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Abstract This paper aimed at assessing and comparing

the effects of the inhibitory neurons in the neural network

on the neural energy distribution, and the network activities

in the absence of the inhibitory neurons to understand the

nature of neural energy distribution and neural energy

coding. Stimulus, synchronous oscillation has significant

difference between neural networks with and without

inhibitory neurons, and this difference can be quantitatively

evaluated by the characteristic energy distribution. In

addition, the synchronous oscillation difference of the

neural activity can be quantitatively described by change of

the energy distribution if the network parameters are

gradually adjusted. Compared with traditional method of

correlation coefficient analysis, the quantitative indicators

based on nervous energy distribution characteristics are

more effective in reflecting the dynamic features of the

neural network activities. Meanwhile, this neural coding

method from a global perspective of neural activity

effectively avoids the current defects of neural encoding

and decoding theory and enormous difficulties encoun-

tered. Our studies have shown that neural energy coding is

a new coding theory with high efficiency and great

potential.

Keywords Neural coding � Neural energy � Inhibitory

neurons

Introduction

Neural information encoding and decoding is one of the

core areas of research in neuroscience (Borst and Theun-

issen 1999; Gazzaniga et al. 2009; Jacobs et al. 2009).

Currently, the main coding technologies include perceptual

coding, phase coding, frequency coding and population

coding etc. (Johnson 2004; Nirenberg and Latham 2003;

Victor 1999; Rokem et al. 2006; Liu et al. 2010; Xie and

Wang 2013; Pakhomov and Sudin 2013). However, these

neural coding theories have many difficulties in studying

neural encoding and decoding in the brain (McLaughlin

2009; Gopathy Purushothanman & David 2005).The main

reason is that these coding theories are local and regional,

and do not cross influence of large-scale neurological

activities. Meanwhile, there is a paucity of adequate data

analysis for resolving this issue (Simon 2003; Wang and

Zhang 2006; Wang and Wang 2004), which is mainly due

to limitations of experimental neuroscience and technol-

ogy, i.e. the current experimental equipment are unable to

simultaneously record massive and large-scale neural net-

work activities. Another reason is that most models based

on H–H equation need numerous computing resources,

especially in simulating activities of large neuronal popu-

lation (Feldman 2013).

Regarding the above-mentioned two difficulties, a

hypothesis on the energy dynamics has been postulated to

elucidate the theory of neural coding, about which a series of

research results can be found in published literature. (Wang

and Zhang 2006; Wang et al. 2009, 2008; Wang and Zhang

2012, 2007). These results not only present the energy for-

mula for a single neuron (Wang et al. 2009; Wang and Zhang

2007), but also describe the energy distribution characteris-

tics and energy coding in structural neural networks (Wang

and Wang 2004). Important findings suggest that: (1) the
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theory of neural energy coding is based on the use of a global

concept of energy (2) the neurons release their stored energy

within a very short time (negative energy) at the beginning of

firing action potential, after which the oxyhemoglobin pro-

vides them with biological energy (Wang et al. 2004), and

this mechanism contradicts the traditional theory of pure

energy consumption in neurons, (3) the distribution of the

negative energy, as assessed by parameter studies reflect the

neural network parameters and neural oscillation with a high

consistency; and thus, laid the foundation for energy coding

research in functional neural network (Wang and Wang

2004).

Among others, the Wang et al. study reported their

detailed observations on the energy distribution and energy

coding of a structural neural network; however, this study

considered only the excitatory neurons. Original meaning is

that the study in ref (Wang and Wang 2004) studied an

extensively neural work that considered only excitatory

neurons. Although neural networks have been extensively

reported in published literature, this study considered only

excitatory neurons. Based on research in neurophysiology,

most of the functional neural networks contain about 20 % of

inhibitory neurons (Nicholls et al. 2001), and significantly

contribute towards modulating neuronal network activity

and neural coding (Sokoloff 2008; Moore and Cao 2008).

Therefore, this paper aimed at systematically exploring the

effects of the inhibitory neurons in the neural network on the

neural energy distribution, and compared the network

activities in the absence of the inhibitory neurons, so as to

understand the nature of neural energy distribution and

neural energy coding, which can serve as a basis for future

studies on energy coding in functional neural networks.

Biophysical model

The model proposed by Wang et al. (2009) was considered

as a basis for the development of this novel biophysical

model of a neuron, in order to simulate the energy coding

in neuronal network.

Compared to the typical model of a single neuron, an

additional voltage source, current source, and inductor are

included into the mth model (Fig. 1). The differences in the

concentration of various ions inside and outside the neuron,

drives the ions to move, and thus, becomes a source of

voltage. A neuron accepts the stimulation from the

peripheral neurons with the development of the ionic gra-

dient, leading to the flow of voltage-gated current. More-

over, the influx and release of charged ions (K?, Na?,

Ca2?) from the channels results in the formation of a self-

induced current loop, which is equivalent to an inductance

element. In the figure, for the convergence of positive and

negative ions, inside and outside the cellular membrane,

Cm and Im denotes the membranous capacitance and total

electric current of stimulation, when stimulation of N

neurons acts on the mth neuron, respectively. To account

for loss in the non-ideal current source and voltage source,

rm and r0mare use to describe the resistance across Im and

U, respectively. Because the current source and the voltage

source were not acting in the same position, the film

resistor was divided into three parts, denoted by r1m, r2m

and r3m. The following coupling relation describes the sum

of the input current and connected neurons:

Im ¼ i1m þ
Xn

j¼1

iom j� 1ð Þ sin xm j� 1ð Þ tj � tj�1

� �� �� �

þ i0mðnÞsinðxmðnÞðt � tnÞÞ ð1Þ

where i1m is current for maintenance of the resting mem-

brane potential, i0m is the total effect generated by the

current stimulation of peripheral neurons, xm is the firing

frequency.The circuit equations, corresponding to Fig. 1,

are

Um ¼ r0mI0m þ r1mI1m þ Lm
_I1m

I0m ¼ I1m � Im þ
Uim

rm

þ Cm
_U1m

Uim ¼ Cmr3m
_U0m þ U0m

8
><

>:
ð2Þ

Lm
_I1m þ r1mIm ¼ K1m

_U0m þ K2mU0m � r2mIm ð3Þ

where K1m ¼ Cmðr2m þ r3m þ r2mr3m

rm
Þ;K2m ¼ 1þ r2m

rm
. The

total power consumed by the neural network composed of

N such neurons is as follows:

Pm ¼ d1m
_U2

0m þ d2m
_U0m þ d3m

_U0mU0m þ d4mU2
0m

þ d5mU0m þ d6m ð4Þ

where,

d1m ¼ C2
mð1þ

r3m

rm

Þðr0m þ r2m þ r3m þ
r3mðr0m þ r2mÞ

rm

Þ

d2m ¼ Cm
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t0
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1
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m
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According to principles of physics, power is the average

energy in unit time. In this paper, energy indicates power,

unless otherwise indicated. Equations (2)–(5) indicate the

exact solution of the membrane potential:

U0m ¼�
ĝ1

k2
m

� ĝ2e�a t�tnð Þ

k2
m� a2

� 1

k2
mþx2

m

ðĝ3 sin xm nð Þ t� tnð Þð Þ

þ ĝ4cos xm nð Þ t� tnð Þð ÞÞ

� U0m tnð Þþ
ĝ1

k2
m

þ ĝ2

k2
m� a2

þ ĝ4

k2
mþx2

m nð Þ

 !
e�km t�tnð Þ

ð5Þ

Equation (5) computes the action potential obtained by

energy method, and its numerical solution is presented in

the upper plot in Fig. 2. Substituting Eq. (5) into the neu-

ron’s power Eq. (4), the power function obtained is illus-

trated in the lower plot in Fig. 2.

Figure 2 suggests that this novel biophysical model can

effectively simulate the firing of the action potential in

neurons, wherein the peak of the power consumption curve

lags behind that of the membrane potential, which is due to

the inertia of capacitance elements and inductance in the

model. Detailed discussions about various circuit elements

in the biophysical model and the solution process is men-

tioned elsewhere in published literature (Wang et al. 2009;

Wang and Zhang 2007).

The positive and negative regions in the power curve

significantly affect neurobiology. It explains the reason for

a very slight increase of oxygen consumption, with a

substantial increase in cerebral blood flow as neurons in the

brain are activated; a neurophysiological phenomenon that

was not clear until now (Sokoloff 2008; Moore and Cao

2008; Lin et al. 2010). It also explains the reason for a

synchronous effect between external stimuli and percep-

tion, which is still unexplained in cognitive neuroscience

(Wang and Zhang 2012; Dhamala et al. 2004).

Structural neural network model

The assumed connection structure in cortical neural net-

work is as shown in Fig. 3, which shows a coupling

between each neuron in the network. Each neuron was

simulated based on the biophysical model shown in Fig. 1.

Therefore, the following neural network structure conforms

with the specified limits of neurobiology (Wang and Zhang

2006; Wang et al. 2009).

The neural network in Fig. 3 is composed of 15 fully

connected neurons. Due to the high complexity of cortical

neuronal connections, the average number of peripheral

neurons connected to any neuron was around 104 (Chadd-

erton et al. 2014; Igarashi et al. 2007). The purpose of this

paper was to explore the energy coding pattern of the neural

Fig. 1 Physical model of mth neuron

Fig. 2 Action potential and corresponding power function
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network when stimulated, and hence, we adopted some

simple connections in the neural network. A line between

two neurons denotes coupling and a two-way connection.

Coupling strength varied between any two neurons, and the

coupling between two neurons was asymmetric as well. For

example, the coupling strength from the first neuron to the

second was 0.15, while that from the second neuron to the

first was 0.22. Statistically, the range of the synaptic coupling

strength between neurons is a random value with uniform

distribution (Wang and Wang 2004). Based on data from

published literature, we assumed that the value ranged

between 0.1 and 0.3 (Rubinov et al. 2011).

The coupling strength of the matrix was as follows:

W ¼
w1;1 � � � w1;n

..

. . .
. ..

.

wn;1 � � � wn;n

2

64

3

75where, wi,j represented the cou-

pling strength between the ith and jth neurons.

The operating manner of the network was as follows:

1.

Iinterneuron tð Þ ¼ W � Q t � sð ÞT

I tð Þ ¼ Iinterneuron tð Þ þ Iexternal tð Þ

Sj tð Þ ¼ s
t

I tð Þ � Sj t � sð Þ
� �

þ Sj t � sð Þ ð6Þ

2.

Im;j tð Þ ¼
iml þ

Pn

j¼1

i0m j� 1ð Þ sin xm j� 1ð Þ tj � tj�1

� �� �� �
þ

i0m nð Þ sin xm nð Þ t � tnð Þð Þ; if SjðtÞ[ th

iml; ifSjðtÞ\th

8
>><

>>:

ð7Þ

3. By substituting Eq. (3) in Eq. (5), we obtained the

membrane potential U0m,j(t).

4. Substituting the results of Eq. (5) in Eq. (4), we

obtained the total power consumption Pm,j(t)

where Sj(t) is the total stimulation of the jth neuron at time

t, and Q(t - s) = [Q1(t - s), Q2(t - s), ……Qj(t -

s), … Qn(t - s)] indicates the firing states of the neurons,

with a resting value of 0 and firing value of 1.

Characteristics of total power consumption of network

with oscillation in different parameters

Characteristics of power consumption in neuronal

population with continuous stimulation

We adopted a neuronal population model consisting of 15

neurons. In order to cover the entire mammalian brain, we

selected the ratio of excitatory neurons to inhibitory neu-

rons as 4:1 (Nicholls et al. 2001). We selected the neurons

from fifth until seventh as the inhibitory neurons, and the

rest as the excitatory neurons. We continuously stimulated

the first and second neurons with an intensity of 40 mV and

successfully stimulated n number of neurons, where n was

the number of neurons in the neural network. The coupling

strengths between excitatory neurons and inhibitory neu-

rons accord were uniformly distributed at the [0, a] and [0,

2a], respectively, while the excitation delivery time

depended on the uniform distribution [0.5 ms, 1.5 ms].

From the nerve impulse record, the total power consump-

tion of the network was as shown in Fig. 4. In Fig. 4a,

when the neuron j fires at time t, a black marker is recorded

at (t, j).

In Fig. 4a, continuous stimulations were applied to the

first and second neurons, indicating that they maintained

releasing pulses cyclically after their first firing potential.

Due to their excitability, the high frequency firings accel-

erated the ascendance of membrane potential in other

neurons. In addition to these two neurons applied by con-

tinuous stimulation, the firing of other neurons was irreg-

ular, because of which the total power consumption over

time in the neural network also fluctuated, which is shown

in Fig. 4c.

As seen from Fig. 4b, a significant periodicity was

observed in the firing of the neurons in the neural network,

and this corresponds to the total power consumption

(Fig. 4d). Comparing results for Fig. 4b and d, we

observed that the neurons in a network without inhibitory

neurons show higher firing frequency. This is because once

a neuron fires an action potential, it will produce stimulate

other neurons, resulting in a rapid increase in their mem-

brane potentials after the refractory period, and

Fig. 3 Connection structure of neural network
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consequently, issue action potentials upon reaching the

threshold. On the other hand, pulse firings of the inhibitory

neurons will reduce the membrane potentials of other

neurons to some extent and decline the overall firing fre-

quency of neurons, which leads to a lower power con-

sumption in the neural network. In other words, neural

activity differences in the network caused by presence or

absence of the inhibitory neurons can be detected by the

nervous energy produced.

Correlation coefficient can be used to characterize syn-

chronization of neural oscillations. However, for assess-

ment of energy, a more concise and effective quantitative

computation method, named negative energy ratio, was

proposed and studied (Wang and Wang 2004), which is

more effective in analyzing neural oscillation differences

caused by different network parameters.

In a neural network consisting of n neurons, we can

obtain a symmetric matrix of correlation coefficient. If the

Fig. 4 a Nerve impulse record of continuous simulation (with

inhibitory neurons) of network with 15 neurons. b Nerve impulse

record of continuous simulation (without inhibitory neurons) of

network with 15 neurons. c Total power consumption of the network

with continuous stimulation (with inhibitory neurons). d Total power

consumption of the network with continuous stimulation (without

inhibitory neurons). a ¼ 0:5þ 0:5� 10
n

, Coupling strengths between

excitatory neurons and those between inhibitory neurons accorded

with uniform distribution on the [0, a] and [0, 2a], respectively, while

the excitation delivery time was uniformly distributed at [0.5 ms,

1.5 ms]
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matrix elements C, and Cij, denoted as the elements in the

ith row and jth column, then Cij denotes the correlation

coefficient of membrane potentials between the ith and jth

neurons. Our previous studies have shown that if the net-

work can obtain synchronization after instant stimulation,

two or more oscillation groups will appear in the steady

state. The firing of the first group stimulates neuron firings

in other groups. However, due to a delay in signal trans-

mission (Haken 2007; Ghosh et al. 2008), the other groups

will receive stimulation and fire energy after a lag. At this

time, the firing in the first group would have stopped, and it

would be stimulated by the firings from other groups,

forming coupled oscillations. This indicates that the most

significant synchronization will occur inside an oscillation

group. Normally, the correlation coefficient between the

membrane potential of a neuron and those of other n - 1

neurons are different. We select the maximum correlation

coefficient (divided by correlation coefficient of membrane

potential Cii = 1) to characterize neuronal synchronization

with the host group, denoted as qi
max

Thus, the synchroni-

zation of the entire network can be characterized by taking

the average value of the maximum correlation coefficients.

The average of maximum correlation coefficient is

defined as:

qmean ¼
Pn

i¼1 maxðCi;1;Ci;2; � � �Ci;j; � � � ;Ci;nÞ
n

i 6¼ jð Þ ð8Þ

where Ci,j is the correlation coefficient between neuron and

membrane potential, and it is given by:

Ci;j ¼
PT=Dt

k¼1 ðVi kDtð Þ � �ViÞj j ðVj kDtð Þ � �VjÞ


 



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT=Dt
k¼1 ðVi kDtð Þ � �ViÞ2ðVj kDtð Þ � �VjÞ2

q ð9Þ

It should be noted that the simulated membrane potential is

a discrete time sequence. In Eq. (9), Dt is the sampling

interval, and �Vi represents the mean value of membrane

potential sequence of the ith neuron. We may see that if the

correlation coefficients between any two neurons are closer

to 1, it indicates a higher synchronization between them.

Negative energy ratio is defined as the ratio of absolute

value of the negative energy consumed by neuronal pop-

ulation from time 0 to time t, over the sum of absolute

values of positive and negative energies, that is:

a tð Þ ¼ Enegative

Enegative þ Epositive

� 100% ð10Þ

Enegative ¼
Xn

i¼1

Z t

0

PiðtÞ � sgn �PiðtÞð Þdt ð11Þ

Epositive

Xn

i¼1

Z t

0

PiðtÞ � sgn PiðtÞð Þdt ð12Þ

where Pi(t) was the power consumed by neurons at time t,

and its integration on [0, t] means the power consumed

during a time of [0, t]. While sgn(�) is a sign function

defined as: sgn xð Þ ¼ 1; x\0

0; x� 0

�

Based on the results in Fig. 4, we increased the number

of neurons in the network. In a neuronal population net-

work consisting of n neurons, we randomly selected 5/n

neurons as inhibitory neurons. Continuous stimulations are

applied to any number of excitatory neurons at time t = 0,

with stimulation intensity of 40 mV. Among these, the

coupling strengths between excitatory neurons and those

between inhibitory neurons accord with uniform distribu-

tion on the [0, a] and [0, 2a], respectively, while the

excitation delivery time was uniformly distributed on

[0.5 ms, 1.5 ms].

Figure 5a–d represent the nerve impulse firings within

30 ms in the entire network consisting of 30, 50, 100 and

500 neurons, respectively, and their total power con-

sumption curves over time are shown in Fig. 6a–d.

In a neural network consisting of 30 neurons shown in

Fig. 5a, the obvious regularity of the overall firing of the

network was not observed, synchronization of overall firing

of the network consisting of 100 neurons was observed, as

shown in Fig. 5c, and the synchronization was very sig-

nificant in a network consisting of 500 neurons, as shown

in Fig. 5d.

Correspondingly, the coupling strength distribution

remained within a network with inhibitory neurons,

(Fig. 6). As the number of neurons in the neuronal popu-

lation increased, the periodic trends of the total power

consumption become apparent, and even appeared to be

negative power. Thus, we concluded that the neural activity

difference in the network was dependent on the quantity of

neurons, and probably reflected through nervous energy.

Table 1 lists the negative energy ratio and the average of

maximum correlation coefficients corresponding to results

in Fig. 6.

From results in Figs. 5, 6. and Table 1, the ribbon

pattern of the nerve impulse record become apparent

with an increase in the quantity of neurons, indicating

that synchronization in the oscillatory process gradually

strengthens, thereby allowing the accords with an

increased average of maximum correlation coefficients

(Table 1). Additionally, the proportion of negative energy

shows that the same monotonicity with a gradual

increase in the number of neurons. Meanwhile, the dis-

tribution characteristics of the total power consumption

were also closely related to network synchronization. The

results in Table 1 indicate that this relation is monoto-

nous, which means that the higher the number of neurons

in a coupled neuronal network, the easier it is for the

134 Cogn Neurodyn (2015) 9:129–144
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network to enter the synchronized state with continuous

stimulation, with a higher proportion of negative energy

in the total energy (energy is obtained by integrating

power, which can be characterized by area between

power curve and the axis).

In order to have a more intuitive understanding of

inhibitory neurons’ effect on the neuronal network, we

conducted simulations to compare the performances of

neuronal network consisting of various neurons in the

presence and absence of inhibitory neurons. In a neuronal

population model consisting of n neurons, we randomly

selected n/5 neurons as inhibitory neurons. Continuous

stimulations were applied to any number of excitatory

neurons at time t = 0 with stimulation intensity of 40 mV,

where the coupling strengths between excitatory neurons

and those between inhibitory neurons accord with uniform

distribution on the [0, a] and [0, a], respectively, while the

excitation delivery time was uniformly distributed at

[0.5 ms, 1.5 ms].

Figure 7 shows the impulse firing and Fig. 8 shows the

corresponding total power consumption in the neuronal

network within 30 ms by simulation.

Fig. 5 a Nerve impulse record of 30 neurons. b Nerve impulse record

of 50 neurons. c Nerve impulse record of 100 neurons. d Nerve

impulse record of 500 neurons. a ¼ 0:5þ 0:5� 10
n

, Coupling

strengths between excitatory neurons and those between inhibitory

neurons accorded with uniform distribution on the [0, a] and [0, 2a],

respectively, while the excitation delivery time was uniformly

distributed at [0.5 ms, 1.5 ms]
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From Fig. 7, we clearly observe that the impulse firing

of neurons have stronger synchronization with the absence

of the inhibitory neurons in the neural network. Comparing

the results in Fig. 7c and g, dots in (g) are more concen-

trated in the longitudinal straight line, appearing thinner

and smoother, while some dots in (c) scatter out of the line,

appearing a certain fluctuation in the transverse direction.

Comparing total power consumption curves in networks

with the same number of neurons and with the presence or

absence of inhibitory neurons, we found that inhibitory

neurons can significantly reduce the negative energy,

Fig. 6 a Total power consumption of 30 neurons. b Total power

consumption of 50 neurons. c Total power consumption of 100

neurons. d Total power consumption of 500 neurons.

a ¼ 0:5þ 0:5� 10
n

, Coupling strengths between excitatory neurons

and those between inhibitory neurons accorded with uniform

distribution on the [0, a] and [0, 2a], respectively, while the excitation

delivery time was uniformly distributed at [0.5 ms, 1.5 ms]

Table 1 Negative energy ratio and average of maximum correlation

coefficient corresponding to neuronal network in Fig. 6

Number of neurons 30 50 100 500

Negative energy ratio a (t) (%) 0.0511 0.0569 0.0668 1.3970

Average of maximum

correlation coefficient qmean

0.5678 0.6779 0.8460 0.9026

Coupling strengths between excitatory neurons and those between

inhibitory neurons accord with uniform distribution on the [0, a] and

[0, 2a], respectively, while the excitation delivery time is uniformly

distributed on [0.5 ms, 1.5 ms]

136 Cogn Neurodyn (2015) 9:129–144
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Fig. 7 Nerve impulse record of

a–d 30 neurons, 50 neurons, 100

neurons and 500 neurons (with

inhibitory neurons); Nerve

impulse record of e–h 30

neurons, 50 neurons, 100

neurons and 500 (without

inhibitory neurons)

(a ¼ 0:5þ 0:5� 10
n

, Coupling

strengths between excitatory

neurons and the excitation

delivery time accord with

uniform distribution on the [0,

a] and [0.5 ms, 1.5 ms],

respectively)
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Fig. 8 Total power

consumption of a–e 30 neurons,

50 neurons, 100 neurons and

500 neurons (with inhibitory

neurons). e–h 30 neurons, 50

neurons, 100 neurons and 500

neurons (without inhibitory

neurons). (a ¼ 0:5þ 0:5� 10
n

,

Coupling strengths between

excitatory neurons and the

excitation delivery time accord

with uniform distribution on the

[0, a] and [0.5 ms, 1.5 ms],

respectively)
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which indicating that the regulation of inhibitory neurons

reduces synchronization of the overall neuronal impulse

firing to a certain extent. Comparing Fig. 7 a–d and b–h,

the total power consumption curves, it is seen that with an

increase in the number of neurons in a network, the firing

synchronization between each neuron is strengthened

regardless of the presence or absence of inhibitory neurons,

and periodicity of the corresponding total power con-

sumption is also increasingly apparent, which is consistent

with the above conclusions.

In order to assess the influence of the inhibitory neurons

on the neural network, we performed simulations and got

the negative energy ratios and average of the maximum

correlation coefficient as shown in Table 2.

From the simulation results in Figs. 7, 8 and Table 2,

regardless of neurons number in the network, the pulse

firing of the inhibitory neurons induces a relatively large

fluctuation of the neuronal membrane potential, and

decreases the overall synchronization of the neuronal

pulse firing, which results in reduction of the average

maximum correlation coefficient in the neuronal popu-

lation. At the same time, the presence of inhibitory

neurons decreases the ratio of negative energy from the

total energy.

Though the average of maximum correlation coefficient

and negative energy have the same variation trend, the

variation of the latter is much more significant than the

former. Previous studies have stated that (Wang and Wang

2004) the average of maximum correlation coefficient is

only used to characterize the internal oscillation of the

neuronal population, while the negative energy ratio can

well reflect the oscillations among populations and internal

oscillation within populations as well. According to our

simulation results, these conclusions remain valid in a

network with inhibitory neurons.

Characteristics of coupling strength and power

consumption

In the following studies, we fixed the number of neurons in

the neural network to be 300, of which we randomly

selected 60 neurons as inhibitory neurons and the rest as

excitatory neurons. Let a ¼ 0:5þ 0:5� 10
n

. We set the

coupling strength of excitatory neurons uniformly distrib-

uted at [0, a], and adjusted the ratio of the coupling

strengths of inhibitory and excitatory neurons. Figures 9a–

d shows the pulse firing records within 30 ms in a network

comprising 300 neurons, and the coupling strengths of

inhibitory neurons were evenly distributed on [0, a], [0,

2a], [0, 3a],[0, 4a], respectively. The corresponding total

power consumption curves are shown in Figs. 10a–d.

As can be seen in Fig. 9 that continuous stimulation

with intensity of 40 mV were applied to the first to the

thirtieth neurons at time t = 0. After 0.6 ms, these neurons

simultaneously fired action potentials and maintained firing

periodic pulses.

From Fig. 9, we can clearly see that the firing syn-

chronization of neurons reduces with the increase of cou-

pling strength of inhibitory neurons in the neural network.

In images, it is represented as a decline in synchronized

firing of dots, and part of dots scatter outside, which

indicate that higher coupling strength of inhibitory neurons

may induce more significant regulation effects on the pulse

firing of other neurons.

From Fig. 10, we observe that with a fixed number of

neurons and with increase of coupling strength of the

inhibitory neurons in the neuronal population, the peri-

odic trend of the total power consumption reduces, and

the ratio of negative energy gradually decreases. Mean-

while, the firing synchronization of the neuron pulse

declines as well. Therefore, negative energy ratio can be

used to characterize the neural network activity with

various coupling strengths of inhibitory neurons. The

negative energy ratio and average of maximum correla-

tion coefficient corresponding to Fig. 10 are listed in

Table 3.

From results in Fig. 9, 10 and Table 3, we observe

that with increasing coupling strength, the periodicity of

the total power consumption, ratio of negative energy

over total energy, average of maximum correlation

coefficient, and synchronization of pulse records show

consistent monotonicity. In other words, the total power

consumption curves are more likely to present cyclical

changes in the steady state, the ratio of negative energy

over total energy become smaller, so as the average

value of maximum correlation coefficient, and the pulse

firing synchronization in the pulse record images become

less significant.

Table 2 Simulation results of the network with presence and absence

of inhibitory neurons

W/WO inhibitory neurons Negative energy

ratio (%)

Average of

maximum

correlation

coefficient

With Without With Without

30 0.0519 0.0572 0.5622 0.6921

50 0.0549 0.0588 0.6636 0.8193

100 0.0648 0.0826 0.8515 0.8533

500 1.2982 1.6286 0.9003 0.9099

Coupling strengths between excitatory neurons and those between

inhibitory neurons accord with uniform distribution on the [0, a] and

[0, a], respectively, while the excitation delivery time is uniformly

distributed on [0.5 ms, 1.5 ms]
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Relationship between network parameters in neuronal

population and energy characteristics

Relationship between quantity of inhibitory neurons

and energy characteristics

In order to study the relationship between the energy

characteristics and quantity of inhibitory neurons, we

developed a neuronal network of 500 neurons and set the

excitatory delivery time uniformly distributed on the

[0.5 ms, 1.5 ms]. We performed simulations to study the

energy distribution with quantity of inhibitory neurons

ranged from 0 to 200, and calculated the negative energy

ratio and average of maximum correlation coefficient.

Their relationships with the quantity of inhibitory neurons

are shown in Fig. 11.

Each point in Fig. 11 was obtained by the following

rules:

Fig. 9 a Nerve impulse record when coupling strengths of inhibitory

neurons accord with uniform distribution on [0, a]. b Nerve impulse

record when coupling strengths of inhibitory neurons accord with

uniform distribution on [0, 2a]. c Nerve impulse record when

coupling strengths of inhibitory neurons accord with uniform

distribution on [0, 3a]. d Nerve impulse record when coupling

strengths of inhibitory neurons accord with uniform distribution on [0,

4a] (a ¼ 0:5þ 0:5� 10
n

, Coupling strengths between excitatory neu-

rons and the excitation delivery time accord with uniform distribution

on the [0, a] and [0.5 ms, 1.5 ms], respectively)
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1. Let a ¼ 0:5þ 0:5� 10
n

. We assumed that coupling

strengths of the excitatory neurons and those of the

inhibitory neurons were uniformly distributed on the

[0, a] and [0, 2a], respectively.

2. Continuous stimulations were applied to randomly

selected 50 neurons in the network with intensity of

40 mV.

3. We conducted simulations to obtain the total power

consumption curves of the neuronal population within

30 ms, and calculate the sum by formula 8–12. We

repeated the above steps for 10 times, and obtained ai

and qmeani(i ¼ 1. . .10), and their average value �a and

�qmean.

4. The average value was the ordinate value correspond-

ing to current number of neurons in Fig. 11.

As can be seen from Fig. 11, the quantity of inhibitory

neurons has a monotonic relationship with the negative

energy ratio, which means that more the inhibitory neurons

in the neuronal population, the smaller the negative energy

ratio. Meanwhile, the average of maximum correlation

coefficient maintains the same variation trend with the

Fig. 10 a Total power consumption when coupling strengths of

inhibitory neurons accord with uniform distribution on [0, a]. b Total

power consumption when coupling strengths of inhibitory neurons

accord with uniform distribution on [0, 2a]. c Total power consump-

tion when coupling strengths of inhibitory neurons accord with

uniform distribution on [0, 3a]. d Total power consumption when

coupling strengths of inhibitory neurons accord with uniform

distribution on [0, 4a] (a ¼ 0:5þ 0:5� 10
n

, Coupling strengths

between excitatory neurons and the excitation delivery time accord

with uniform distribution on the [0, a] and [0.5 ms, 1.5 ms],

respectively)
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negative energy ratio, which indicate that in a network with

inhibitory neurons, the neural coding theory based on

energy coding also has the capability to characterize net-

work synchronization, and has good agreement with the

traditional method of calculating the correlation coeffi-

cient. Indeed, quantitative analysis of energy coding is

better than the analysis of correlation coefficient. In the

above network simulations, when the quantity of inhibitory

neurons varied between 0 and 200, the variation range of

negative energy ratio was 0.85–1.70, while that of average

of maximum correlation coefficient was only 0.860–0.915,

indicating that variation of average of maximum correla-

tion coefficient was far less significant than variation of the

negative energy ratio. In addition, when the quantity of

inhibitory neurons was between 140 and 180, the average

of maximum correlation coefficients showed a big fluctu-

ation and was unable to reflect the neural network. In

contrast, the negative energy ratio curves were relatively

smooth throughout the whole range and could well char-

acterize the situation of the entire network regardless of

quantity of inhibitory neurons.

Relationship between coupling strength of inhibitory

neurons and neural energy

To study the relationship between the energy characteris-

tics and the coupling strength of inhibitory neurons, we

developed a neuronal network of 500 neurons and ran-

domly selected 200 as the inhibitory neurons, and set the

excitatory delivery time uniformly distributed at [0.5 ms,

1.5 ms]). We performed simulation to study the total power

consumption with different coupling strengths of the

inhibitory neurons and calculated the negative energy ratio

and average of maximum correlation coefficient. Their

relationships with the coupling strength of inhibitory neu-

rons are shown in Fig. 12.

Each point in Fig. 12 was obtained by the following

rules:

1. We assumed that the coupling strength of the inhib-

itory neurons was uniformly distributed on the [0, Da],

D varies from 0 through 4 with step 0.1, each one

corresponded to one dot in the plot, totally there were

41 dots.

2. We set the number of neurons as 500, and assumed that

the coupling strength of the excitatory neurons was

uniformly distributed on 40 mV.

3. Continuous stimulations were applied to randomly

selected 50 neurons in the network with an intensity of

40 mV.

4. We conducted simulation to obtain the total power

consumption curves of the neuronal population within

30 ms, and calculated the sum by Eq. 8–12.

5. Repeated the above steps for 10 times, and obtained ai

and qmeani (i = 1 … 10), and their average value �a and

�qmean.

Fig. 11 Negative energy ratio and average of maximum correlation

coefficient versus number of inhibitory neurons

Fig. 12 Negative energy ratio and average of maximum correlation

coefficient versus coupling strength of inhibitory neurons. (The

horizontal axis represents that the coupling strengths of inhibitory

neurons are uniformly distributed on [0, xa]

Table 3 Negative energy ratio and average of maximum correlation

coefficient corresponding to Fig. 10

Coupling strength range of

inhibitory neurons

[0, a] [0, 2a] [0, 3a] [0, 4a]

Negative energy ratio (%) 0.8809 0.7527 0.5166 0.3644

Average of maximum

correlation coefficient

0.8931 0.8681 0.8657 0.8568

Number of neurons: 300 a ¼ 0:5þ 0:5� 10
n . Coupling strengths

between excitatory neurons and the excitation delivery time accord

with uniform distribution on the [0, a] and [0.5 ms, 1.5 ms],

respectively
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6. The average value was the ordinate value correspond-

ing to current number of neurons in Fig. 12.

We can observe from Fig. 12 that the connecting

intensity of inhibitory neurons has a negative correlation

with the negative energy ratio, i.e. the greater the coupling

strength of inhibitory neurons in the neuronal population,

the smaller the negative energy ratio. Meanwhile, the

average of maximum correlation coefficient maintains the

same variation trend with the negative energy ratio. In the

figure, the curve of the negative energy ratio with the

coupling strength of the inhibitory neurons is very smooth

and can effectively characterize the network conditions

with inhibitory neurons of different coupling strengths.

However, when the coupling strength reaches above a

certain level, the average of maximum correlation coeffi-

cient has a larger fluctuation and the value becomes

meaningless. The curve is also not smooth when the cou-

pling strength is relatively small. These results indicate that

the negative energy ratio can well characterize the differ-

ence in neural oscillations caused by changing network

parameters.

Conclusion

This paper studied neuronal networks with inhibitory

neurons from the energy perspective, and analyzed differ-

ences in the synchronous oscillation of the neural network

caused by variations of network parameters. It is necessary

to emphasize that due to different network models, the

actual value of each parameter may be different, but the

nature of the intrinsic relationships between them is

determined. This suggests that this paper proposes a new

method of exploring energy based on synchronous oscil-

lation characteristics between network parameters and

network behaviors.

In exploring the total power consumption characteristics

in the network oscillations with different parameters, this

paper adjusted and changed the parameters such as quantity

of neurons and coupling strength of inhibitory neurons in

the neuronal population, and found the universal relation-

ship between the network parameters and the total power

consumption. In characterizing synchronous oscillation,

this paper compared the negative energy ratio and the

traditional method of correlation coefficient, and found that

the negative energy ratio can better characterize the dif-

ferences in neural oscillation due to variations of network

parameters.

Globally, energy method is a new coding theory for

assessing brain activity. One important characteristic of the

method is having a superposition feature. In neuroscience

experiments, it is very difficult and impossible to record all

nerve impulses in a wide areas of the brain, but it is pos-

sible to measure the total energy consumption in select

regions at different time points. Therefore, the method

proposed in this paper is an important supplement to

experimental studies. Obviously, this energy method can

be used to estimate parameter distributions in brain, and

can be easily extended to different parameter distributions

in a number of brain regions. Compared with traditional

numerical method, this nervous energy coding theory and

analysis method has more practical and promotional

values.
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