtÞ ¼
deiðtÞ

dt
þ eiðtÞ; i ¼ 1; . . .; n;

the error system (4) can be written as

for i ¼ 1; . . .;N, where C,C þ In � D and D,D� In; L ¼
ðlijÞN�N ¼ �G is the Laplacian matrix of the coupling

network.

By letting eðtÞ ¼ ðeT1 ; . . .; eTNÞ
T

and rðtÞ ¼ ðrT1 ; . . .; rTNÞ
T
,

together with the Kronecker product, the error system (5)

can be written as the following compact forms:

_eðtÞ ¼ �eðtÞ þ rðtÞ;
_rðtÞ ¼ �ðIN � CÞeðtÞ � ðIN � DÞrðtÞ þ ðIN � AÞgðeðtÞÞ

þ ðIN � BÞgðeðt � sðtÞÞÞ � cððLþ RÞ � CÞrðtÞ;

8
><

>:

ð6Þ

deiðtÞ
dt

¼ �eiðtÞ þ riðtÞ;

driðtÞ
dt

¼ �CeiðtÞ � DriðtÞ þ AgðeiðtÞÞ þ Bgðeiðt � sðtÞÞÞ � c
XN

j¼1

lijCrjðtÞ � criCriðtÞ;

8
>>><

>>>:
ð5Þ
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where R ¼ diagfr1; . . .; rNg is the pinning matrix and

gðeÞ ¼ ðgTðe1Þ; . . .; gTðeNÞÞT .

The coupled inertial DNNs (3) can be synchronized if

the error system (6) is globally asymptotically stable. In the

following, two different analysis methods, including matrix

measure strategy and Lyapunov–Krasovskii function

approach, are employed to provide sufficient criteria for the

globally asymptotically stable of the error system (6).

Matrix measure method

In this section, we utilize the matrix measure strategy to

derive the stability conditions for the error system. By

defining dðtÞ ¼ ðeTðtÞ; rTðtÞÞT , the augmented error system

can be obtained:

_dðtÞ ¼ HdðtÞ þ A~gðdðtÞÞ þ B~gðdðt � sðtÞÞÞ; ð7Þ

where ~gðdðtÞÞ ¼ ðgTðe1Þ; . . .; gTðeNÞ; gTðr1Þ; . . .; gTðrNÞÞT
and the coefficient matrices are

H ¼
�INn INn

�IN � C � IN � D� cðLþ RÞ � C

� �
;

A ¼
0 0

IN � A 0

� �
; B ¼

0 0

IN � B 0

� �
:

Theorem 1 Under Assumptions 1 and 2, if there exists a

kind of matrix measure lpð�Þðp ¼ 1; 2;1;xÞ such that

�lpðHÞ � �jkAkp [ �jkBkp [ 0; ð8Þ

where �j ¼ max1� i� nfjig is the maximal lipschitz con-

stant, then the pinning controlled coupled inertial DNNs (3)

is globally exponentially synchronization.

Proof According to the error system (7), the upper-right

Dini derivative of kdðtÞkp with respect to t along the

solution of (7) is as follows:

By inequality (8) and Lemma 1, one can derive

kdðtÞkp � �dðt0Þe�kðt�t0Þ; t� t0;

where k[ 0 is the unique positive real root of the equation

�lpðHÞ � �jkAkp þ kþ �jkBeks ¼ 0.

Therefore, dðtÞ converges exponentially to zero with a

convergence rate k, that is, the globally synchronization is

achieved. This completes the proof. h

Noting that the synchronization condition (8) in Theo-

rem 1 is based on the maximal lipschitz constant �j. The

following Theorem 2 gives a more detailed synchroniza-

tion criterion which utilizes the information of each lips-

chitz constant ji. To derive the main result, the following

lemma is needed, stated as follows,

Lemma 3 (He and Cao 2009) Under Assumption 1, let

lpð�Þ be the corresponding matrix measure associated with

the induced matrix norm k � kp on R
n�n. Then lpðAG

ðeðtÞÞÞ� lpðAFÞ, where GðeðtÞÞ ¼ diag
g1ðe1ðtÞÞ
e1ðtÞ ; . . .;

�

gnðenðtÞÞ
enðtÞ Þ, F ¼ diagðj1; . . .; jnÞ, p ¼ 1;1;x, and

�A ¼ ð�aijÞn�n ¼
maxf0; aiig; i ¼ j;

aij; i 6¼ j:

�

Theorem 2 Under Assumptions 1 and 2, if there exists a

matrix measure lpð�Þðp ¼ 1;1;xÞ such that

�lpðHÞ � lpð �AFÞ[ �jkIN � Bkp [ 0; ð9Þ

where F ¼ diagðj1; . . .; jn; . . .; j1; . . .; jn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N

; 1; . . .; 1|fflfflffl{zfflfflffl}
N	n

Þ, �j ¼

max1� i� nfjig, then the pinning controlled coupled inertial

DNNs (3) is globally exponentially synchronization.

Proof Under a simple transformation, the error system (6)

is equivalent to the error system (10):

_dðtÞ ¼ H þAGðeðtÞÞð ÞdðtÞ þ B~gðdðt � sðtÞÞÞ; ð10Þ

DþkdðtÞkp ¼ limh!0þ
kdðt þ hÞkp � kdðtÞkp

h
¼ limh!0þ

kdðtÞ þ h _dðtÞ þ oðhÞkp � kdðtÞkp
h

� limh!0þ
kdðtÞ þ hHdðtÞ þ hA~gðdðtÞÞ þ hB~gðdðt � sðtÞÞÞkp � kdðtÞkp

h

� limh!0þ
kI2Nn þ hHkp � 1

h
kdðtÞkp þ kA~gðdðtÞÞkp þ kB~gðdðt � sðtÞÞÞkp

� lpðHÞkdðtÞkp þ �jkAkp � kdðtÞkp þ �jkBkp � kdðt � sðtÞÞkp
¼ lpðHÞ þ �jkAkp
� 


kdðtÞkp þ �jkBkpk
� 


supt�s� s� tkdðsÞkp:
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where GðeðtÞÞ ¼ diagf ~GðeðtÞÞ; INng with ~GðeðtÞÞ ¼ diag

f ~G1ðe1Þ; ~G2ðe2Þ; . . .; ~GNðeNÞg, and ~GiðeiÞ ¼ diagfgðei1Þ
ei1

;
gðei2Þ
ei2

; . . .; gðeinÞ
ein

gð1� i�NÞ.
The upper-right Dini derivative of kdðtÞkp with respect

to t along the solution of (10) is as follows:

If the inequality �lpðHÞ � lpð �AFÞ[ �jkBkp [ 0 holds,

then by Lemma 1, one can derive

kdðtÞkp � �dðt0Þe�kðt�t0Þ; t� t0;

where k[ 0 is the unique positive real root of the equation

�lpðHÞ � lpð �AFÞ þ kþ �jkBkpeks ¼ 0.

Therefore, dðtÞ converges exponentially to zero with a

convergence rate k, that is, the globally synchronization is

achieved. This completes the proof. h

Lyapunov–Krasovskii method

In the pinning controlled coupled network (3), a pinned

node can access objective information of the isolated

node (2). That is, there is a directed link from the isolated

node to the pinned node. If the objective trajectory sðtÞ is

labeled as the dynamic of the node 0, then a new network

appears. We use the union of the network G and the node

f0g (i.e., ~G,G [ f0g) to denote the pinning joint com-

munication topology (Hu et al. (2014)). The Laplacian

matrix of ~G is

~L ¼
0 01�N

r Lþ R

� �
;

in which r ¼ ½r1; . . .; rN �T and R ¼ diagfrg is the pinning

matrix. Before proposing the main results, we need the

following lemma.

Lemma 4 (Song et al. 2012) The matrix Lþ R is a

nonsingular M-matrix if and only if the pinning joint

communication topology ~G has a directed spanning tree.

Based on the pinning control, if the pinning joint commu-

nication topology ~G has a directed spanning tree, then matrix

Lþ R is a nonsingular M-matrix. By Lemma 2, there exists a

positive diagonal matrix H ¼ diagfh1; . . .; hNg such that

HðLþ RÞ þ ðLT þ RÞH[ 0.

Theorem 3 Under Assumptions 1 and 2, and the pinning

joint communication topology has a directed spanning tree,

then the coupled inertial neural network (1) is globally

asymptotically synchronization if there exists a positive

definite matrix P such that

U ¼ �IN � Pþ 1

2
þ g

� �
ðH� ~FÞ IN � P�H� C

	 Q

2

4

3

5\0;

ð11Þ

where g[ 1
2ð1�qÞ is a positive constant and

~F ¼ diagfj2
1; . . .; j

2
ng; and Q ¼ �H� DþH� AATþBBT

2

�c HðLþ RÞ þ ðLT þ RÞHð Þ � C.

Proof To prove the result, one just need to show that the

error system (6) is globally asymptotically stable. Consider

the following Lyapunov–Krasovskii functional candidate

for system (6)

VðtÞ ¼ 1

2
eTðtÞðIN � PÞeðtÞ þ g

Z t

t�sðtÞ
eTðsÞðH� ~FÞeðsÞds

þ 1

2
rTðtÞðH� InÞrðtÞ: ð12Þ

Calculating the time derivative of VðtÞ along the trajecto-

ries of system (6), one can obtain

_VðtÞ ¼ eTðtÞðIN �PÞ �eðtÞþ rðtÞð Þþ geTðtÞðH� ~FÞeðtÞ
� gð1�qÞeTðt� sðtÞÞðH� ~FÞeðt� sðtÞÞ
� rTðtÞðH�CÞeðtÞ� rTðtÞðH�DÞrðtÞ
þ rTðtÞðH�AÞgðeðtÞÞþ rTðtÞðH�BÞgðeðt� sðtÞÞÞ
� crTðtÞ HðLþRÞþ ðLT þRÞH

� �
�C

� �
rðtÞ:

It follows from Assumption 1 that

DþkdðtÞkp ¼ limh!0þ
kdðt þ hÞkp � kdðtÞkp

h
¼ limh!0þ

kdðtÞ þ h _dðtÞ þ oðhÞkp � kdðtÞkp
h

� limh!0þ
kdðtÞ þ h HþAGðeðtÞÞð ÞdðtÞ þ B~gðdðt � sðtÞÞÞkp � kdðtÞkp

h

� limh!0þ
kIn þ h HþAGðeðtÞÞð Þkp � 1

h
kdðtÞkp þ kB~gðdðt � sðtÞÞÞkp

� lp HþAGðeðtÞÞð ÞkdðtÞkp þ �jkBkp � kdðt � sðtÞÞkp
� lpðHÞ þ lpð �AFÞ
� �

kdðtÞkp þ �jkBkp
� 


supt�s� s� tkdðsÞkp:
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rTðtÞðH� AÞgðeðtÞÞ ¼
XN

i¼1

hir
T
i AgiðeiÞ

�
XN

i¼1

hi
2
rTi AA

Tri þ
hi
2
gTðeiÞgðeiÞ

� �

�
XN

i¼1

hi
2
rTi AA

Tri þ
hi
2

Xn

j¼1

j2
j e

T
ijeij

 !

¼
XN

i¼1

hi
2
rTi AA

Tri þ
hi
2
eTi

~Fei

� �

�
XN

i¼1

hi
2
rTi AA

Tri þ
hi
2
eTi

~Fei

� �

� 1

2
rTðH� AATÞr þ 1

2
eT H� ~F
� �

e;

ð13Þ

and

rTðtÞðH� BÞgðeðt � sðtÞÞÞ ¼
XN

i¼1

hir
T
i Bgiðeiðt � sðtÞÞÞ

�
XN

i¼1

hi
2
rTi BB

Tri þ
hi
2
eTi ðt � sðtÞÞ ~Feiðt � sðtÞÞ

� �

� 1

2
rTðH� BBTÞr þ 1

2
eTðt � sðtÞÞðH� ~FÞeðt � sðtÞÞ:

ð14Þ

Combining inequalities (13) and (14), we have

_VðtÞ� � eTðtÞðIN � PÞeðtÞ þ eTðtÞðIN � PÞrðtÞ
þ geTðtÞðH� ~FÞeðtÞ
� gð1 � qÞeTðt � sðtÞÞðH� ~FÞeðt � sðtÞÞ
� rTðtÞðH� CÞeðtÞ � rTðtÞðH� DÞrðtÞ

þ 1

2
eTðtÞðH� ~FÞeðtÞ þ 1

2
rTðtÞ

� H� ðAAT þ BBTÞ
� �

rðtÞ þ 1

2
eTðt � sðtÞÞ

� ðH� ~FÞeðt � sðtÞÞ � crTðtÞ
� HðLþ RÞ þ ðLT þ RÞH
� �

� C
� �

rðtÞ

� � eTðtÞ ðIN � PÞ þ ð1
2
þ gÞðH� ~FÞ

� �
eðtÞ

þ eTðtÞ ðIN � PÞ � ðH� CÞð ÞrðtÞ

� rTðtÞ H� Dþ 1

2
H� ðAAT þ BBTÞ

�

� HðLþ RÞ þ ðLT þ RÞH
� �

� CÞrðtÞ
�wTðtÞUwðtÞ;

where wðtÞ ¼ ½eTðtÞ; rTðtÞ�T . Thus, by LMI (11), we have
_VðtÞ\0 for wðtÞ 6¼ 0, which indicates that limt!1eðtÞ ¼ 0

and limt!1rðtÞ ¼ 0. Therefore, the pinning controlled

network (3) can be globally asymptotically synchronized to

the objective trajectory. h

Remark 3 In fact, in order to make U\0, the matrix Q

needs to satisfy Q\0. Furthermore, if D\0, then Q\0

indicates that HðLþ RÞ þ ðLT þ RÞH[ 0 is necessary.

On the other hand, by checking the negative definite of Q,

one can derive the lower bound for the coupling strength c.

Illustrative example

In this section, one illustrative example is presented to

demonstrate the effectiveness of the obtained theoretical

results. Consider the following coupling inertial DNNs

with six nodes:

d2xiðtÞ
dt2

¼ �D
dxiðtÞ

dt
� CxiðtÞ þ Af ðxiðtÞÞ þ Bf ðxiðt � sðtÞÞÞ

þ IðtÞ þ c
X6

j¼1

GijC
dxjðtÞ

dt
þ xjðtÞ

� �
;

i ¼ 1; . . .; 6; ð15Þ

where xiðtÞ ¼ ðxi1ðtÞ; xi2ðtÞÞT , f ðxiðtÞÞ ¼ 0:5 sinðxi1ðtÞÞ;ð
0:5 cosðxi2ðtÞÞÞT , IðtÞ ¼ ð0:8; 0:4ÞT ; 1� i� 6 and the time

delay sðtÞ ¼ 0:15et=ð1 þ etÞ. So it is easy to get ji ¼ 0:5,

s ¼ 0:15 and q ¼ 0:0375. The inner coupling matrix C in

(15) is given with C ¼ diagf6; 4g and the coefficient

matrices are given as

D ¼
0:4 0

0 0:3

� �
; C ¼

1:2 0

0 0:4

� �
;

A ¼
0:2 � 0:6

0:5 0:3

� �
; B ¼

0:3 � 0:3

�0:2 0:5

� �
:

The coupling matrix G is determined by the directed

topology given in Fig. 1 with Gij ¼ 0; 1ði 6¼ jÞ. Let the

initial state of the objective system be ~/ ¼ ½2;�2�T on the

interval ½�0:15; 0� and initial functions for system (15)

are chosen randomly. We use the quantity EðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=6Þ

P6
i¼1 e

T
i ðtÞeiðtÞ

q
to measure the quality of the syn-

chronization process. By setting the pinning node set V ¼
f3; 4g (see Fig. 1). The objective trajectory of the pinning

controlled system (1) is shown in Fig. 2.

Fig. 1 The coupling communication topology G
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By checking the inequality (8) in Theorem 1, it is easy

to compute when p ¼ 2 and c ¼ 3:5, l2ðHÞ ¼ �0:6824,

kAk2 ¼ 0:6749 and kBk2 ¼ 0:6724[ 0, which follows

that �l2ðHÞ � �jkAk2 � �jkBk2 ¼ 0:0088[ 0. Based on

the conclusion in Theorem 1, the coupled inertial DNNs

can be exponentially synchronized. The synchronization

state trajectories xiðtÞ; i ¼ 1; 2; . . .; 6 and synchronization

error EðtÞ are given in Figs. 3 and 4.

Under the pinning node set V ¼ f3; 4g, one can derive

that h ¼ diagf0:6935; 0:3853; 0:9708; 0:4258; 0:3281;

0:5997g. By setting g ¼ 0:5205 and the coupling strength

c ¼ 1:2, it is easy to check the LMI (11) in Theorem 3 has

a positive definite solution, which ensures that the whole

coupled neural network system (15) can be synchronized to

the given goal trajectory asymptotically. The state

trajectories and the synchronization error of (15) are given

in Figs. 5 and 6.

Remark 4 Matrix measure strategy is an efficient tool to

address the stability problem of nonlinear systems. Usually,

the established results by using matrix measure are more

general than common algebraic criterion due to the fact

that matrix measure can be not only taken positive value

but also negative value. However, in the synchronization

problem for the coupled network, the augmented coeffi-

cient matrices of the close-loop controlled system are

always high-dimension sparse matrices, which make the

verification of the corresponding matrix measure become

difficult. On the contrary, the derived condition in the form

of LMIs may be more easier to be satisfied with a relatively

small coupling strength.

Fig. 2 Objective state trajectory sðtÞ in system (2)

Fig. 3 State trajectories xiðtÞ in system (15)

Fig. 4 Synchronization error EðtÞ

Fig. 5 State trajectories xiðtÞ in system (15)
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Remark 5 It is difficult to check the inequality (9) in

Theorem 2 for p ¼ 1;1;x under the parameter settings in

this example. From the verification conditions in Theo-

rems 1 and 3, one can find that Lyapunov functional

method is better than the matrix measure strategy in terms

of easy verification for the established criteria when deal-

ing with coupled networks, which suggests that matrix

measure strategies are not always better than the classical

Lyapunov functional methods.

Conclusions

In this paper, the synchronization control problem has been

investigated for coupled inertial DNNs by pinning feed-

back control. Firstly, matrix measure strategies are utilized

to analyze the close-loop error system, under which two

sufficient criteria have been established such that the

exponential synchronization can be achieved. Furthermore,

based on the Lyapunov–Krasovskii method, another suffi-

cient condition has been derived for the asymptotically

synchronization for the coupled inertial DNNs. It has been

shown that the Lyapunov functional method is more

appropriate to deal with the synchronization problem for

large-scale coupled CDNs compared with matrix measure

strategy.
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