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Abstract A challenging goal for cognitive neuroscience

researchers is to determine how mental representations are

mapped onto the patterns of neural activity. To address this

problem, functional magnetic resonance imaging (fMRI)

researchers have developed a large number of encoding

and decoding methods. However, previous studies typically

used rather limited stimuli representation, like semantic

labels and Wavelet Gabor filters, and largely focused on

voxel-based brain patterns. Here, we present a new fMRI

encoding model to predict the human brain’s responses to

free viewing of video clips which aims to deal with this

limitation. In this model, we represent the stimuli using a

variety of representative visual features in the computer

vision community, which can describe the global color

distribution, local shape and spatial information and motion

information contained in videos, and apply the functional

connectivity to model the brain’s activity pattern evoked by

these video clips. Our experimental results demonstrate

that brain network responses during free viewing of videos

can be robustly and accurately predicted across subjects by

using visual features. Our study suggests the feasibility of

exploring cognitive neuroscience studies by computational

image/video analysis and provides a novel concept of using

the brain encoding as a test-bed for evaluating visual fea-

ture extraction.

Keywords fMRI � Encoding � Computer vision �
Brain networks

Introduction

Brain encoding models provide effective means to under-

stand how brain activity varies along with the variation in

external stimuli and how well the brain activity can be

predicted from the quantitatively measured external stim-

uli. It has been receiving increasing interest and a number

of papers have been published in recent few years. Espe-

cially, several surveys by (Haynes and Rees 2006; Nase-

laris et al. 2011; Kay and Gallant 2009; Hasson et al. 2010;

Sugase-Miyamoto et al. 2011), and Chen et al. (2014) have

provided a broad overview of approaches for encoding

including image analysis methodologies, functional mag-

netic resonance imaging (fMRI) analysis algorithms,

machine learning algorithms and region of interest (ROI)

selection methods and so on. An encoding model mainly

consists of four components: structural substrates for brain

response modeling, brain response modeling, external

stimuli modeling, and the mapping from stimuli to brain

response (Naselaris et al. 2011; Chen et al. 2014).

Although previous studies have yielded remarkable

results, in our opinion, three problems are required to be

revisited in current encoding studies. The first one is that

the quantified external stimuli used in previous works are

limited. In most fMRI studies [e.g. (Shirer et al. 2012;

Haxby et al. 2001; Sterzer et al. 2008; Peelen et al. 2009;

Mitchell et al. 2008; Nishimoto et al. 2011)], visual fea-

tures were used to represent external stimuli of image/

video, which includes image grid intensity, color (Naselaris

et al. 2011; Nishimoto et al. 2011; Miyawaki et al. 2008),

semantic category labels [e.g., (Mitchell et al. 2008)], and
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participants rated scores about the external stimuli such as

face and human body in a naturalistic video stream (Bartels

and Zeki 2004). However, those representations are gen-

erally qualitative and subjective, and thus substantially

limit the power of encoding models. To alleviate this

problem, researchers tried to model the external stimuli via

computational image/video descriptors. For example, Kay

(Kay et al. 2008) and Naselaris (Naselaris et al. 2009)

adopted Wavelet Gabor filters to model the texture feature

of input image. Bartels (Bartels et al. 2008) used a motion

energy model to describe visual stimuli of free viewing of

movie segments. The computer vision community has

developed a large amount of visual feature descriptors to

represent image/video from different perspectives, for

example, color, shape and motion. These features are

typically objective and can be automatically derived by

computer vision algorithms. However, whether those

computer vision based features are feasible for fMRI

encoding models has not been fully examined yet. Fur-

thermore, in the computer vision field, the visual features

are typically evaluated by conducting recognition or clas-

sification experiments based on image/video benchmarks

with their human-labeled ground truth. However, this

evaluation mechanism is from an engineering view without

taking human brain cognition into full consideration. It is

of great interest to explore the feasibility of applying brain

encoding models to evaluate and compare various visual

features.

The second problem is in the component of structural

substrates for functional brain response modeling. The

structural substrates provide the base for extracting mean-

ingful information from fMRI data. In existing encoding

models, voxel-based and ROI-based methods (Thirion et al.

2007; Polyn et al. 2005; Naselaris et al. 2011; Dumoulin

and Wandell 2008; Mitchell et al. 2008) have been widely

adopted. Voxels and ROIs were determined manually

based on neuroscience domain knowledge or automatically

based on activation detection using task-fMRI. Although

voxels and ROIs-based methods are easy to implement and

effective in many existing works, their reproducibility,

generalizability and reliability have been limited due to the

lack of a common and individualized representation of

human brain architecture as pointed out in (Liu 2011; Chen

et al. 2014). To be specific, voxel-based methods pose

difficulties in assessing the consistency of encoding models

across subjects due to the intrinsic variability of brain

structure and functions and thus the lack of precise voxel-

wise correspondence between subjects (Liu 2011).

Recently, we developed and validated a novel data-driven

strategy, namely DICCCOL (dense individualized and

common connectivity-based cortical landmarks) (Zhu et al.

2012, 2013), to discover consistent and corresponding

structural landmarks across various brains. In total, 358

consistent and corresponding functional landmarks were

identified, each of which was optimized to possess maxi-

mal group-wise consistency of DTI-derived fiber shape

patterns (Zhu et al. 2012). Moreover, this set of the 358

structural brain landmarks can be accurately and reliably

predicted in a subject based only on DTI data (Zhang et al.

2012). The DICCCOL system provides an appropriate

representation of human brain network and enables the

opportunity of exploring the consistency of encoding and

decoding brain network responses across subjects.

The third problem is in the component of brain response

modeling. In previous encoding literatures (Naselaris et al.

2011; Kay et al. 2008; Miyawaki et al. 2008), fMRI Blood

Oxygen-level Dependent (BOLD) intensities have been

widely utilized to measure the brain’s functional response.

However, many literature reports (Logothetis et al. 2001;

Chen et al. 2014; Heeger and Ress 2002) have pointed out

that fMRI BOLD signals are often sensitive to physiolog-

ical motion effect and some non-neuronal noises, which

may reduce the reliability of encoding models. Another

group of methods adopted the brain activation patterns

measured by the GLM (general linear model) (e.g., Haxby

et al. 2001; Naselaris et al. 2011; Sterzer et al. 2008;

Walther et al. 2009; Mitchell et al. 2008) to construct

encoding models. Recently, the results reported in the lit-

eratures (Richiardi et al. 2011; Shirer et al. 2012) suggest

us that functional connectivity is a new, alternative school

of methodologies for quantitatively measuring functional

brain response. Essentially, brain function is resulted from

large-scale functional connectivities (Haynes and Rees

2006; Lynall et al. 2010; Friston 2009; Hagmann et al.

2010). The brain’s comprehension of visual stimuli can be

precisely represented by these functional connectivities and

interactions among relevant brain networks (Friston 2009;

Hagmann et al. 2010; Lynall et al. 2010). Notably, a few

recent studies (Hu et al. 2012; Han et al. 2013) have

demonstrated that functional connectivity is an effective

tool to model brain response to free viewing of videos.

These three above described problems motivates us to

develop a novel fMRI encoding model to predict the

brain’s responses to free viewing of videos. The architec-

ture of proposed encoding model is illustrated in Fig. 1. To

represent the visual stimuli, we adopt a number of repre-

sentative features in computer vision research included

RGB histogram, color moments, Histogram of Oriented

Optical Flow (HOOF) (Nayak et al. 2011) and RGB-SIFT

(Van De Sande et al. 2010). To model the universal brain

activity in response to video stimuli across subjects, we use

the DICCCOL system (Zhu et al. 2013) to localize large-

scale cortical ROIs and measured the functional connec-

tivities among them. Afterwards, the encoding model

bridging feature space and response space is trained via

least-squares support vector regression (LSSVR) (Suykens
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and Vandewalle 1999). Experimental results demonstrated

that brain network responses during free viewing of videos

can be robustly and accurately predicted by those visual

features and across different subjects.

The rest of this paper is organized as follows. Section

‘‘Materials and methods’’ describes the materials and

methods adopted in this paper, including the brain response

feature representation procedure and the visual feature

extraction pipeline and the specifics of the proposed

encoding model. The experiments and results are reported

in ‘‘Experimental results’’ section. Finally, the discussion

and conclusions are drawn in ‘‘Conclusion’’ section.

Materials and methods

Data acquisition and pre-processing

Subjects and stimuli

Three subjects participated in the study, which was

approved by the University of Georgia IRB. All partici-

pants are young male student aged between 20 and

30 years old and they were in good health with no past

history of psychiatric or neurological diseases. Participants

all had normal or corrected-to-normal vision.

Natural stimulus fMRI (N-fMRI), e.g., during video

watching in this paper, provides an uncontrolled environ-

ment to study the functional mechanism of the human

brain. We randomly selected 51 shots including 12 com-

mercials, 19 weather reports and 20 sports from the

TRECVID 2005 data set (Smeaton et al. 2006). Each video

clip is lasting 60 s or so.

MRI data acquisition

During fMRI scan, these clips were presented to these

subjects via MRI-compatible goggles. The E-prime soft-

ware (Schneider et al. 2002) was used for the strict syn-

chronization between movie viewing and fMRI scan. Every

participating subject took the multimodal DTI and fMRI

scans in three separate scan sessions. The acquired DTI

data of each participant was used to localize their DICC-

COL ROIs.

Functional images were acquired on a GE 3T Signed

MRI system using an 8-channel head coil at The University

of Georgia Bioimaging Research Center. We set the scan

parameters as follows: 30 axial slices, matrix size 64 9 64,

4 mm slice thickness, 220 mm FOV, TR = 1.5 s,

TE = 25 ms, ASSET = 2. Diffusion tensor imaging data

was also acquired for DICCCOL landmarks localization.

DTI data was acquired using the isotropic spatial resolution

2 mm 9 2 mm 9 2 mm and the specific parameters were:

TR = 15.5 s, TE = min-full, b-value = 1,000 for 30

DWIs and 3 B0 volumes.

Data preprocessing

FMRI data were preprocessed using the FSL (http://fsl.

fmrib.ox.ac.uk/fsl/fslwiki/). The preprocessing of fMRI

data includes skull removal, motion correction, spatial

smoothing, temporal prewhitening, slice time correction,

Fig. 1 The framework of the proposed encoding model. A number of

representative features in computer vision research (Van De Sande

et al. 2010) are adopted to model the input video stimuli and the

DICCCOL system (Zhu et al. 2013) is used to localize large scale

cortical ROIs, based on which the brain responses are quantified as

the functional interactions among the ROIs. Afterwards, the encoding

model bridging feature space and response space is trained via least-

squares support vector regression (LSSVR) (Suykens and Vandewalle

1999)
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and global drift removal. To predict ROIs for each subject

based on DICCCOL system, the preprocessing of DTI data

includes skull removal, motion correction and eddy current

correction. Fiber tracking was performed via MEDINRIA

(http://www-sop.inria.fr/asclepios/software/MedINRIA/).

Brain response modeling

Localizing reproducible and accurate cortical ROIs that are

consistent and correspondent across individuals is a critical

problem for brain network studies. Recently, we developed

and validated a novel data-driven discovery approach that

identified 358 consistent and corresponding DICCCOL

ROIs in over 240 brains (Zhu et al. 2013). The intrinsic

neuroscience foundation of the approach is that each

brain’s cytoarchitectonic area possess a unique set of

extrinsic in and out, entitled the ‘‘connectional fingerprint’’

in (Passingham et al. 2002), which principally determines

the functions of each brain area. A variety of recent studies

(Laird et al. 2009; Passingham et al. 2002; Zhu et al. 2013;

Zhang et al. 2012) have confirmed and replicated this close

relationship between structural connection pattern and

brain function. In addition, this set of 358 structural brain

landmarks can be accurately and reliably predicted in an

individual subject based only on DTI data (Zhang et al.

2012), demonstrating the remarkable reproducibility and

predictability. Therefore, in this paper, we employ the

DICCCOL system to localize dense cortical ROIs for each

subject.

We first use the brain ROI prediction approach in

(Zhang et al. 2012) to localize the 358 DICCCOLs in the

scanned subjects with DTI data. Then, after linearly

transforming the ROIs to the fMRI image space, each

stimulus fMRI signals were extracted for each of these 358

DICCCOLs. Afterwards, we applied the PCA (principal

component analysis) on the multiple fMRI time series

within each ROI to extract a representative fMRI signal

(Zhu et al. 2012). Finally, the eigenvector corresponding to

the largest eigenvalue was defined as the representative

fMRI signal for this ROI. With the 358 ROIs for each

subject, the functional connectivity between any pair of

ROIs is measured as the Pearson correlation coefficient

between their N-fMRI signals, resulting in a 358 9 358

matrix for each video sample. Since the functional con-

nectivity between ROIs is symmetric and the correlation

between the same ROI is nonsense, we obtained

63903-dimensional functional response vector for each

video sample.

Video stimuli representation

A large amount of feature descriptors have been developed

and used by the computer vision community. A recent

work (Van De Sande et al. 2010) reviewed a number of

color descriptors commonly used in computer vision field

and quantitatively evaluated them based on the accuracy of

performing object and scene recognition tasks on image/

video benchmarks. The work of (Nayak et al. 2011) dis-

cussed a number of state-of-the-art features used in activity

recognition which are adequate to the representation of

videos’ motion patterns. Motivated by the work (Van De

Sande et al. 2010) and (Nayak et al. 2011), in this paper, we

selected four representative visual descriptor to character-

ize video clips, which are RGB histogram, color moments,

RGB-SIFT, and HOOF. The former two descriptors mea-

sure the video color distribution while the RGB-SIFT

characterize the local shape and spatial information and the

HOOF describes the global motion information of the

video.

RGB histogram

A 48-dimensional color histogram was extracted in RGB

color space to describe the global color distribution in the

video. The RGB histogram is a combination of three 1-D

histograms calculated on R, G, and B channels of the RGB

color space.

Color moments

Although color moments (Amir et al. 2003) of an image in

the RGB space are simple to calculate, they are very

effective for image/video analysis. In this paper, an image

is firstly partitioned into 2 * 3 sub-blocks, and then the

color moments of each block in each channel are calculated

and concatenated. Similar to (Amir et al. 2003), we use

three central moments which are mean, standard deviation

and skewness to represent an image’s color distribution.

Thus, we obtained a 54 dimensional color moments

descriptor for each key frame.

RGB-SIFT

The SIFT descriptor proposed in (Lowe 2004) is one of

state-of-the-art techniques to characterize the local shape of

a region based on edge orientation histograms derived from

the gradient information. The RGB-SIFT (Van De Sande

et al. 2010) calculated SIFT descriptors in the RGB color

space.

HOOF

Histogram of Oriented Optical Flow (Nayak et al. 2011) is

a popular and effective scale-invariant global feature to

represent the motion in an entire frame using optical flow

(Baker et al. 2011) in computer vision community. HOOF
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was extracted as follows. First, optical flow was computed

at every key frame. Then, optical flow vector was binned

according to its primary angle and weighted based on its

magnitude. The number of bins was set to 60.

TRECVID 2005 dataset provides multiple key frames

for each video sample. At first, for each given key frame

provided by TRECVID 2005 dataset, the above described

four feature descriptors (RGB histogram, color moments,

RGB-SIFT and HOOF) were calculated. Then each video

sample was represented by the average of feature vectors of

its all key frames. Figure 2 shows the visual patterns of

each descriptor for a sample video clip. Each representa-

tion corresponds to a visual descriptor.

LSSVR-based stimuli–brain response mapping

In the current studies, the mapping between external

stimuli and brain response is mainly accomplished by

machine learning methods. In the early research of brain

mapping, GLM models (Friston et al. 1995) were widely

used to map the brain’s hemodynamic responses with

external stimuli due to its simplicity and effectiveness

(Haxby et al. 2001; Naselaris et al. 2011; Sterzer et al.

2008; Walther et al. 2009; Mitchell et al. 2008). Addi-

tionally, researchers have explored several machine learn-

ing methods such as Gaussian Naive Bayes (GNB), SVM-

based methods, and K nearest neighbor (KNN) to model

the relationship between the stimuli and brain response

(Naselaris et al. 2009; Mitchell et al. 2004; Walther et al.

2009). Among these methods, SVM-based approaches

showed great advantages especially where there are a large

number of features as the regularization in SVM-based

methods help weaken the effect of noisy features which are

highly correlated with each other (Pereira et al. 2009).

In our study, the least squares support vector regression

algorithm (LSSVR) (Suykens and Vandewalle 1999) is

adopted to solve the mapping f(X ? y) such that f(X) has

at most e deviation from the actually obtained targets for all

the training data, and is as flat as possible simultaneously

(Suykens and Vandewalle 1999). The flatness of

f(X) ensures the superior generalizability when predicting

the brain’s responses from the corresponding visual fea-

tures for a new video sample. The encoding model was

trained for each dimension of the functional response

vector independently. Denote y = (eij
1, eij

2, …,eij
n)T as the set

of brain’s responses. eij
k is the functional connectivity

between the i-th and j-th ROI in the k-th video sample.

Denote X = (X1, X2, …X3)T as the visual feature set where

Xk = (xk1, xk2,…, xkp)T�p is the dimensionality of the visual

feature and n is the total number of training video samples.

As suggested in (Naselaris et al. 2011; Pereira et al. 2009),

the linear kernel was used.

Afterwards, the leave-one-out cross-validation was

adopted to evaluate the performance of the trained

encoding model. Each encoding model’s training and

testing were performed for each subject and visual feature

set independently. For each video, nine sets of encoding

models can be trained for the three subjects by using three

visual features. Given a trained encoding model, the pre-

diction error associated with the functional connectivity

between every pair of ROIs is calculated using all video

samples:

errorij

1

n

Xn

k¼1

êk
ij � ek

ij

� �.
ek

ij

���
��� ð1Þ

Fig. 2 The visual patterns of RGB histogram, color moments,

HOOF, RGB-SIFT of an exemplar video clip. While RGB histogram

and color moments describe the video color distribution, the HOOF

characterizes the global motion information in the video and the

RGB-SIFT characterizes the local shape and spatial information.

(Color figure online)
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where êk
ij is the predicted eij

k for the k-th video sample.

Experimental results

Evaluation of visual features in feature space

We first performed a video classification test to evaluate the

distinctiveness of the proposed visual features. As for the

classifiers, we adopted the K-nearest neighbor (K-NN)

classifiers due to its simplicity and efficiency. The classifi-

cation test was performed on those 51 video clips with visual

features and the average precision in leave-one-out cross-

validation was calculated. Figure 3 shows the results of

different visual features which reflect their distinctiveness.

From the Fig. 3, we can see that the RGB-SIFT perform the

best, then followed by HOOF, color moments and RGB

histogram respectively.

Encoding accuracy

In terms of the encoding error defined in Eq. (1), we assessed

the proportion of relatively accurate predictions using dif-

ferent visual features and across different subjects. The

accumulative histogram curves of encoding error are shown

in Fig. 4. The x-axis in Fig. 4 is a predefined threshold for

error defined in Eq. (1) and the y-axis is the proportion

(against all the 63,903 functional interactions) of functional

connections with encoding error less than the error thresh-

old. Note that in Fig. 4, the threshold for error is only up to

100 % for the purpose of better visualization. The areas

under those curves in Fig. 4 are summarized in Table 1.

Based on the results shown in Fig. 4 and Table 1, a few

important points can be observed: (1) A number of the

functional connections can be predicted with relatively

high accuracy by the proposed encoding models. For

example in the first subject, 255, 87, 124 and 74 functional

connections can be predicted with error less than 20 % by

RGB-SIFT, HOOF, color moments and RGB histogram,

respectively. And the numbers in the second and the third

subject are 328, 155, 86, 23 and 295, 174, 135, 75,

respectively. (2) The number of accurately predicted

functional connections is the highest by using the RGB-

SIFT feature in all the three subjects, and followed by

using the HOOF, color moments and RGB histogram in

turn. This result may be explained by two reasons. One is

that in the computer vision community it is widely

accepted that RGB-SIFT which characterizes meaningful

shape and spatial information of visual stimuli is more

complex than other features. Thus the comprehension of

RGB-SIFT may involve more brain regions and their

functional interactions. The other reason is that it has also

been reported in (Van De Sande et al. 2010) and validated

in ‘‘Evaluation of visual features in feature space’’ section

that the RGB-SIFT performs better than other features in

recognizing objects and scenes. The distinctiveness of the

feature may be an inherent factor to determine its encoding

accuracy. (3) Inter-subject variation can be observed,

Fig. 3 Evaluation of visual descriptors in feature space. The bar-plot

indicates the average precision of video classification in leave-one-out

cross-validation using these visual features

Fig. 4 Encoding accuracy results using DICCCOL: Accumulative

distribution of the relatively accurate predicted connections in

different feature spaces and subjects against a predefined threshold

for encoding error (error in Eq. (1). The x-axis is a predefined

threshold for error defined in Eq. (1) and the y-axis is the proportion

(against all the 6,3903 functional interactions) of the functional

connections with encoding error less than the error threshold

Table 1 Area under the accumulative distribution curves in Fig. 4

RGB-SIFT HOOF Color moments RGB

Histogram

Subject1 0.0365 0.0220 0.0170 0.0043

Subject2 0.0213 0.0128 0.0058 0.0033

Subject3 0.0136 0.0101 0.0061 0.0026
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which may be caused by the different capabilities of the

subjects in recognizing objects and scenes. We will provide

more details about inter-subject consistency of the encod-

ing model in the next subsection.

Encoding consistency across subjects

The number of correctly encoded functional connections

for each visual feature is different across subject. Here, a

functional connection is regarded as ‘‘correctly encoded’’ if

its corresponding prediction error is below a predefined

threshold. Then, we use the overlap ratio of correctly

encoded functional connections across subjects to assess

the inters-subject consistency of the encoding model for a

visual feature. In this paper, we assume that two functional

connections from different subjects are equivalent if both

of them are in the same type of sub-network interactions.

For example, two functional connections may relate to

different DICCCOL ROIs in two subjects. However, if

both of them are functional interactions between visual and

attention system of the human brain, they are treated as

‘‘equivalent’’. Figure 5a shows the number of overlapped

functional connections against a threshold for error across

the three subjects for different feature spaces. Figure 5b

shows the overlap ratio, which is calculated as the ratio

between the number of overlapped functional connections

and the total number of correctly encoded functional con-

nections for a specific subject. Again, the threshold for

encoding error is up to 100 % for better visualization.

From Fig. 5 we can see that the encoding model based on

the RGB-SIFT shows the best inter-subject consistency

followed by the ones based on HOOF, color moments and

RGB histogram, especially when the encoding error is small

(e.g., less than 30 %). For example, when the encoding error

is less than 30 %, the average overlap rate in the four feature

space is 0.3708, 0.3088, 0.1881 and 0.1020, respectively.

Unlike the performance metric of encoding accuracy in

subsection ‘‘Evaluation of visual features in feature space’’,

the inter-subject consistency of the encoding models is only

related to the capability of the corresponding feature set in

characterizing the content of the input video stimuli. In this

context, we may draw the conclusion that the RGB-SIFT

outperforms HOOF, color moments and RGB histogram in

describing video content from the perspective of functional

brain responses prediction. Likewise, the work in (Van De

Sande et al. 2010) and section ‘‘Evaluation of visual features

in feature space’’ also demonstrated that the RGB-SIFT

perform better than the other features in recognizing objects

and scenes from images and videos.

Conclusion

In this paper, we proposed an fMRI encoding model to

predict brain network responses to free viewing of videos.

The brain responses were quantified as the functional

interactions in large-scale brain networks identified by

recently developed and validated DICCCOL brain land-

marks localization system. The encoding model which

maps the feature space to the brain response space was

trained based on LSSVR. Our experimental results dem-

onstrated that the brain network responses to video stimuli

can be robustly and accurately predicted across both dif-

ferent feature spaces and different subjects.

Our major contributions are summarized as follows. (1)

We adopted a number of representative visual features in

computational vision analysis community to represent a

Fig. 5 Encoding consistency across different subjects. a The number

of overlapped functional connections against a predefined threshold

for error (Eq. 1) across the three subjects for different feature spaces.

b The overlap ratio for different subjects and feature spaces
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video sample. As mentioned before, the computational

representation of stimuli in feature space is quite limited.

The idea of taking advantage of visual features in com-

putational vision community will greatly benefit the

encoding and decoding studies. (2) We firstly employed the

DICCCOOL system to explore the consistency of the

encoding and decoding models across different subjects.

The remarkable reproducibility and predictability of

DICCCOLs in individual subject demonstrate great

advantages of DICCCOL for inter-subject generalization.

(3) Our study revealed the feasibility of using fMRI-based

brain encoding techniques to evaluate visual features.

Beyond neuroimaging, our results of testing visual features

in encoding model are consistent with computational

community which implies inherent correlations between

the discriminativeness and the encoding capability of a

feature.

In future, we will improve the proposed work in the

following aspects. First, both the number of participants

and the number of natural-stimulus video clips are rela-

tively small. In the future, we will collect a larger scale

dataset which includes more participants and uses more

video clips as external stimuli, are repeat the studies pro-

posed in this paper. Second, a number of structured visual

features in computational community will be applied.

Meanwhile, we will derive and test more brain response

features reflecting the brain’s comprehension of video

stimuli. Finally, other alternative brain mapping tech-

niques, such as sparsity constrained regression model, will

be investigated and compared with the LSSVR algorithm

used in this study. We believe that the combination of

functional brain imaging and computational vision research

will offer great benefit to both fields.
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