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Abstract A modular small-world topology in functional

and anatomical networks of the cortex is eminently suitable

as an information processing architecture. This structure

was shown in model studies to arise adaptively; it emerges

through rewiring of network connections according to pat-

terns of synchrony in ongoing oscillatory neural activity.

However, in order to improve the applicability of such

models to the cortex, spatial characteristics of cortical

connectivity need to be respected, which were previously

neglected. For this purpose we consider networks endowed

with a metric by embedding them into a physical space. We

provide an adaptive rewiring model with a spatial distance

function and a corresponding spatially local rewiring bias.

The spatially constrained adaptive rewiring principle is able

to steer the evolving network topology to small world sta-

tus, even more consistently so than without spatial

constraints. Locally biased adaptive rewiring results in a

spatial layout of the connectivity structure, in which topo-

logically segregated modules correspond to spatially seg-

regated regions, and these regions are linked by long-range

connections. The principle of locally biased adaptive

rewiring, thus, may explain both the topological connec-

tivity structure and spatial distribution of connections

between neuronal units in a large-scale cortical architecture.

Keywords Modular small world networks � Coupled

chaotic maps � Adaptive rewiring � Synchronization �
Spatial self-organization

Introduction

Small-world networks, i.e. networks that are highly clus-

tered but at the same time integrated, are remarkably pre-

valent, both in nature and in man-made systems. Small-

worlds have been observed in contexts such as protein

networks (Atilgan et al. 2004), amino acids (Vendruscolo

et al. 2001), social networks (Travers and Milgram 1969),

metabolic networks (Wagner and Fell 2001), ecological

networks such as food webs (Montoya and Solé 2002), and

in the commonly studied neural network of Caenorhabditis

elegans (Achacoso and Yamamoto 1991). Also, the mental

lexicon has small-world structure, according to the graph of

co-occurrences of words in sentence contexts (Ferrer i

Cancho and Solé 2001). The properties of this structure

influence the speed of retrieval from the mental lexicon for

recognition (Chan and Vitevitch 2009) and production of

spoken word (Chan and Vitevitch 2010), as well as long

and short term memory retrieval (Vitevitch et al. 2012).

The observation that small-world characteristics are per-

vasive in mental representation raises the issue of whether this
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property is a consequence of the architecture underlying

information processing. Most importantly in this respect, such

networks have recently been observed in the anatomical and

functional connectivity of the human brain (He et al. 2007;

Sporns 2011; Bullmore and Bassett 2011; Gallos et al. 2012).

In addition, the latter has a modular topology (Rubinov et al.

2009b). This topology describes a small-world network that

may be partitioned into a community structure in which dis-

tinct regions can be distinguished as having dense intracon-

nections and sparse interconnections. Such a structure supports

dynamics that facilitate information processing (Latora and

Marchiori 2001); whereas segregation facilitates independent

processing within modules, integration allows for the fast

propagation of information between them.

Segregation in small-world networks is expressed by a

high value of the average clustering coefficient, C, a

quantity which measures the degree of local connectedness

around individual nodes. Integration is expressed by a low

value of average shortest path length, L. This measure

describes the efficiency with which all nodes of a network

are interconnected, and is therefore a measure of global

connectedness. To qualify as a small-world network the

value of average clustering coefficient must be consider-

ably greater than that for a corresponding (similar or equal

number of nodes and connections) random network, such

that C � Crandom, whereas the value of average shortest

path length must be relatively close to the value of that for

a corresponding random network, such that LJLrandom.

In order to understand the principle by which modular

small-world structure is formed in the brain, before

developing realistic and therefore complex model pro-

cesses, very simple, idealised ones are sometimes helpful.

They allow us to understand which features are robust to

variations in the specifics of the model process. Let us

therefore consider whether some popular procedures for

generating small-world structures would qualify as simple

models of the evolving networks in the brain.

Consider first Watts and Strogatz’ (WS) widely known

algorithm for obtaining topological small-world networks

(Watts and Strogatz 1998). It starts from an initially regular-

type lattice on the circle, which has a high clustering coef-

ficient and high average path length—the network has local

connectedness but is without global connectedness. The

algorithm selects each edge once, and rewires at random

with probability p. This type of rewiring results in phase

transitions of these two network characteristics. As the

probability for random rewiring increases from zero to one,

there is firstly a gain of global connectedness, and secondly a

loss of local connectedness. Within the interval between the

two transitions a small-world network exists since it has

both properties of global and local connectedness.

Despite its elegance, the WS algorithm cannot qualify as

a principle of how brain network structure is formed. The

assumed initial regular structure in the WS algorithm is not

supported by physiological evidence (Innocenti and Price

2005). Furthermore, although the resulting network struc-

ture is clustered, it is not modular. In addition, brain

structure is not fixed after a few rewirings, but is evolving

continuously. In the WS algorithm, continued rewiring

would create a fully random network. Finally, whereas in

the WS algorithm, the rewiring affects arbitrarily and

randomly chosen nodes, in brains rewiring is not arbitrary

but adaptive: the creation and elimination of synapses is a

result of patterns of neural activity (Zhang and Poo 2001).

A simple model process that satisfies the requirements

of random initial structure and adaptive rewiring was ini-

tially proposed a decade ago by Gong and van Leeuwen

(2004). It shares with the WS algorithm the robustness of

structure and reliability of the self-organization process

that yields a network with a small-world topology. The

process begins from a network of randomly coupled nodes;

the probability of a connection between pairwise nodes is

uniform. The dynamics of nodes are governed by identical

nonlinear maps operating in a chaotic regime. Connections

are then iteratively rewired according to what can be

regarded as a realisation of the principle that neurons which

‘‘fire together, wire together’’, as proposed by Hebb (1949);

adaptive rewiring according to the degree of temporal

pairwise synchrony of activity between pairs of nodes.

Repeatedly pruning connections between asynchronous

nodes, while establishing new connections between syn-

chronous ones gradually shapes the network into a modular

small-world (Rubinov et al. 2009b).

In order to address the universality of the model, sub-

sequent developments have relaxed some of the original

constraints on the adaptive rewiring process, which

improved the functioning of the model process. Instead of

using coupled maps, model neurons have been introduced

(Kwok et al. 2007), resulting in more realistic patterns of

activity, including transient bursting observed in develop-

ing neuronal architectures (Nakatani et al. 2003). Network

size and connectivity density—the number of nodes and

the number of connections relative to the maximum pos-

sible number of connections, respectively—were not

required to be constant, but were allowed to increase by

random attachment (Gong and Leeuwen 2003). This

resulted in networks that have, in addition to small-world,

scale-free characteristics (Barabási et al. 1999). The psy-

chological relevance of this property is clearly in evidence

in the mental lexicon (Ferrer i Cancho and Solé 2001;

Vitevitch et al. 2012).

The robustness of the adaptive rewiring process was

previously investigated under changes of the network size

and connectivity density (van den Berg et al. 2012). The

process of forming small-worlds has a critical lower

boundary with respect to the neural connectivity. If
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connections become too sparse, no small-world network

results. However, the critical boundary was only a small

scaling factor above the percolation threshold for random

networks. This implies that the process is close to opti-

mality with respect to efficiency of connection usage. In

addition, the behaviour of the network at or below this

critical threshold was related to some important charac-

teristics of brain diseases such as schizophrenia (van den

Berg et al. 2012), including phenomena such as intermit-

tent recovery and hyperglobality (Rubinov et al. 2009a).

Above this critical lower boundary, small-world emergence

has been shown to be robust with respect to network size

n ¼ 300; 400; . . .; 1; 000.

Despite these developments, there remains an important

limitation to the applicability of adaptive rewiring as a

model of real, biological cortices: adaptive rewiring is

missing any notion of metric space. Embedding this process

into a metric space may allow models to incorporate realistic

characteristics of cortical networks, such as metabolic cost

and wiring length (Laughlin et al. 1998; Cherniak 1994).

The unit sphere is chosen as the space in which to

embed our adaptively rewiring networks. The sphere serves

as a highly idealized representation of the sheet-like

structure of the cortex that, in combination with the nodes

being distributed as evenly as possible over its surface,

leads to a spatial embedding with maximal symmetry and

isotropy. These properties serve to minimize any biases due

to the spatial embedding on the rewiring dynamics of

individual nodes.

We then incorporate the cost of spatial distance into the

adaptive rewiring process. Our choice of distance cost

functions is motivated by the relative abundance of short-

range corticocortical connections over long-range ones (He

et al. 2007; Bullmore and Bassett 2011; Watts and Strogatz

1998). Accordingly, we use cost functions which penalise

long-range connections and encourage short-range con-

nections. We consider three monotonically increasing cost

functions of distance: linear, concave up, and concave

down. The linear cost function accumulates cost uniformly

over distance while the concave up function accumulates

cost more rapidly at longer distances, and vice versa for the

concave down function. Thus, relative to the linear cost

function, concave up provides an increased penalty for

long-range connections, whilst concave down provides a

reduced penalty on long-range connections.

We consider the effect, as seen by simulation study, that

these different cost functions of distance have on the evo-

lution of the network in space under an adaptive rewiring

process. In Materials and Methods we describe the spatially

biased rewiring process, define spatially adaptive rewiring

functions, and introduce topological and spatial measures of

network structure. In the Results section we present mea-

sures of the evolution of the topological and spatial structure

of networks obtained from simulations of the spatially

biased rewiring processes along with the non-spatial one.

This is repeated for changes in connectivity density. In the

Discussion the outcomes of the results are summarised. The

‘‘Appendix’’ includes our method for generating evenly

distributed points on a sphere and verification of its accu-

racy, along with formal definitions of network measures.

Materials and methods

The evolving networks we study in this paper have n ¼ 500

nodes and E undirected edges, with E ¼ j nðn�1Þ
2

where j 2
ð0; 1� is the connection density; j takes the value of 0.1, i.e.

10 % connectivity density, except for our study of depen-

dence on connection density where it ranges from 2.5 to

5 %. Previous non-spatial implementations of the adaptive

rewiring process with j ¼ 0:1 were found to yield small-

world structure (Gong and van Leeuwen 2004; Berg and

Leeuwen 2004).

The n nodes of the network are assigned positions on a

unit sphere that are approximately evenly distributed over

the surface with sufficient accuracy for our purpose. To

distribute the n points on a sphere, we use a simple iterative

algorithm based on repulsion. Beginning from an initial set

of points drawn randomly from a uniform distribution over

the sphere, on each iteration the point ‘‘most central’’ is

selected, all other points are then repelled by a linearly

dampening force function. See ‘‘Appendix 1’’ for details of

implementation. Individual approximations of evenly dis-

tributed points on the sphere are used for independent runs.

As reference points for network structure, we also apply

network measures to a random network and a regular type

network on the sphere, with the same n and j as our evolving

networks. The random graph is generated by selecting E

pairs of vertices uniformly at random from all possible pairs

and connecting each pair with an edge (Newman 2010).

Note that the graph will (with very high probability) be

connected if E� log ðnÞ
n

(Bollabas 1985), which is the case

for all networks we study here. The regular type network is

constructed such that each node is connected to its k ¼ jn

nearest neighbours on the unit sphere. Note that, unlike the

ring-like regular networks used by Watts and Strogatz

(1998), it is not the case that Lregular � Lrandom for our regular

networks because of the spherical geometry and the rela-

tively high connectivity density of our networks.

Dynamics and rewiring rule

The dynamics upon which rewiring is based is a well-

established class of dynamical systems, that of coupled

maps (Kaneko 1993; Atmanspacher and Scheingraber
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2005). On these networks, the nodes are assigned identical

nonlinear maps f : ½�1; 1� ! ½�1; 1�. The states of the

nodes are updated iteratively using the following diffusive

coupling scheme:

xiðt þ 1Þ ¼ f ðxiðtÞÞ þ
�

jN ij
X

j2N i

½f ðxjðtÞÞ � f ðxiðtÞÞ�; ð1Þ

for i ¼ 1; 2; . . .; n, � is the coupling strength, N i denotes

the set of neighbours of node i, i.e. the set of all nodes that

connect to node i, and jN ij is the cardinality of the set N i,

i.e. the number of neighbours to node i. Connections are

undirected, i.e. i connects to j if and only if j connects to i.

Function f is the logistic map

f ðyÞ ¼ 1� ay2

with parameter a 2 ½0; 2�. As demonstrated in Figure 2 of

Rubinov et al. (2009b), the logistic map can be considered

as a reduced model, constructed using a Poincaré section,

of a chaotic model of neuronal population activity

(Breakspear et al. 2003). Since we are interested in popu-

lation activity, this map was preferred as a model over

others, such as Rulkov (2002), that represent individual

neuron spiking activity. It is easy to verify that for

� 2 ½0; 1�, xð0Þ ¼ ðx1ð0Þ; . . .; xnð0ÞÞ 2 ½�1; 1�n implies

xðtÞ 2 ½�1; 1�n for all t� 0 so the dynamics are well-

defined in forward time. The parameters used in this study

are a ¼ 1:7, for which the dynamics yðt þ 1Þ ¼ f ðyðtÞÞ are

chaotic, and � ¼ 0:4 which previous studies have shown to

yield modular small-world structure in non-spatial net-

works of this size (van den Berg et al. 2012).

The network rewiring procedure uses a cost function so

as to favour edges of low cost over edges of high cost when

rewiring. This cost function,

Rði; j; tÞ ¼ cijðtÞSðdijÞ;

is the product of an activation cost cijðtÞ and a spatial cost

function SðdijÞ . The activation cost, cijðtÞ, is the distance

between the states of two nodes i and j at time t.

cijðtÞ ¼ jxiðtÞ � xjðtÞj:

The spatial cost, Sð�Þ, is a monotonic function of dij, the

distance between nodes i and j defined as the length of the

shortest arc on the sphere connecting i and j. We consider

the following spatial cost functions:

SðDÞ ¼

D linear

expðDÞ � 1 exponential

ðconcaveupÞ

log
D

Dmin

þ 1

� �
logarithmic

ðconcavedownÞ

8
>>>>>>>><

>>>>>>>>:

for Dmin ¼ mini;j2N ;i 6¼j dij, the minimal pairwise distance

amongst all nodes on the sphere. We will refer to the

adaptive rewiring function, and the corresponding process

of rewiring, by the spatial cost function used, e.g. loga-

rithmic cost function will refer to the adaptive rewiring

function with a logarithmic cost function of distance.

Likewise, logarithmic rewiring process will refer to the

rewiring process equipped with a logarithmic cost function.

For ease of comparison, Fig. 1 is presented with S scaled

such that the ranges of the spatial cost functions are equal.

The ordering of node pairs induced by R, and hence the

outcomes of Steps 2.2 and 2.3 described in the following

procedure, are invariant to scaling of the image of S.

For N ¼ f1; 2; . . .; ng the set of nodes, R : N �N !
R0þ , (R0þ the set of non-negative real numbers), we define

the following rewiring process:

Step 0: Generate a random graph with n nodes and E

edges.

Step 1: Take xð0Þ 2 ½�1; 1�n randomly from a uniform

distribution and iterate the dynamics (1) for

t ¼ 0; 1; 2; . . .; T � 1.

Step 2: Rewiring:

1. select a pivot node p 2 N randomly from a uniform

distribution

2. determine the rewiring candidate c ¼ arg minj2Nnfpg
Rðp; j; TÞ

3. go to Step 3 if c 2 N p. If c 62 N p, update the graph

by creating an edge between p and c and removing

the edge between p and c ¼ argmaxj2N p
Rðp; j;TÞ.

Step 3: Repeat from Step 1 until 3� 105 iterates have

been reached.

In the case of ties in Steps 2.2 and 2.3, i.e. multiple can-

didates to rewire to or disconnect from, the rewiring can-

didate is chosen at random.

A minimal number of time steps T is needed in order to

minimise the effect of initial transient activity after

rewiring; T needs to be sufficiently large such that the

choice of xð0Þ has minimal bias on the results. The relation

between dynamics and structure during the rewiring stage

is thus, effectively, independent of initial conditions. The

value of T ¼ 1; 000 as used in this study has previously

shown to be sufficient for this purpose (Rubinov et al.

2009b).

For comparison we include as a baseline the previously

mentioned rewiring process of Gong and van Leeuwen

(2004), i.e. the non-spatial cost function in which spatial

distance has no influence on the costs of rewiring and thus

SðDÞ is constant. Without loss of generality we take

SðDÞ � 1.
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Across all versions of the method, in so far rewiring is

based on non-spatial preferences, it was conceived in

analogy to Hebbian learning. Hebbian learning relies on

two mechanisms; the first is that synapses are strength-

ened according to correlated deviations from the mean

firing rate (Sejnowski and Tesauro 1989). The second is

that synaptic plasticity is competitive, where some syn-

apses are strengthened, others are weakened (Song et al.

2000). Our rewiring function uses similar mechanisms.

The mechanism for rewarding synchrony is the activation

cost cijðtÞ. Even though, rather than synchrony over a

window of time, this mechanism follows instantaneous

synchrony, it was shown in Rubinov et al. (2009b) that

according to this mechanism, the evolving architecture

reflects the long-term patterns of activity. The method of

conservative rewiring then allows for competition among

nodes.

Measures of network structure

Here we describe the measures used to characterize net-

work structure. Formal definitions are given in ‘‘Appendix

2’’. All measures (except the network wiring cost) are

discussed in (Rubinov and Sporns 2010) and implemented

using the MATLAB scripts they provide. We first describe

measures based solely on the topological structure of the

network, then measures which quantify the spatial

organisation.

Clustering coefficient (C) provides a measure of network

segregation. Denote as a candidate triangle pivoting on

node i each pair of nodes adjacent to i, and as an actual

triangle pivoting on i each pair of nodes adjacent to i that

are themselves connected. The clustering coefficient Ci for

vertex i is then the ratio of the number of actual triangles

pivoting on i to the number of candidate triangles pivoting

on i. The clustering coefficient C for the network is the

average of Ci over i.

Average shortest path length (L) provides a measure of

network integration. A path of length l connecting two

given nodes i and j is a sequence of vertices i ¼
i0; i1; . . .; il ¼ j with edges fik; ikþ1g connecting successive

pairs of vertices. The average shortest path length of the

network is the average over all pairs i and j (i 6¼ j) of the

length of the shortest path connecting i and j. For discon-

nected pairs of nodes the path length is infinite. Such pairs

are excluded from calculation of the average shortest path

length. However, the connectivity densities we have used

are above the corresponding percolation threshold and thus

guarantee that all vertices belong to a single connected

component.

Modularity (Q) provides a means of identifying com-

munity structure in a network. Q measures the extent to

which a given partition of a network into non-overlapping

communities (or modules) of nodes has more intramodular

connections and less intermodular connections than

expected for a random network with the same degree dis-

tribution (Newman 2006). An optimal community structure

for a given network can then be defined as one that max-

imises Q. Various algorithms have been suggested for

finding optimal or near-optimal partitions. We use New-

man’s community structure detection algorithm (Newman

2004). Q is always strictly less than one. For a random

network the maximal Q is close to zero, while a Q close to

one can be obtained if the network can be partitioned into

many modules of similar size with many intramodular

connections and few intermodular ones. A Q above about

0.3 is a generally good indicator that genuine modular

structure has been found (Newman 2004). However, a

regular lattice graph can give a Q above 0.3 even though it

has no genuine module structure: it admits many, very

different partitions that are equally good (see ‘‘Spatial

modularity’’ section).

Edge betweenness (EB) provides a measure of the cen-

trality of a given edge in a network. Each edge is assigned a

value equal to the fraction of all shortest paths in the net-

work that include that edge. High betweenness edges have

a considerable effect on the integration of the network

through their effect on the average shortest path length. We

will find it useful to look at edge betweenness in relation to

spatial distance, in order to investigate to what extent

spatially long-range edges contribute towards network

integration.

Small-worldness (R) provides a single value involving

both clustering coefficient and average shortest path length.

The measure of small-worldness is calculated as the nor-

malised ratio of clustering coefficient and average shortest

Fig. 1 Cost functions of spatial distance: linear in blue, exponential

in green, logarithmic in red. (Color figure online)
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path length, where C and L are normalised by the values of

clustering coefficient Crand and average shortest path length

Lrand calculated for a random network. The measure of

small-worldness was proposed by Humphries and Gurney

(2008) as a method for determining network canonical

equivalence; however, this measure has been criticised by

Rubinov and Sporns (2010) for yielding false positives

with highly segregated but poorly integrated networks.

However, in combination with other measures, we can

safely use this simple measure.

Network wiring cost (M) provides a measure of spatial

localisation of edges. It is calculated as the normalised

average edge length. Small M corresponds to high spatial

localisation and vice versa.

Weighted clustering coefficient (Cw) provides a measure

of spatial segregation (also referred to here as spatially

localised clustering or spatial clustering) by combining

spatial distance with clustering. It uses a weighted adja-

cency matrix in which the weight of an edge is a linearly

decreasing function of edge lengths in ½0; p� normalised to

the range ½0; 1�. The weighted clustered coefficient Cw
i for

vertex i is calculated as the sum over all triangles centred

on i of the geometric mean of the three edge weights,

divided by the number of candidate triangles pivoting on i.

The weighted clustering coefficient Cw for the network is

the average of Cw
i over i.

Results

The network measures are reported for rewiring processes

under the given cost functions. The network structure is

sampled every 500 iterations of the process, starting from

the initial random network and ending after 3� 105 itera-

tions. We conduct five such runs for each cost function

(linear, exponential, logarithmic, and non-spatial). Inde-

pendent instances of the random and regular type networks

are constructed for each of the five runs.

This section is organised as follows: First we discuss

obtained topological structure and show all rewiring pro-

cesses to yield small-world architecture in ‘‘Topological

small-worldness’’ section, then the effect of cost functions

on spatial localisation of edges and clustering in ‘‘Spatial

localization’’ section. This is followed by an examination

of the relationship between edge betweenness and edge

length in ‘‘Edge betweenness and distance relationship’’

section. Then we report on the degree of spatial modu-

larity of the emergent small-world network in ‘‘Spatial

modularity’’. Finally, we report on the dependence of

small-world emergence on connectivity density in

‘‘Dependence of small-world emergence on connection

density’’ section.

Topological small-worldness

Figure 2a, b show the evolution of the clustering coeffi-

cient C and average shortest path length L for the non-

spatial and spatial rewiring processes averaged over five

runs. As shown in Fig. 2a, the non-spatial and all spatially

constrained adaptive rewiring processes yield a network

that is clustered: for the final network structure, adaptive

rewiring processes yield values of C that are greater than

that of the regular lattice. Figure 2b shows that the values

of L for final network structure for the non-spatial and

spatially constrained adaptive rewiring processes are less

than that of the regular lattice, whilst exhibiting a modest

increase over that of the random network. There is, on the

whole, little difference between the final C and L values for

the non-spatial and spatial processes. We may therefore

Fig. 2 Evolution of a the clustering coefficient values C averaged

over five runs; and b the average shortest path length values L

averaged over five runs; for the non-spatial and spatial rewiring

processes, regular lattice on the sphere, and random network

484 Cogn Neurodyn (2014) 8:479–497
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conclude that, like the non-spatial rewiring process, the

spatially biased rewiring ones successfully reach small-

world topology. Furthermore, considering the evolution of

the average values of C and L, the linear and exponential

rewiring processes show faster initial rates of increase than

the non-spatial and logarithmic ones. This suggests that

Fig. 3 Evolution of a the

clustering coefficient; and b the

average shortest path length; for

the non-spatial and spatial

rewiring processes, regular

lattice on the sphere, and

random network. Individual

runs in blue and their average

value in red. (Color figure

online)
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factoring in specific spatial constraints of a linear or

exponential type may facilitate reaching a small-world

topology in the system.

Figure 3a, b show the evolution of C and L for indi-

vidual runs of the rewiring processes. The linear and

exponential cost functions lead to rewiring processes that

exhibit less variability between runs than the logarithmic

and non-spatial ones throughout the full course of rewiring.

Factoring in spatial constraints of a linear or exponential

type therefore enhances the consistency of the small-world

construction.

Spatial localization

Figure 4a, b show the evolution of the spatially-weighted

clustering coefficient Cw and the network wiring cost M for

the non-spatial and spatial rewiring processes averaged

over the five runs. We see from Fig. 4a that all spatially

biased rewiring processes yield values of Cw for final

network structure that are well above the value of the non-

spatial process, which in turn is still considerably greater

than the random network on the sphere. In particular, the

linear and exponential rewiring processes yield values of

Cw for final network structure that are greater than the

regular lattice and, thus, yield small-worlds with higher

degrees of spatial clustering than the regular lattice. The

final value of Cw for the logarithmic rewiring process,

however, is slightly less than that of the regular lattice.

In Fig. 4b, as one would expect, since connections in a

regular lattice are optimal for spatial localisation, the reg-

ular lattice has the lowest value of M amongst all the

spatial rewiring processes. However, those of the linear and

exponential rewiring processes are close to that of the

regular lattice. On the other hand, the logarithmic rewiring

process yields values of M for final network structure that

are well above the values for linear and exponential ones.

The value of M for the non-spatial process is approxi-

mately equal to that of the random one, and corresponds to

an average edge length of p
2
, as one would expect, this being

the average distance between randomly chosen points on

the sphere.

Spatially biased rewiring processes that have a linear or

exponential cost function of distance, therefore, facilitate

spatial localisation and spatial clustering better than ones

with a logarithmic cost function. Furthermore, considering

the evolution of the average value of Cw and M, the linear

and exponential rewiring processes exhibit similar initial

rates of change and drive the network to a spatial small-

world more rapidly than the logarithmic one.

Figure 5a, b show the evolution of Cw and M for indi-

vidual runs of the rewiring process. Similar to Fig. 3a, b,

the linear and exponential rewiring processes exhibit less

variation for values of Cw and M than the logarithmic and

non-spatial ones. Therefore, arguably the linear and expo-

nential rewiring processes are most consistent in reaching a

spatially localised and spatially clustered small-world

topology.

We may conclude that spatially biased rewiring pro-

cesses with linear or exponential cost functions produce

spatially localised and clustered small-world topologies

and achieve this more effectively, quickly, and consistently

that the logarithmic-based process.

Edge betweenness and distance relationship

To investigate the relation between topological and spatial

structure of the network, we focused on the evolving rela-

tionship between edge betweenness and spatial distance.

Fig. 4 Evolution of a the spatially-weighted clustering coefficient

vaues Cw averaged over five runs; and b the network wiring cost

values M averaged over five runs; for the non-spatial and spatial

rewiring processes, regular lattice on the sphere, and random network
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Figure 6a shows the linear correlation coefficients q
between edge betweenness and edge length for all edges

generated by our models. For the non-spatial rewiring

process, as one would expect, there is no correlation

between edge betweenness and spatial distance. As for the

spatially biased rewiring processes, the linear and

Fig. 5 Evolution of a the

spatially-weighted clustering

coefficient values Cw; and b the

network wiring cost values M;

for the non-spatial and spatial

rewiring processes, regular

lattice on the sphere, and

random network. Individual

trials in blue and averaged value

of five runs in red. (Color figure

online)
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exponential cost functions yield similar time-courses for q
throughout the full course of rewiring. The time-course

shows an initial peak followed immediately by a trough

and then a plateau. For the logarithmic rewiring process the

correlation between edge betweenness and distance is

much weaker and even exhibits a slightly negative trough

prior to a gradual increase to a small positive value.

Scatter plots of edge betweenness and spatial distance at

selected rewiring iterations reveal in more detail the

evolving relation between topological and spatial structure.

We uniformly randomly selected 4 % of the nodes from the

combined five runs and plotted for all of their connections

their values of edge betweenness against spatial distance at

five different moments during the rewiring process: the

initial moment; the moment when the peak occurs for the

linear and exponential rewiring processes; the moment

when the trough occurs for the linear and exponential

rewiring processes; at the start of the plateau of the linear

and exponential rewiring processes; and the final moment.

The 2nd, 3rd, and 4th moments sampled are indicated in

Fig. 6b by vertical lines.

In Fig. 7:

• Row 1 depicts the initial random structure.

• In Row 2 the linear and exponential rewiring processes

exhibit a positive slope in their scatter plots whilst the

non-spatial and logarithmic rewiring processes do not;

all rewiring processes show the emergence of a small

number of edges with somewhat higher values of edge

betweenness.

• In Row 3 edges of even higher betweenness appear; for

the linear and exponential rewiring processes, predom-

inantly the short-range edges yield the greatest values

of betweenness, while for the non-spatial and logarith-

mic rewiring processes, edges with high betweenness

are present over the full range of edge lengths.

• In Row 4 the linear and exponential rewiring processes

show what appears to be a newly emerged order; edges

of still higher betweenness appear that are long-range,

while long-range edges that are of low betweenness

disappear. For the non-spatial and logarithmic rewiring

processes, edges with high betweenness mostly remain

of random edge length. (An apparent excess of high

betweenness edges at mid-range lengths for the non-

spatial process is merely because, given the geometry

of the sphere, such distances are most common).

• In Row 5 the scatter plots show a strong resemblance to

those in Row 4. Only the logarithmic rewiring process

shows noticeable change: there are now more long-range

high betweenness edges but still many short-range ones,

and still many long-range edges of low betweenness.

We see that for the non-spatial case, there is, as one would

expect, no trend in the correlation between edge

betweenness and edge length. The linear and exponential

rewiring processes show that after the initial trough, edges

of high betweenness and large distance are present

throughout the remaining course of rewiring (but not nec-

essarily the same edges throughout). For the linear and

exponential rewiring processes the network is strongly

affected by the spatial constraint and quickly comprises

mostly short-range edges of low betweenness along with a

few long-range edges of high betweenness. By contrast, in

the logarithmic rewiring process, network structure is not

affected by spatial constraints to such an extent and spatial

localisation proceeds more slowly.

Spatial modularity

We now examine the degree of modularity in our networks

and the spatial organisation of the modules.

Fig. 6 Linear correlation coefficient q between edge betweenness

and spatial distance averaged over five runs versus rewiring iterations.

a The full course of rewiring; and b early course of rewiring
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Figure 8a, b show the evolution of the modularity values

Q for the non-spatial and spatial rewiring processes aver-

aged over five runs, and for individual runs, respectively.

As shown in Fig. 8a, all rewiring processes yield a highly

modular network. The spatially biased rewiring processes

yield values of Q for final network structure that are greater

than that of the non-spatial one. In addition, the initial rates

of Q for the linear and exponential rewiring processes are

greater than those of the non-spatial and logarithmic ones.

Figure 8b shows the evolution of Q for individual runs of

the rewiring processes. As with previous measures we see

that the linear and exponential rewiring processes exhibit

less variability than the non-spatial and logarithmic ones.

Linear or exponential cost functions therefore provide a

mechanism that achieves a modular network structure to a

greater extent, more rapidly, and with less variability

compared to the non-spatial or logarithmic rewiring

processes.

Figure 9 shows the adjacency matrices of the final net-

work structure when columns and rows are permuted such

that the connections between nodes within the same mod-

ule are represented as blocks along the diagonal. We see

that for all cases a modular network structure emerges:

densely connected subsets of nodes and a sparse connec-

tivity between those subsets. For individual runs, both the

linear and exponential rewiring processes are more con-

sistent between runs than the non-spatial and logarithmic

ones. For all spatial rewiring processes, but more so for

linear and exponential than for logarithmic ones, there exist

more modules and there is less variation between the sizes

of modules, compared to the non-spatial rewiring process.

To show how the modular structure corresponds to the

spatial organisation of the network, Figs. 10 and 11 rep-

resent typical networks resulting from the linear and log-

arithmic rewiring processes with nodes coloured according

to the module they belong to. The exponential case yields

results very similar to the linear one, hence for illustration

we only present the case of the linear rewiring process. For

the case of the linear rewiring process we see very little

spatial overlap of communities of nodes. This is contrasted

with the logarithmic rewiring process where modules are

less clearly separated. Therefore, for the linear and expo-

nential rewiring processes, modular topology indeed cor-

responds to a spatially modular structure, while this is not

so clear cut for the logarithmic one.

These results show that the linear and exponential

rewiring processes give rise to spatially modular small-

worlds, while the logarithmic small-worlds are less spa-

tially modular. We remark that the modularity algorithm

(Newman 2004) does not always find the partition into

modules that maximises Q. However we trust the modu-

larity results for the rewiring processes because, as Fig. 9

shows, the adjacency matrices have a clear block-diagonal

structure. In addition, we used an alternative algorithm for

Fig. 7 Scatter plots of edge betweenness versus spatial distance.

Betweenness values presented here were obtained by uniformly

randomly selecting 4 % of nodes from the combined five runs and

plotting the betweenness values of all their connections. Rows top to

bottom for rewiring steps, 1; 0:75� 103; 1:5� 104; 5� 104;

3� 105, columns are for different rewiring processes
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modularity, the Louvain algorithm (Blondel et al. 2008),

and obtained similar results. A case where the algorithm

(Newman 2004) performs poorly, however, is the regular

graph. While the algorithm consistently gave a modularity

value of around 0.3610, calculation of Q using spatially

modular partitions shown in Fig. 9b, c gave values of

0.4538 and 0.4219 respectively for the regular graph;

substantially higher than the value of 0.3610 found by the

algorithm.

Dependence of small-world emergence on connection

density

Edge density had been found in non-spatial networks to

have a critical threshold; as edge density falls below this

threshold the development of a high clustering coefficient

becomes first unreliable and then fails altogether (van den

Berg et al. 2012). Since adding spatial constraints was

shown to reduce the variability of the rewiring process, we

hypothesize that the localizing tendency of the spatial cost

functions shall reduce this threshold by promoting spatially

localised clusters as occurs in the regular network limiting

case. Accordingly, we investigated the dependence of

rewiring processes on the parameter of edge density.

We performed simulations of the linear, exponential,

and non-spatial rewiring processes with connectivity den-

sities in the set f2:5; 2:75; 3; . . .; 5g, using the same pro-

cedure as previous. The minimum, maximum, and average

values of C and L after 3� 105 rewiring iterations are

presented in Fig. 12 as functions of connectivity density.

For non-spatial rewiring, a connectivity density thresh-

old of approximately 4 % was required for networks of this

size to achieve self-organised clustering (Fig. 12a). Below

this, the clustering coefficient drops off, until, at a con-

nectivity density of approximately 3 %, it reaches that of a

random network. This result confirms what was previously

observed (Rubinov et al. 2009b). The average shortest path

length increases gradually as edge density decreases and at

the same rate as that of the random network but offset to a

somewhat higher level. Below 3 % the non-spatial rewiring

process remains, essentially random (Fig. 12b).

On the other hand, the linear and exponential rewiring

processes share a threshold for self-organised clustering

that is considerably lower than the non-spatial one. Simi-

larly, reduced threshold is also observed for the average

shortest path length of the linear and exponential rewiring

processes (Fig. 12c–f); at 2.5 % connectivity these pro-

cesses still yield small-world networks. Furthermore, pre-

liminary data for j 2 f0:01; 0:0125; 0:015; . . .; 0:025g
indicates that C for the linear and exponential rewiring

processes decreases gradually while remaining above that

of the random network; there is no sudden phase transition

of network structure toward random structure. Therefore,

the linear and exponential adaptive rewiring processes

yield small-world architecture for connectivity densities

well below that required by the non-spatial adaptive

rewiring process.

For j ¼ 0:1, our small-world networks differed from the

classic small-world example of WS based on the ring lat-

tice in that it was not the case that Lregular � Lrandom.

However as j approaches 0.025 we have Lregular �
LJLrandom since Lregular=Lrandom increases more than

L=Lrandom, and hence our small-world networks more

resemble the classic example of WS.

This point is illustrated in Fig. 13 by the small-world-

ness measure R, as a function of connectivity density. The

initial trend of R for the three rewiring processes for

Fig. 8 Evolution of the value of the modularity Q. a The average of

five runs; and b the individual runs; for the non-spatial and spatial

rewiring processes, regular lattice on the sphere, and random network.

Individual runs in blue and their average values in red. (Color figure

online)
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decreasing connectivity density is the same with R
increasing. However, below a connectivity density of

4.25 %, the value of R for the linear and exponential

rewiring processes continues to increase while that for the

non-spatial rewiring process begins to decrease until it

reaches the value of one, that of the random network. In

sum, for locally biased rewiring, the small-world effect is

more pronounced in sparser networks. The critical thresh-

old of edge density for self-organised clustering in a non-

spatial adaptive rewiring regime is indeed reduced when

adaptive rewiring becomes locally biased.

Discussion

We are aiming to understand the principles whereby the

large-scale information processing architecture of the cor-

tex takes shape in particular, the observation that this

structure consists of a large number of efficiently con-

nected clusters: a modular small-world. In the cortex, this

architecture exists within an essentially sheet-like structure,

in which the modules are spatially segregated, and their

links are long-range connections. We propose that this

network structure, and its spatial layout, take shape in a

process through which neural connections are rewired in

response to the patterns of dynamic synchronization in

ongoing neural activity. In a highly simplified model of the

functional architecture, starting from a random initial net-

work structure, a modular small world network gradually

emerges when connections are attached and detached,

depending on the presence or absence of pairwise syn-

chrony between activity in the nodes.

Previous adaptive rewiring models have considered

synchrony as the only rewiring criterion irrespectively of

the information processing architecture of the brain (Gong

and van Leeuwen 2004; Kwok et al. 2007; Berg and

Leeuwen 2004). Here we consider networks endowed with

metrics, a definition of distance between nodes, and study

the effect on the outcome of adaptive rewiring. We study

the effect of local bias on the rewiring of connections in a

highly simplified model process. Doing so allows us to

consider the effect of biological constraints such as

Fig. 9 Permuted adjacency

matrices that correspond to the

module structure of the non-

spatial, linear, exponential, and

logarithmic rewiring processes.

A point with coordinates ði0; j0Þ
is white if i0; j0 are are the

permuted indices of nodes i, j

that are connected; otherwise it

is black
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metabolic costs and wiring length. Factoring in a prefer-

ence for spatially local rewiring is cause for the modular

small world structure to be reached with greater robustness,

compared to rewiring based on synchrony alone. The

resulting network, moreover, consists of spatially segre-

gated modules, in which within-module connections are

predominantly of short range and their interconnections are

of long range. The spatially biased rewiring process,

therefore, might be considered as a principle for how the

large-scale architecture of the cortex is formed.

In our current, highly abstract model, a locally biased

Hebbian-like adaptive rewiring process is applied to a

network consisting of 500 nodes evenly distributed on a

sphere. Rewiring depended on the factors of synchrony

between pairwise unit activity and the spatial distance

between nodes. The procedure extends the adaptive

dynamical rewiring process of Gong and van Leeuwen

(2004) with a function that biases rewiring such that spa-

tially local connections are more likely. We considered

three functions to specify the costs of a given wiring

length: logarithmic, linear, and exponential.

For 10 % connectivity, all versions of the locally biased

rewiring process preserve the phenomenon of small-world

emergence found in the non-spatial one. Furthermore, the

linear and exponential ones yielded networks that are

spatially organised such that topologically segregated

regions correspond to spatially segregated regions, with

these regions being linked by long-range connections; that

is to say, a spatially modular small-world.

Locally biased adaptive rewiring improves the robust-

ness of network evolution from random to small-world

topology. Non-spatial adaptive rewiring processes are

Fig. 10 Final community structure of one run of the linear rewiring

process. a, b Opposite hemispheres. Nodes are coloured according to

the module to which they belong

Fig. 11 Final community of the logarithmic rewiring process. a,

b Opposite hemispheres. Nodes are coloured according to the module

to which they belong
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Fig. 12 Clustering coefficient, C, and average shortest path length L,

for a, b non-spatial; c, d linear; and e, f exponential cost functions as

function of edge density. Maximum, average, and minimum values

from the five independent runs are shown, along with values for the

corresponding random and regular graphs
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subject to a minimum connectivity density threshold,

below which the rewiring process does not achieve self-

organised clustering (Rubinov et al. 2009b). Locally biased

adaptive rewiring processes that have a linear or expo-

nential cost function, however, achieve self-organised

clustering for connectivity densities considerably lower

than this threshold.

The measure of edge betweenness in relation to spatial

distance enables us to relate hub nodes—nodes that par-

ticipate in a relatively high proportion of shortest paths—

with connections that are spatially long-range (since hub

nodes can be inferred from high betweenness edges). Pre-

viously, anatomical network hub nodes appeared random in

functional networks due to observed disparity between

structural and functional connectivity (Rubinov et al.

2009b). Now, however, we see hub nodes connect spatially

distant regions.

We conclude that a locally biased adaptive rewiring

function equipped with a linear or exponential cost func-

tion is capable of generating a spatially modular small-

world network. Thus, spatially constrained adaptive

rewiring schemes are sufficient to explain both the emer-

gence of topological connectivity structure and spatial

distribution of large-scale cortical architecture.

For further study, we hope to provide analytical results

that predict changes of network structure and which will

complement the simulation study we have presented.
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Appendix 1: Evenly distributed points on a sphere

There does not yet exist a solution to evenly distribute

points on a sphere for any number of points.

We thus devised the following iterative algorithm to

approximate an even distribution of 500 points on the

sphere.

Step 0: Initialise points at positions drawn randomly

from a uniform distribution on the unit sphere, with

coordinate vectors xi 2 R
3, i ¼ 1; . . .; n, and kxik ¼ 1.

Step 1: Define the crowdedness around a point i as

Ki ¼ ð
P

j 6¼i kxi � xjkÞ�1
. Choose the most crowded

point j such that Kj ¼ maxi Ki.

Step 2: Given point j, each other point k moves away

from j in the direction of the vector xk � xj, by an

amount determined by a linearly dampening function

Fjk ¼
a
c

exp ð�bkxj � xkkÞ

where b ¼ 5 determines how Fjk decreases over dis-

tance; large b means repelling force acts over a small

spatial distance and vice versa. A systematic trial and

error search found b ¼ 5 to be most successful. The

dampening coefficient a decreases linearly with aðtÞ ¼
1� t

T
for t ¼ 0; . . .; T � 1. The coefficient c ¼

ffiffi
n
2

p
maxk 6¼j exp �bkxj�xkk1ð Þ

� �
normalises F so that

F 2 0; a
ffiffi
2
n

q� �
, where 2ffiffi

n
p is the approximate distance

between nearest neighbours among an evenly distributed

set of points on the sphere.

Step 3: Project each point back onto the sphere:
xk�xj

kxkk .

Step 4: Repeat from Step 1 until
nðn�1Þ

2
iterates have been

reached.

For a set of finitely many evenly distributed points on the

sphere, the cumulative number of points when moving in

the azimuthal angle is a discrete approximation to the

surface integral with respect to the azimuthal angle. Thus,

we measure the accuracy of the approximated even distri-

bution of points on the sphere as the absolute error between

the cumulative number of points (normalised to unity) and

the surface integral (normalised to unity). This is calculated

for each point. Figure 14 shows the average value of

absolute error for all points at the same azimuthal angle as

a function of azimuthal angle.

We see in Fig. 14 that the average absolute error is

always less than 0.35 %. Since n ¼ 500, a 0.4 % error is

equal to 2
n

and hence corresponds to approximately 2 points

more or less than the expected cumulative number of points

at any given azimuthal angle given a uniform distribution.

Fig. 13 Small-worldness measure R averaged over five runs for non-

spatial, linear, and exponential rewiring processes as a function of

edge density
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Appendix 2: Network measures

Measures of clustering coefficient, average shortest path

length, weighted clustering coefficient, and edge

betweenness are taken from (Rubinov and Sporns 2010).

Clustering coefficient

Let aij be the entries of the adjacency matrix, i.e. aij ¼ 1 if i

connects to j, and aij ¼ 0 otherwise. The degree of a node

with undirected connections is calculated as

ki ¼
Xn

j¼1

aij:

The number of triangles pivoting on node i—pair nodes

adjacent to node i that are themselves connected—is cal-

culated as

ti ¼
1

2

X

j;h2N
aijaihajh:

Thus the clustering coefficient can be determined as,

C ¼ 1

n

X

i2N
Ci ¼

1

n

X

i2N

2ti

kiðki � 1Þ ð2Þ

Average shortest path length

A path of length l between nodes i and j is a sequence of

vertices gi$j ¼ ði ¼ i0; . . .; il ¼ jÞ with aik;kþ1
¼ 1. Let lij be

the length of the shortest path between i and j. The average

shortest path length is the mean value over all pairwise

nodes, calculated as

L ¼ 1

nðn� 1Þ
X

i2N

X

j2N i

lij: ð3Þ

For disconnected pairs of nodes lij is undefined, however,

such pairs are excluded in the MATLAB program com-

putation to allow a result.

Modularity

Let H ¼ fh1; h2; . . .g be a partition of the nodes of the

network into modules, i.e. the subsets of nodes that form

non-overlapping communities. Let Phihj
denote the fraction

of all edges in the network that connect nodes in module hi

to nodes in module hj. Then the modularity for this set of

modules is calculated as

Q ¼
X

hi2H
Phihi

�
X

hj2H
Phihj

0
@

1
A

22
4

3
5: ð4Þ

Edge betweenness centrality

Calculated for each edge as the fraction of shortest paths in

the network which pass through the edge. Let Huv be the

number of shortest paths that connect nodes u and v, and let

Huvði; jÞ be the number of shortest paths between nodes u

and v that includes the edge between i and j.

Then, the edge betweenness value for the edge between i

and j is calculated as

EB ¼
X

u; v 2 N
u 6¼ v

Huvði; jÞ
Huv

:
ð5Þ

Small-worldness

Calculated as the normalised ratio of the clustering coef-

ficient to the average shortest path length:

R ¼ C=Crand

L=Lrand

; ð6Þ

for C the clustering coefficient and L average shortest path

length of a network, normalised respectively by the cor-

responding quantities Crand and Lrand for a corresponding

random network.

Weighted clustering coefficient

A weighted triangle is determined as the cubic root of the

product of the three weighted edges that make a triangle

centred on a given node. The sum of all triangles pivoting

on a given node i is

Fig. 14 Average value of absolute error between the cumulative

number of points (normalised to unity) and the surface integral

(normalised to unity) as a function of azimuthal angle
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tw
i ¼

1

2

X

j;h2N
ðwijwihwjhÞ1=3

for edge weights wij, defined by the linear relation

wij ¼
1� dij

p
if aij ¼ 1

0 otherwise

8
<

:

Zero distance corresponds to a weight of 1 and the maxi-

mum distance p corresponds to a zero weight. Thus, the

weighted clustering coefficient is calculated as

Cw ¼ 1

n

X

i2N
Cw

i ¼
1

n

X

i2N

P
j;h2N 2tw

i

kiðki � 1Þ ð7Þ

Network wiring cost

The normalised average edge length for all edges of the

network is

M ¼ 1

p
P

i2N ki

X

i2N

X

j2N i

dij; ð8Þ

where p is the maximum edge length that connects two

nodes on the shortest arc along the great circle for the

network embedded on a unit sphere. A network wiring cost

value of 1 indicates an average edge length of p, of zero

indicates an average edge length of zero, and of 1
2

indicates

the expected value for randomly distributed edge lengths.
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