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Abstract The global asymptotic stability of impulsive

stochastic Cohen–Grossberg neural networks with mixed

delays and reaction–diffusion terms is investigated. Under

some suitable assumptions and using Lyapunov–Krasov-

skii functional method, we apply the linear matrix

inequality technique to propose some new sufficient con-

ditions for the global asymptotic stability of the addressed

model in the stochastic sense. The mixed time delays

comprise both the time-varying and continuously distrib-

uted delays. The effectiveness of the theoretical result is

illustrated by a numerical example.

Keywords Stochastic Cohen–Grossberg neural network �
Global asymptotic stability � Mixed delays � Reaction–
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Introduction

Cohen–Grossberg neural network (CGNN) was first intro-

duced by Cohen and Grossberg (1983). In recent years,

CGNN, which includes the famous Hopfield neural

networks, cellular neural networks and Lotka–Volterra

competition models as its special cases, has received

extensive attention because of great range of applications

in many areas such as optimization, pattern recognition,

associative memory, robotics and computer vision. In such

application, it is of prime importance to ensure that the

designed neural networks is stable (Zhang and Wang 2008;

Yang and Cao 2014; Qi et al. 2014; Yang et al. 2014; Li

and Xu 2012; Zhou et al. 2007; Li and Song 2008, 2013; Li

and Shen 2010; Li et al. 2010).

In implementation of neural networks, time delays are

unavoidable due to the finite switching speed of neurons

and amplifiers. It has been found that the existence of time

delays may lead to instability and oscillation in a neural

network (Wang et al. 2006; Li 2010; Pan and Zhong 2010;

Zhang et al. 2011; Zhang and Luo 2012; Qiu 2007; Liu

et al. 2011; Yang et al. 2010; Li and Li 2009). For example,

Wang et al. (2006) considered the asymptotic stability of

stochastic CGNNs with mixed time delays by using

Lyapunov–Krasovskii functional and LMI technology.

In practice, a real system is usually affected by external

perturbations which in many cases are of great uncertainty.

Hence, it is necessary to consider the stochastic effects to

the stability property of the neural networks. On the other

hand, as we have known, artificial neural networks often

are subject to impulsive perturbations which can affect

dynamical behaviors of the systems. Moreover, those per-

turbations often may make stable systems unstable or

unstable systems stable. Therefore, impulsive effects

should also be taken into account (Li et al. 2011; Fu and Li

2011; Li and Xu 2012; Wang and Xu 2009; Zhang et al.

2012; Hespanha et al. 2008; Wan and Zhou 2008; Li and Li

2009). Fu and Li (2011) investigated the asymptotic sta-

bility of impulsive stochastic CGNNs with mixed time

delays by using Lyapunov–Krasovskii functional and LMI

technology.

J. Tan � C. Li (&)

College of Electronic and Information Engineering, Southwest

University, Chongqing 400715, China

e-mail: licd@cqu.edu.cn

J. Tan

College of Mathematics and Physics, Chongqing University of

Science and Technology, Chongqing 401331, China

T. Huang

Texas A&M University at Qatar, Doha, Qatar

123

Cogn Neurodyn (2015) 9:213–220

DOI 10.1007/s11571-014-9316-y



However, diffusion effects cannot be avoided in the

network when electrons are moving in asymmetric elec-

tromagnetic fields. Hence, it is essential to consider the

state variables are varying with the time and space vari-

ables. Some criteria on global exponential stability have

been obtained in recent years (Wan and Zhou 2008; Li and

Li 2009; Wang and Zhang 2010; Li et al. 2012; Pan et al.

2010; Zhu et al. 2011; Zhou et al. 2012). Wan and Zhou

(2008) investigated the exponential stability of stochastic

reaction–diffusion CGNNs with delays. Li and Li (2009)

and Wang and Zhang (2010) investigated the asymptotic

stability of impulsive CGNNs with distributed delays and

reaction–diffusion by using M-matrix theory and LMI

technology. Li et al. (2012) investigated the mean square

exponential stability of impulsive stochastic reaction–dif-

fusion CGNNs with delays. But in their deduction and

results the diffusion term does not have any effect.

It is known in the theory of partial differential equations

Poincare integral inequality is often used in the deduction

of diffusion. Pan et al. (2010), Zhu et al. (2011) and Zhou

et al. (2012) studied reaction–diffusion neural networks

with Neumann boundary conditions by using Poincare

integral inequality.

Motivated by the above discussions, our objective in this

paper is to investigated the asymptotic stablity in the mean

square of impulsive stochastic CGNNs with mixed delays and

Reaction–diffusion terms. By using Lyapunov–Krasovskii

functional method, LMI technique (Boyd et al. 1994) and Po-

incaré inequality, some results are obtained in terms of LMI,

which can be easily calculated by MATLAB LMI toolbox.

The rest of the paper is organized as follows. In second

section, we introduce the model and some preliminaries.

In third section, we give two main results and their proof.

And then we give a numerical example to show the

effectiveness of the obtained results in forth section.

Finally, we conclude our results.

Problem statement and preliminaries

In this paper, we will use the notation A[ 0 or A\0 to

denote that the matrix A is a symmetric and positive

definite or negative definite matrix. The notation AT and

A�1 mean the transpose of A and the inverse of a square

matrix. If A and B are symmetric matrices, A[B means

that A�B is positive definite matrix. I denotes the

identity matrix. Moreover, the notation � always denotes

the symmetric block in one symmetric matrix.

Consider the following impulsive stochastic CGNNs

with mixed delays and reaction–diffusion terms

dyiðt;xÞ¼
Xm

k¼1

o

oxk

wik

oyiðt;xÞ
oxk

� �
dt�aiðyiðt;xÞÞ

� biðyiðt;xÞÞ�
Xn

j¼1

cijfjðyjðt;xÞÞ
"

�
Xn

j¼1

dijgjðyjðt�sðtÞ;xÞÞ

�
Xn

j¼1

�dij

Z t

t�lðtÞ
�gjðyjðs;xÞÞds

�
Xn

j¼1

~dij

Z t

�1
kjðt� sÞ~gjðyjðs;xÞÞds

#
dt

þ
Xn

j¼1

rijðt;yðt;xÞ;yðt�sðtÞ;xÞÞdwjðtÞ; t 6¼ tk;

yiðtk;xÞ¼ yiðt�k ;xÞþJikðyiðt�k ;xÞÞ; t¼ tk; x2X; k2Z;

ð1Þ

where i 2 N ¼ f1; 2; . . .; ng, corresponds to the number of

units in a neural network; x ¼ ðx1; . . .; xmÞT 2 X, X is a

compact set with smooth boundary oX and mesX [ 0 in

space Rm, where mesX is the measure of the set X; yiðt; xÞ
represents the state of the ith neuron at time t and in space

x; aiðyiðt; xÞÞ presents an amplification function; fj; gj; �gj; ~gj

denote the activation functions of the jth neuron at time t in

space x; cij; dij; �dij; ~dij denote the connection strengths of the

jth unit on the ith unit, respectively; sðtÞ corresponds to the

transmission delay and satisfies 0� sðtÞ� s, _sðtÞ� q\1;

and 0� lðtÞ� l, s; l are some real constants. xðtÞ ¼
ðx1ðtÞ; . . .;xnðtÞÞ is n�dimensional Brownian motion

defined on a complete probability space ðX;F;PÞ with a

natural filtration fFgt� 0 generated by fxðsÞ : 0� s� tg,
where we associate X with the canonical space generated

by xðtÞ, and denote by F the associated r-algebra gen-

erated by xðtÞ with the probability measure P. wik � 0 is

Fig. 1 Time-space responses of the states y1ðt; xÞ (left) and y2ðt; xÞ
(right)
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diffusion coefficient that corresponds to the transmission

diffusion coefficient along the ith neuron.

The Neumann boundary condition and initial conditions

of system (1) are given by

oyiðt; xÞ
om

:¼ 0; ðt; xÞ 2 ½0;þ1Þ � oX;

yiðt0 þ s; xÞ ¼ uiðs; xÞ; ðs; xÞ 2 ½�1; 0Þ � oX:

8
<

: ð2Þ

Throughout this paper, we make the following

assumptions:

(H1) Each function aiðuÞ is bounded, positive and

continuous, i.e., there exist constants ai; ai, such that

0\ai� aiðuÞ� ai, for u 2 R; i 2 N.

(H2)
biðs1Þ � biðs2Þ

s1 � s2

� bi [ 0; for all i 2 N and

s1; s2 2 Rðs1 6¼ s2Þ.
(H3) fj; gj; �gj; ~gj are Lipschitz continuous with Lipschitz

constant Fj; Lj; �Lj; ~Lj, respectively, for j 2 N.

(H4) The delay kernel kjð�Þ : ½0;þ1Þ ! ½0;þ1Þ; j 2 N

are real-valued nonnegative continuous functions that

satisfy
Rþ1

0
kjðsÞds ¼ 1;

(H5) The diffusion coefficient rð�Þ ¼ ðrijÞ is local

Lipschitz continuous and satisfies the linear growth

condition. Moreover, there exist n� n dimension matrix

Cj [ 0; j ¼ 0; 1; . . .; n such that

trace½rTr� � yTðt; xÞC1yðt; xÞ þ yTðt � sðtÞ; xÞ
C2yðt � sðtÞ; xÞ:

(H6) The impulsive times tk satisfy 0\t0\t1\ � � �
\tk\tkþ1\ � � � ; limk!1 tk ¼ 1.

(H7) bið0Þ ¼ fjð0Þ ¼ gjð0Þ ¼ �gjð0Þ ¼ ~gjð0Þ ¼ 0, rð0; 0;
0Þ ¼ 0.

Let L2ðXÞ be the space of scalar value Lebesgue measur-

able function on X and be a Banach space for the L2-norm

kvk2 ¼
Z

X

jvj2dx

� �1
2

; v 2 L2ðXÞ:

Then for any u ¼ ðu1; u2; . . .; unÞT , the norm kuk is defined

as

kuk ¼
Xn

i¼1

kuik2
2

 !1
2

Definition 2.1 The trivial solution of model (1) is said to

be globally stochastically asymptotic stable in the mean

square if the following condition holds for any initial

condition u 2 C2
F:

lim
t!þ1

Ekxk2 ¼ 0

Lemma 2.2 (Poincaré Integral Inequality, Temam 1998)

Let X 	 Rmðm [ 2Þ be abounded open set containing the

origin. vðxÞ 2 H1
0ðXÞ ¼ fxjxjoX ¼ 0;x 2 L2ðXÞ;Dix ¼

ox
oxi
2 L2ðXÞ; 1� i�mg and

ovðxÞ
om
joX¼ 0. Then

Z

X
jvðxÞj2dx� 1

k1

Z

X
jrvðxÞj2dx

where k1 is the smallest positive eigenvalue of the Neu-

mann boundary problem

�DwðxÞ ¼ kwðxÞ; x 2 X

ovðxÞ
om
joX¼ 0; x 2 oX

8
<

: ð3Þ

Lemma 2.3 (Schur complement, Boyd et al. 1994) For a

given matrix

S ¼
S11 S12

S21 S22

� �
[ 0

where ST
11 ¼ S11; S

T
22 ¼ S22, is equivalent to any one of the

following conditions:

1. S22 [ 0; S11 � S12S�1
22 ST

12 [ 0;

2. S11 [ 0; S22 � ST
12S�1

11 S12 [ 0;

Lemma 2.4 For any constant matrix D 2 Rn�n;D ¼
DT ,scalar a and b with a\b,vector function dðtÞ : ½a; b� !
Rn,such that the integrations concerned are well defined,

then

Z b

a

dðsÞds

� �T

D
Z b

a

dðsÞds

� �
�ðb� aÞ

Z b

a

dTðsÞDdðsÞds

Lemma 2.5 For any n-dimensional real vectors

x; y; e [ 0 and positive definite matrix P 2 Rn�n, the fol-

lowing matrix inequality hold.

0 0.5 1 1.5 2 2.5 3
−10

−5

0

5

10

15

t

y
1

y
2

Fig. 2 Time responses curves of y1ðt; xÞ and y2ðt; xÞ when W ¼ 0
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2xT y� e�1xT Pxþ eyT P�1y:

Main results

Theorem 3.1 If assumptions (H1)–(H7) hold, and there

exist diagonal matrix P [ 0;H [ 0 and symmetric matrices

Q;R [ 0, such that the following matrix inequalities hold:

(a)

NH ¼

R PAC þ F PAD PA �D PA ~D

� �I 0 0 0

� � �Q 0 0

� � � �R 0

�� � � �H

0
BBBBBB@

1
CCCCCCA

\0

ð4Þ

where k1 is the smallest positive eigenvalue of the

Neumann boundary problem (2),

R ¼ �2k1PW � 2PABþ k2C1 þ
k2

1� q
C2

þ 1

1� q
LT QLþ l2 �LT R�Lþ ~LT H ~L;

k2 ¼ kmaxðPÞ;A ¼ diagfa1; a2; . . .; ang;A
¼ diagfa1; a2; . . .; ang;

W ¼ diagfw1;w2; . . .;wng;wi ¼ min1� k�mfwikg;
C ¼ ðcijÞn�n;

D ¼ ðdijÞn�n;
�D ¼ ð�dijÞn�n;

~D ¼ ð~dijÞn�n:

(b) Jikðyiðt�k ; xÞÞ ¼ �rikyiðt�k ; xÞ, and rik 2 ½0; 2�. Then the

equilibrium point of system (1) is globally stochasti-

cally asymptotically stable in the mean square.

Proof Construct the following Lyapunov–Krasovskii

functional:
Vðt; yðt; xÞÞ ¼ V1 þ V2 þ V3 þ V4 þ V5

where

V1 ¼
Z

X
yTðt; xÞPyðt; xÞdx

V2 ¼
k2

1� q

Z

X

Z t

t�sðtÞ
yTðs; xÞC2yðs; xÞdsdx

V3 ¼
1

1� q

Z

X

Z t

t�sðtÞ
gTðyðs; xÞÞQgðyðs; xÞÞdsdx

V4 ¼ l
Z

X

Z 0

�l

Z t

tþh
�gTðyðs; xÞÞR�gðyðs; xÞÞdsdhdx

V5 ¼
Z

X

Xn

j¼1

hi

Z 1

0

kjðhÞ
Z t

t�h
~g2

j ðyjðs; xÞÞdsdhdx

yðt; xÞ ¼ ðy1ðt; xÞ; y2ðt; xÞ; . . .; ynðt; xÞÞT ; H ¼ diagðh1; h2; . . .; hnÞ

Then, we shall compute LV1;LV2;LV3;LV4;LV5

along the trajectories of the model (1), respectively.

LV1 ¼ 2

Z

X
yTðt; xÞP o

ot
yðt; xÞdx

¼ 2

Z

X

Xn

i¼1

piyiðt; xÞ
Xm

k¼1

o

oxk

wik

oyiðt; xÞ
oxk

� �(

� aiðyiðt; xÞÞ biðyiðt; xÞÞ½ :

�
Xn

j¼1

cijfjðyjðt; xÞÞ �
Xn

j¼1

dijgjðyjðt � sjðtÞ; xÞÞ

�
Xn

j¼1

�dij

Z t

t�lðtÞ
�gjðyjðs; xÞÞds

�
Xn

j¼1

~dij

Z t

�1
kjðt � sÞ~gjðyjðs; xÞÞds

#)
dx

þ
Z

X
trace½rT Pr�dx

ð5Þ

LV2 ¼
k2

1� q

Z

X

�
yTðt; xÞC2yðt; xÞ � ð1� _sðtÞÞyT

ðt � sðtÞ; xÞC2yðt � sðtÞ; xÞ
�

dx

� k2

1� q

Z

X

�
yTðt; xÞC2yðt; xÞ � ð1� qÞyT

ðt � sðtÞ; xÞC2yðt � sðtÞ; xÞ
�

dx

� k2

1� q

Z

X
yTðt; xÞC2yðt; xÞdx

� k2

Z

X
yTðt � sðtÞ; xÞC2yðt � sðtÞ; xÞdx

ð6Þ

LV3 ¼
1

1� q

Z

X

�
gTðyðt; xÞÞQgðyðt; xÞÞ � ð1� _sðtÞÞgT

ðyðt � sðtÞ; xÞÞQgðyðt � sðtÞ; xÞÞ
�

dx

� 1

1� q

Z

X

�
gTðyðt; xÞÞQgðyðt; xÞÞ � ð1� qÞgT

ðyðt � sðtÞ; xÞÞQgðyðt � sðtÞ; xÞÞ
�

dx

� 1

1� q

Z

X
yTðt; xÞLT QLyðt; xÞdx

�
Z

X
gTðyðt � sðtÞ; xÞÞQgðyðt � sðtÞ; xÞÞdx

ð7Þ

From Lemma 2.4 and the fact that 0� lðtÞ� l, we get
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LV4¼
Z

X

�
l2 �gTðyðt;xÞÞR�gðyðt;xÞÞdx

�l
Z t

t�l
�gTðyðs;xÞÞR�gðyðs;xÞÞds

�
dx

�
Z

X
l2yTðt;xÞ�LT R�Lyðt;xÞdx
�

�
Z t

t�l
�gðyðs;xÞÞds

� �T

R

Z t

t�l
�gðyðs;xÞÞds

� �
�dx ð8Þ

By well-known Cauchy–Schwarz inequality, we know

LV5¼
Z

X

Xn

j¼1

hj

Z 1

0

kjðhÞ ~gj
2ðyjðt;xÞÞdh

"

�
Z

X

Xn

j¼1

hj

Z 1

0

kjðhÞ ~gj
2ðyjðt�h;xÞÞdh�dx

¼
Z

X
~gTðyðt;xÞÞH ~gðyðt;xÞÞ�

Xn

j¼1

hj

Z 1

0

kjðhÞdh

"

Z 1

0

kjðhÞ ~gj
2ðyjðt�h;xÞÞdh�dx

�
Z

X
~gTðyðt;xÞÞH~gðyðt;xÞÞ
�

�
Xn

j¼1

hj

Z 1

0

kjðhÞ ~gjðyjðt�h;xÞÞdh

� �2

�dx

�
Z

X
yðt;xÞ~LT H ~Lyðt;xÞ
�

�
Z t

�1
kðt�sÞ~gðyðs;xÞÞds

� �T

Z t

�1
kðt�sÞ~gðyðs;xÞÞds

� �
�dx ð9Þ

By using the Poincaré inequality, the Green formula and

the boundary condition, it is easy to calculate that

Z

X

Xn

i¼1

piyiðt;xÞ
Xm

k¼1

o

oxk

ðwik

oyiðt;xÞ
oxk

Þdx

¼
Xn

i¼1

pi

Z

oX
ðyiðt;xÞwik

oyiðt;xÞ
oxk

Þmk¼1dx

�
Xn

i¼1

pi

Z

X

Xm

k¼1

wikð
oyiðt;xÞ

oxk

Þ2dx

¼�
Xn

i¼1

pi

Z

X

Xm

k¼1

wikð
oyiðt;xÞ

oxk

Þ2dx

��
Z

X

Xn

i¼1

piwi

Xm

k¼1

ðoyiðt;xÞ
oxk

Þ2dx

¼�
Z

X

Xn

i¼1

piwiðryðt;xÞÞ2dx��k1

Z

X

Xn

i¼1

piwijyðt;xÞj2dx

¼�k1

Z

X
yTðt;xÞPWyðt;xÞdx ð10Þ

2

Z

X

Xn

i¼1

piyiðt; xÞaiðyiðt; xÞÞbiðyiðt; xÞÞdx

�
Z

X

Xn

i¼1

piyiðt; xÞaibiyiðt; xÞdx

¼ 2

Z

X
yTðt; xÞPAByðt; xÞdx

ð11Þ

2

Z

X

Xn

i¼1

piyiðt; xÞaiðyiðt; xÞÞ
Xn

j¼1

cijfjðyjðt; xÞÞdx

�
Z

X
yTðt; xÞP �ACCT �AT Pyðt; xÞdxþ

Z

X
f Tðyðt; xÞÞf ðyðt; xÞÞdx

�
Z

X
yTðt; xÞ P �ACCT �AT Pþ FT F

� �
yðt; xÞdx

ð12Þ

By the same way, we can obtain

2

Z

X

Xn

i¼1

piyiðt; xÞaiðyiðt; xÞÞ
Xn

j¼1

dijgjðyjðt � sðtÞ; xÞÞÞdx

�
Z

X
yTðt; xÞP �ADQ�1DT �AT Pyðt; xÞdx

þ
Z

X
gTðyðt � sðtÞ; xÞÞQgðyðt � sðtÞ; xÞÞdx ð13Þ

2

Z

X

Xn

i¼1

piyiðt; xÞaiðyiðt; xÞÞ
Xn

j¼1

�dij

Z t

t�lðtÞ
�gjðyjðs; xÞdsdx

�
Z

X
yTðt; xÞP �A �DR�1 �DT �AT Pyðt; xÞdx

þ
Z t

t�l
�gðyðs; xÞÞds

� �T

R

Z t

t�l
�gðyðs; xÞÞds

� �
dx ð14Þ

2

Z

X

Xn

i¼1

piyiðt; xÞaiðyiðt; xÞÞ~dij

Z t

�1
kjðt � sÞ~gjðyjðs; xÞÞdsdx

�
Z

X
yTðt; xÞP �A ~DH�1 ~DT �AT Pyðt; xÞdx

þ
Z t

�1
kðt � sÞ~gðyðs; xÞÞds

� �T

H

Z t

�1
kðt � sÞ~gðyðs; xÞÞds

� �
dx

ð15Þ

Z

X
trace½rT Pr�dx

�
Z

X
k2yTðt; xÞC1yðt; xÞdxþ

Z

X
k2yTðt � sðtÞ; xÞ

C2yðt � sðtÞ; xÞdx

ð16Þ
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LV �
Z

X
yTðt; xÞ �2k1PW � 2PABþ P �ACCT �AT P

�

þ FT F þ P �ADQ�1DT �AT Pþ P �A �DR�1 �DT �AT P

þ P �A ~DH�1 ~DT �AT Pþ k2C1 þ
k2

1� q
C2 þ

1

1� q
LTQL

þl2 �LT R�Lþ ~LT H ~L
�
yðt; xÞdx ¼

Z

X
yTðt; xÞNyðt; xÞdx ð17Þ

where N ¼ �2k1PW � 2PABþ P �ACCT �AT Pþ FT F þ
P �ADQ�1DT �AT Pþ P �A �DR�1 �DT �AT Pþ P �A ~DH�1 ~DT �AT Pþ
k2C1þ k2

1�q C2 þ 1
1�q LT QLþ l2 �LTR�Lþ ~LT H ~L.

By Lemma 2.3 and our assumption, N\0 if and only if

NH\0: Then, by Dynkin’s formula (Ito and Mckean 1965),

for t 2 ðtk; tkþ1�; we have

EVðt; yðt; xÞÞ � EVðt�k ; yðt�k ; xÞÞ ¼ E

Z t

t�
k

LVðs; yðs; xÞÞds\0;

Hence, for t 2 ðtk; tkþ1�; EVðt; yðt; xÞÞ�EVðt�k ; yðt�k ; xÞÞ.
On the other hand, when t ¼ tþk ; we have

V1ðtkÞ ¼
Z

X
yTðtk; xÞPyðtk; xÞdx

¼
Z

X
ð1� cikÞyðt�k ; xÞ
� �T

Pð1� cikÞðyðt�k ; xÞÞdx

�
Z

X
yTðt�k ; xÞPyðt�k ; xÞdx�V1ðt�k Þ ð18Þ

Moreover, it is obvious that V2ðtkÞ ¼ V2ðtkÞ;V3ðtkÞ ¼
V3ðtkÞ;V4ðtkÞ ¼ V4ðt�k Þ. Hence we get VðtkÞ�Vðt�k Þ;
EVðtkÞ�EVðt�k Þ:

By Lyapnov–Krasovskii stability theorem, we have

lim
t!þ1

Ekyk2 ¼ 0. Then the equilibrium point of (1) is

globally stochastically asymptotically stable in the mean

square. The proof is completed. h

Remark 3.2 From the conditions of Theorem 3.1, we can

know that the diffusion coefficient, the Nemman boundary

conditions, the delays, the stochastic perturbations and sys-

tem parameters have key effect on the stability of system 2.1.

Remark 3.3 If we set wik ¼ 0, system 2.1 reduces to the

following impulsive stochastic CGNNs with mixed delays:

dyiðt;xÞ¼�aiðyiðt;xÞÞ½biðyiðt;xÞÞ�
Xn

j¼1

cijfjðyjðt;xÞÞ

�
Xn

j¼1

dijgjðyjðt�sðtÞ;xÞÞ�
Xn

j¼1

�dij

Z t

t�lðtÞ
�gjðyjðs;xÞÞds

�
Xn

j¼1

~dij

Z t

�1
kjðt�sÞ~gjðyjðs;xÞÞds�dt

þ
Xn

j¼1

rijðt;yðt;xÞ;yðt�sðtÞ;xÞÞdwjðtÞ; t 6¼tk;

yiðtk;xÞ¼yiðt�k ;xÞþJikðyiðt�k ;xÞÞ; t¼tk;x2X;k2Z; ð19Þ

Constructing Lyapunov functional 3.2 for system

(19), by a tiny change, we can obtain the following

result.

Corollary 3.4 If assumptions (H1)–(H6) hold, and there

exist diagonal matrix P [ 0;H [ 0 and a symmetric

matrix Q;R [ 0, such that the following matrix inequalities

hold:

1.

NH ¼

R PAC þ F PAD PA �D PA ~D

� �I 0 0 0

� � �Q 0 0

� � � �R 0

�� � � �H

0
BBBBBB@

1
CCCCCCA

\0

ð20Þ

where k1 is the smallest positive eigenvalue of the

Neumann boundary problem (2),

R ¼ �2PABþ k2C1 þ
1

1� q
LT QLþ l2 �LT R�L

þ ~LT H ~L;

k2 ¼ kmaxðPÞ;A ¼ diagfa1; a2; . . .; ang;A
¼ diagfa1; a2; . . .; ang;

W ¼ diagfw1;w2; . . .;wng;wi ¼ min1� k�mfwikg;
C ¼ ðcijÞn�n;

D ¼ ðdijÞn�n;
�D ¼ ð�dijÞn�n;

~D ¼ ð~dijÞn�n:

2. Jikðyiðt�k ; xÞÞ ¼ �rikyiðt�k ; xÞ, and rik 2 ½0; 2�. Then the

equilibrium point of system (1) is globally stochasti-

cally asymptotically stable in the mean square.

Numerical example

In order to illustrate the feasibility of the present criteria,

we provide a concrete example.

Example 4.1 Consider the following impulsive sto-

chastic CGNNs with mixed delays and reaction–diffusion

terms
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dyiðt;xÞ¼
Xm

k¼1

o

oxk

ðwik

oyiðt;xÞ
oxk

Þdt�aiðyiðt;xÞÞ biðyiðt;xÞÞ½

�
Xn

j¼1

cijfjðyjðt;xÞÞ�
Xn

j¼1

dijgjðyjðt�sðtÞ;xÞÞ

�
Xn

j¼1

�dij

Z t

t�lðtÞ
�gjðyjðs;xÞÞds

�
Xn

j¼1

~dij

Z t

�1
kjðt�sÞ~gjðyjðs;xÞÞds

#
dt

þ
Xn

j¼1

rijðt;yðt;xÞ;yðt�sðtÞ;xÞÞdwjðtÞ;

t 6¼ tk;yiðtk;xÞ¼ yiðt�k ;xÞþJikðyiðt�k ;xÞÞ;
t¼ tk;x2X;k2Z;

ð21Þ

where the activation function is described by X¼fðx1;x2Þ j
jxjj\

ffiffiffi
2
p

;j¼1;2g;w1¼w2¼0:05;a1ðsÞ¼a2ðsÞ¼ 1:5þ
0:5sins;b1ðsÞ¼b2ðsÞ¼2:16s; f1ðsÞ¼g1ðsÞ¼ �g1ðsÞ¼ ~g1ðsÞ
¼ jsþ1j�js�1j

20
; f2ðsÞ¼g2ðsÞ¼ �g2ðsÞ¼ ~g2ðsÞ¼ tanhðsÞ, tk�

tk�1¼0:3;sðtÞ¼0:6�0:5sint;

lðtÞ¼0:06þ0:04cost;kjðsÞ¼ se�s;cik¼1:5;

C ¼
0:01 �0:03

0:01 0:03

� �
; D ¼

0:06 0:07

�0:01 0:09

� �
;

�D ¼
0:03 0:01

�0:05 0:06

� �
; ~D ¼

0:02 �0:03

�0:01 0:01

� �
;

C1 ¼
1:5 0

0 1:5

� �
; C2 ¼

0:5 0

0 0:5

� �
:

By simple calculation, we have k1 ¼ 1; q ¼ 0:5; l ¼ 0:1,

A ¼
2 0

0 2

� �
; A ¼

1 0

0 1

� �
; B ¼

2:16 0

0 2:16

� �
;

F ¼ L ¼ �L ¼ ~L ¼
0:1 0

0 1

� �
:

Using the Matlab LMI Control Toolbox in Matlab to solve

the LMI (4), we get

P ¼
6:3180 0

0 6:3180

� �
;Q ¼

4:8411 �0:0043

�0:0043 2:2643

� �
;

R ¼
4:8650 �0:0876

�0:0876 4:8624

� �
; H ¼

3:4671 0

0 3:4671

� �
:

Then by Matlab software, we get kmaxðNHÞ ¼ �2:1396\0.

By Theorem 3.1, the equilibrium point of model (21) is

globally stochastically asymptotically stable in the mean

square, which is shown in Fig. 1.

If W ¼ 0, we get

P¼
6:4561 0

0 6:4561

� �
; Q¼

4:7563 �0:0067

�0:0067 2:1702

� �
;

R¼
4:7877 �0:0979

�0:0979 4:7873

� �
; H¼

3:3409 0

0 3:3409

� �
:

Then by Matlab software, we get kmaxðNHÞ ¼ �2:0020\0.

By Corollary 3.4, the equilibrium point of model (21) is

globally stochastically asymptotically stable in the mean

square, which is shown in Fig. 2.
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