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Abstract This paper addresses the stability problem on

the memristive neural networks with time-varying impul-

ses. Based on the memristor theory and neural network

theory, the model of the memristor-based neural network is

established. Different from the most publications on

memristive networks with fixed-time impulse effects, we

consider the case of time-varying impulses. Both the

destabilizing and stabilizing impulses exist in the model

simultaneously. Through controlling the time intervals of

the stabilizing and destabilizing impulses, we ensure the

effect of the impulses is stabilizing. Several sufficient

conditions for the globally exponentially stability of

memristive neural networks with time-varying impulses

are proposed. The simulation results demonstrate the

effectiveness of the theoretical results.

Keywords Memristive neural networks � Time-varying

impulses � Time-varying delays � Exponential stability

Introduction

Memristor was originally postulated by Chua in 1971

(Chua 1971; Chua and Kang 1976) and fabricated by sci-

entists at the Hewlett-Packard (HP) research team (Strukov

et al. 2008; Tour and He 2008). It has been proposed as

synapse emulation because of their similar transmission

characteristics and the particular device advantage such as

nanoscale, low energy dissipation which are significant for

the designing and optimizing of the neuromorphic circuits

(Strukov et al. 2008; Tour and He 2008; Cantley et al.

2011; Kim et al. 2011). Therefore, one can apply memr-

istor to build memristor-based neural networks to emulate

the human brain. In recent years, dynamics analysis of

memristor-based recurrent neural networks has been

attracted increasing attention (Hu and Wang 2010; Wen

et al. 2012a, b; Wu et al. 2012; Wen and Zeng 2012; Wang

and Shen 2013; Zhang et al. 2012; Wu and Zeng 2012a, b;

Guo et al. 2013). In Hu and Wang (2010), the dynamical

analysis of memristor-based recurrent neural networks was

studied and the global uniform asymptotic stability was

investigated by constructing proper Lyapunov functions

and using the differential inclusion theory. Following, the

stability and synchronization control of memristor-based

recurrent neural networks have been further investigated

(Wen et al. 2012a, b; Wu et al. 2012; Wen and Zeng 2012;

Wang and Shen 2013; Zhang et al. 2012; Wu and Zeng

2012a, b; Guo et al. 2013). As well known, memristor-

based neural networks exhibit state-dependent nonlinear

switching behaviors because of the abrupt changes at cer-

tain instants during the dynamical processes. Therefore, it

is more complicated to study the stabilization of memris-

tor-based neural networks. So, recently, many researchers

begin to turn their attentions to construct the general

memristor-based neural networks and analyze the dynamic

behavior (Wen et al. 2012a, b; Wu et al. 2012). In this

paper, we focus on the general memristor-based neural

networks constructed in Wen et al. (2012a, b), Wu et al.

(2012).

In the implementation of artificial memristive neural

networks, time delays are unavoidable due to finite

switching speeds of amplifiers and may cause undesirable
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dynamic behavior such as oscillation, instability and chaos

(He et al. 2013a, b; Wang et al. 2012). On the other hand,

the state of electronic networks is often subject to instan-

taneous perturbations and experiences abrupt change at

certain instants that is the impulsive effects. Therefore,

memristive neural networks model with delays and

impulsive effects should be more accurate to describe the

evolutionary process of the system. During the last few

years, there has been increasing interest in the stability

problem in delayed impulsive neural networks (Lu et al.

2010; Hu et al. 2012; Chen and Zheng 2009; Yang and Xu

2007; Hu et al. 2010; Liu and Liu 2007; Liu et al. 2011; Lu

et al. 2011, 2012; Guan et al. 2006; Yang and Xu 2005;

Zhang et al. 2006). In Liu et al. (2011), synchronization for

nonlinear stochastic dynamical networks was investigated

using pinning impulsive strategy. In Guan et al. (2006), a

new class of hybrid impulsive models has been introduced

and some good results about asymptotic stability properties

have been obtained by using the ‘‘average dwell time’’

concept. In general, there are two kinds of impulsive

effects in dynamical systems. An impulsive sequence is

said to be destabilizing if the impulsive effects can sup-

press the stability of dynamical systems. Conversely, an

impulsive is said to be stabilizing if it can enhance the

stability of dynamic systems. Stability of neural networks

with stabilizing impulses or destabilizing has been studied

in many papers (Lu et al. 2010; Hu et al. 2012; Chen and

Zheng 2009; Yang and Xu 2007; Hu et al. 2010; Liu and

Liu 2007; Liu et al. 2011; Lu et al. Lu et al. 2011, 2012;

Guan et al. 2006; Yang and Xu 2005; Zhang et al. 2006).

When the impulsive effects are stabilizing, the frequency

of the impulses should not be too low. In most of the

literature (Lu et al. 2010; Hu et al. 2012; Chen and Zheng

2009; Yang and Xu 2007; Hu et al. 2010; Liu and Liu

2007; Liu et al. 2011; Lu et al. 2011, 2012; Guan et al.

2006; Yang and Xu 2005) only investigate the stability

problem when the impulses are stabilizing and the upper

bound of the impulse intervals is used to guarantee the

frequency of the impulses. When the impulsive effects are

destabilizing, the lower bound of the impulsive intervals

can be used to ensure that the impulses do not occur too

frequently. For instance, in the Yang and Xu (2005), Zhang

et al. (2006), the authors consider such kind of impulsive

effects. In all those literature, it is implicitly assumed that

the destabilizing and stabilizing impulses occur separately.

However, in practice, many electronic biological systems

are often subject to instantaneous disturbance and then

exposed to time-varying impulsive strength, and both the

destabilizing and stabilizing impulses might exist in the

practical systems.

Motivated by the aforementioned discussion, different

from the previous works, in this paper, we shall formulate

the memristive neural networks with time-varying impul-

ses in which the destabilizing and stabilizing impulse are

considered simultaneously and deal with its global expo-

nential stability. The upper and lower bounds of stabilizing

and destabilizing impulsive intervals are defined, respec-

tively to describe the impulsive sequences such that the

destabilizing impulses do not occur frequently and the

frequency of the stabilizing impulses should not be too law.

By using the differential inclusion theory and the Lyapu-

nov method, the sufficient criteria will be obtained under

the stability of delayed memristor-based neural networks

with time-varying impulses is guaranteed.

The organization of this paper is as follows. Model

description and the preliminaries are introduced in ‘‘Model

description and preliminaries’’ section. Some algebraic

conditions concerning global exponential stability are

derived in ‘‘Main results’’ section. Numerical simulations

are given in ‘‘Numerical example’’ section. Finally, this

paper ends by the conclusions in ‘‘Conclusions’’ section.

Model description and preliminaries

Model description

Several memristor-based recurrent neural networks have

been constructed, such as those in Hu and Wang (2010),

Wen et al. (2012a, b), Wu et al. (2012), Wen and Zeng

(2012), Wang and Shen (2013), Zhang et al. (2012), Wu

and Zeng (2012a, b), Guo et al. (2013). Based on these

works, in this paper, we consider a more general class of

memristive neural networks with time-varying impulses

described by the following equations:

dxi tð Þ
dt
¼ �di xið Þxi tð Þ þ

Xn

j¼1

aij xið Þfj xj

� �
þ
Xn

j¼1

bij xið Þgj xj t � sij tð Þ
� �� �

þ Ii;

t� 0; t 6¼ tk i ¼ 1; 2; . . .; n:

xi tþk
� �

¼ akxi t�k
� �

; k 2 Nþ

8
>>>><

>>>>:

ð1Þ
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where xi tð Þ is the state variable of the ith neuron, di is the

ith self-feedback connection weight, aij xið Þ and bij xið Þ are,

respectively, connection weights and those associated with

time delays. Ii is the ith external constant input. fi �ð Þ and

gi �ð Þ are the ith activation functions and those associated

with time delays satisfying the following Assumption 2.

The time-delaysij tð Þ is a bounded function, i.e., 0 B sij(-

t) B s where s C 0 is a constant. t1; t2; t3; . . .f g is a

sequence of strictly increasing impulsive moments,ak 2 R

represents the strength of impulses. We assume that xi(t) is

right continuous at t = tk, i.e., xi tþk
� �

¼ akxi t�k
� �

. There-

fore, the solution of (1) are the piecewise right-hand con-

tinuous functions with discontinuities at t = tk for k 2 Nþ.

Remark 1 The parameter ak in the equality xiðtþk Þ ¼
akxiðt�k Þ describes the influence of impulses on the absolute

value of the state. When akj j[ 1, the absolute value of the

state is enlarged. Thus the impulses may be viewed as

destabilizing impulses. When akj j\1, the absolute value of

the state is reduced, thus the impulses may be viewed as

stabilizing impulses.

Remark 2 In this paper, both stabilizing and destabilizing

impulses are considered into the model simultaneously. we

assume that the impulsive strengths of destabilizing

impulses takes value from a finite set l1; l2; . . .; lNf g and

the impulsive strengths of stabilizing impulses take values

from c1; c2; . . .; cMf g, where lij j[ 1,0\ cj

�� ��\1, for

i ¼ 1; 2; . . .;N,j ¼ 1; 2; . . .;M. We assume that tik"; tjk#
denote the activation time of the destabilizing impulses

with impulsive strength li and the activation time of the

stabilizing impulses with impulsive strength ci, respec-

tively. The following assumption is given to enforce the

upper and lower bounds of stabilizing and destabilizing

impulses, respectively.

Assumption 1

inf tik" � tiðk�1Þ"
� �

¼ ni;max tjk# � tjðk�1Þ#
� �

¼ fj

where tik"; tjk" 2 t1; t2; t3; . . .f g.

Assumption 2 For i ¼ 1; 2; . . .; n; 8a; b 2 R; a 6¼ b;
then neuron activation function fi xið Þ; gi xið Þ in (1) are

bounded and satisfy

0� fi að Þ � fi bð Þ
a� b

� ki; 0� gi að Þ � gi bð Þ
a� b

� li ð2Þ

where ki, li are nonnegative constants.

Preliminaries

For convenience, we first make the following preparations.

R? and Rn denote, respectively, the set of nonnegative real

numbers and the n-dimensional Euclidean space.

Forx 2 Rn,X 2 Rn�n, let xj j denotes the Euclidean vector

norm, and Xk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax XT Xð Þ

p
the induced matrix norm.

kmin �ð Þ and kmax �ð Þ denote the minimum and maximum

eigenvalues of the corresponding matrix, respectively. For

continuous functions f tð Þ : R! R,Dþf tð Þ is called the

upper right Dini derivative defined as Dþf tð Þ ¼
lim

h!0þ
1=hð Þ f t þ hð Þ � f tð Þð Þ. N? denotes the set of positive

integers.

As we well known, memristor is a switchable device. It

follows from its construction and fundamental circuit laws

that the memristance is nonlinear and time-varying. Hence,

the current–voltage characteristic of a memristor showed in

Fig. 1. According to piecewise linear model (Hu and Wang

2010; Wen et al. 2012a, b) and the previous work (Wu

et al. 2012; Wen and Zeng 2012; Wang and Shen 2013;

Zhang et al. 2012; Wu and Zeng 2012a, b; Guo et al. 2013),

we let

di xið Þ ¼ d
_

i; xi tð Þj j\Ti

d
^

i; xi tð Þj j[ Ti

(
aij xið Þ ¼

a
_

ij; xi tð Þj j\Ti

a
^

ij; xi tð Þj j[ Ti

�

bij xið Þ ¼
b
_

ij; xi tð Þj j\Ti

b
^

ij; xi tð Þj j[ Ti

(
;

Here, Ti [ 0, are memristive switching rules and

d
_

i [ 0; d
^

i [ 0; a
_

ij; a
^

ij; b
_

ij; b
^

ij; i; j ¼ 1; 2; . . .; n: are constants

relating to memristance.

Let, for i; j ¼ 1; 2; . . .; n, di ¼ max d
_

i; d
^

i

	 

; di ¼

min d
_

i; d
^

i

	 

; �aij ¼ max a

_

ij; a
^

ij

	 

; aij ¼ min a

_

ij; a
^

ij

	 

; aij ¼

min a
_

ij; a
^

ij

	 

; �bij ¼ max b

_

ij; b
^

ij

	 

; bij ¼ min b

_

ij; b
^

ij

	 

; and

Co½ni; ni
� denote the convex hull of ½ni; ni

�. Clearly, in this

paper, we have ½ni; ni
� ¼ Co½ni; ni

�.

Fig. 1 The typical current–voltage characteristic of memristor. It is a

pinched hysteresis loop
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Now, according to the literature (Hu and Wang 2010;

Wen et al. 2012a, b), by applying the theories of set-valued

maps and differential inclusion, we have from (1)

dxi tð Þ
dt
2 �Co½di; �di�xi tð Þ þ

Xn

j¼1

Co½aij; �aij�fj xj

� �

þ
Xn

j¼1

Co½bij; �bij�gj xj t � sij tð Þ
� �� �

+ Ii; + Ii;

t� 0; i ¼ 1; 2; . . .; n: ð3Þ

Or, equivalently, for i; j ¼ 1; 2; . . .; n; there exist

d
�

i
2 Co½di;

�di�; a
�

ij
2 Co½aij; �aij�; b

�

ij
¼ Co½bij; �bij�

such that

dxi tð Þ
dt
¼ � d

�

i
xi tð Þ þ

Xn

j¼1

a
�

ij
fj xj

� �
þ
Xn

j¼1

b
�

ij
gj xj t � sij tð Þ

� �� �

þ Ii; t� 0: ð4Þ

Definition 1 Aconstant vector x� ¼ ðx�1; x�2; . . .; x�nÞ
T

is

said to be an equilibrium point of network (1), if for

i; j ¼ 1; 2; . . .; n;

0 2 �Co½di; �di�x�iþ
Xn

j¼1

Co½aij; �aij�fj x�j

	 


þ
Xn

j¼1

Co½bij; �bij�gj x�j

	 

+ Ii; ð5Þ

Or, equivalently, for i; j ¼ 1; 2; . . .; n; there exist

d
�

i
2 Co½di; �di�; a

�

ij
2 Co½aij; �aij�; b

�

ij
¼ Co½bij; �bij�

such that

0 ¼ � d
�

i
x�iþ

Xn

j¼1

a
�

ij
fj x�j

	 

þ
Xn

j¼1

b
�

ij
gj x�j

	 

+ Ii: ð6Þ

If x� ¼ ðx�1; x�2; . . .; x�nÞ
T

is an equilibrium point of net-

work (1), then by lettingyi tð Þ ¼ xi tð Þ � x�i , i ¼ 1; 2; . . .; n;

we have

dyi tð Þ
dt
2 � Co½di; �di�yi tð Þþ

Xn

j¼1

Co½aij; �aij��fj yj

� �

þ
Xn

j¼1

Co½bij; �bij��gj yj t � sij tð Þ
� �� �

; ð7Þ

Or, equivalently, there exist d
�

i
2 Co½di; �di�; a

�

ij
2 Co½aij; �aij�;

b
�

ij
¼ Co½bij; �bij�; such that

dyi tð Þ
dt
¼ � d

�

i
yi tð Þþ

Xn

j¼1

a
�

ij

�fj yj

� �
þ
Xn

j¼1

b
�

ij
�gj yj t � sij tð Þ

� �� �
;

ð8Þ

Obviously, fi xið Þ; gi xið Þ satisfy Assumption 1 and we can

easily see that �fi xið Þ; �gi xið Þ also satisfy the following

assumption:

Assumption 3 For i ¼ 1; 2; . . .; n; 8a; b 2 R; a 6¼ b;
then neuron activation function �fiðxiÞ; �giðxiÞ in (5) and (6)

are bounded and satisfy

0�
�fiðaÞ � �fiðbÞ

a� b
� ki; 0� �giðaÞ � �giðbÞ

a� b
� li ð9Þ

where i ¼ 1; 2; . . .; n; ki; li are nonnegative constants.

Definition 2 If there exist constants c[ 0, M cð Þ[ 0 and

T0 [ 0 such that for any initial values

y tð Þj j �M cð Þe�ct; for all t� T0;

then system (10) is said to be exponentially stable with

exponential convergence rate c.

For further deriving the global exponential stability

conditions, the following lemmas are needed.

Lemma 1 Filippov (1960) Under Assumption2, there is

at least a local solution x(t) of system (1) with the initial

conditions / sð Þ ¼ /1 sð Þ;/2 sð Þ; . . ./n sð Þð ÞT , s 2 ½�s; 0�,
which is essentially bounded. Moreover, this local solution

x(t) can be extended to the interval ½0;þ1� in the sense of

Filippov.

Under Assumption 2, and d
_

i [ 0; d
^

i [ 0; a
_

ij; a
^

ij; b
_

ij;

b
^

ij; Ii, are all constant numbers, from the references (Wu

et al. 2012; Hu et al. 2012), in order to study the mem-

ristive neural network (1), we can turn to the qualitative

analysis of the relevant differential inclusion (3).

Lemma 2 Baæinov and Simeonov (1989) Let

0� si tð Þ� s. F t; u; u1; u2; . . .; umð Þ : Rþ � R� � � � � R!
R be nondecreasing in ui for each fixed

t; u; u1; . . .; ui�1; uiþ1; . . .umð Þ, i ¼ 1; 2; . . .;m; and IK uð Þ :

R! R be nondecreasing in u. Suppose that

Dþu tð Þ�F t; u; u t � s1 tð Þð Þ; . . .; um t � sm tð Þð Þð Þ
u tþk
� �
� Iku t�k

� �
; k 2 Nþ

(

and

Dþv tð Þ[ F t; v; v t � s1 tð Þð Þ; . . .; vm t � sm tð Þð Þð Þ
v tþk
� �
� Ikv t�k

� �
; k 2 Nþ

(

Then u tð Þ� v tð Þ, for �s� t� 0 implies that u tð Þ� v tð Þ, for

t� 0.
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In the following section, the paper aims to analysis the

globally exponential stability of the system (1).

Main results

The main results of the paper are given in the following

theorem.

Theorem 1 Consider the memristive neural networks (1),

suppose that Assumptions 1 and 2 hold. Then, the memristive

neural network (1) with time-varying impulses will be globally

exponentially stable if the following inequality holds

a� Rq [ 0;

where

R¼
YN

i¼1

YM

j¼1

li

ci

����

����
2

; a¼� Pþ
XN

i¼1

2 ln lij j
ni

þ
XM

j¼1

2 ln cj

�� ��
fj

 !
;

p¼� min
1� i�n

dif gþ 2
Xn

j¼1

Xn

k¼1

1

dj

a
��2

jk
k2

k ; q¼ 2
Xn

j¼1

Xn

k¼1

1

dj

b
��2

jk
l2
k ;

here,

a
��

jk
¼ max �ajk

�� ��; ajk

�� ��� �
; b
��

jk
¼ max �bjk

�� ��; bjk

�� ��� �
; i; j; k

¼ 1; 2; . . .; n:

Proof We choose a Lyapunov functional for system (5) or

(6) as

V tð Þ ¼ 1

2

Xn

i¼1

y2
i tð Þ: ð10Þ

The upper and right Dini derivative of V(t) along the tra-

jectories of the system (5) or (6) is

DþV tð Þ ¼
Xn

i¼1

yi tð Þyi tð Þ
0

¼
Xn

i¼1

yi tð Þ � d
�

i
yi tð Þ þ

Xn

j¼1

a
�

ij

�fj yj

� �
(

þ
Xn

j¼1

b
�

ij
�gj yj t � sij tð Þ

� �� �
)
2
Xn

i¼1

yi tð Þ

� Co½di; �di�yi tð Þ þ
Xn

j¼1

Co½aij; �aij��fj yj

� �
(

þ
Xn

j¼1

Co½bij; �bij��gj yj t � sij tð Þ
� �� �

)

ð11Þ

From Assumption 3, we have

0� sup
yi 6¼0

�fi yið Þ
yi

� ki; 0� sup
yi 6¼0

�gi yið Þ
yi

� li ð12Þ

where i ¼ 1; 2; . . .; n; ki; li are nonnegative constants.By

(11) and (12), we get

DþV tð Þ�
Xn

i¼1

�diy
2
i tð Þ þ yi tð Þj j

Xn

j¼1

a
��

ij
kj yj tð Þ
�� ��

(

þ yi tð Þj j
Xn

j¼1

b
��

ij
lj yj t � sij tð Þ
� ��� ��

)

¼
Xn

i¼1

� 1

2
diy

2
i tð Þ þ yi tð Þj j

Xn

j¼1

a
��

ij
kj yj tð Þ
�� ��

(

� 1

2
diy

2
i tð Þ þ yi tð Þj j

Xn

j¼1

b
��

ij
lj yj t � sij tð Þ
� ��� ��

)
ð13Þ

By mean-value inequality, we have

DþV tð Þ�
Xn

i¼1

� 1

4
diy

2
i tð Þ þ 1

di

Xn

j¼1

a
��

ij
kj yj tð Þ
�� ��

 !2
8
<

:

� 1

4
diy

2
i tð Þ þ 1

di

Xn

j¼1

b
��

ij
lj yj t � sij tð Þ
� ��� ��

 !2
9
=

;

¼
Xn

i¼1

� 1

2
diy

2
i tð Þ þ 1

di

Xn

j¼1

a
��

ij
kj yj tð Þ
�� ��

 !2
8
<

:

þ 1

di

Xn

j¼1

b
��

ij
lj yj t � sij tð Þ
� ��� ��

 !2
9
=

; ð14Þ

By Cauchy–Schwarz inequality, we obtain

Xn

j¼1

a
��

ij
kj yjðtÞ
�� ��

 !2

�
Xn

j¼1

a
��2

ij
k2

j

Xn

j¼1

yj tð Þ
�� ��2

¼
Xn

k¼1

a
��2

ik
k2

k

Xn

j¼1

y2
j tð Þ ð15Þ

and

Xn

j¼1

b
��

ij
lj yj t � sij tð Þ
� ��� ��

 !2

�
Xn

j¼1

b
��2

ij
l2j

Xn

j¼1

yj t � sij tð Þ
� ��� ��2

¼
Xn

k¼1

b
��2

ik
l2
k

Xn

j¼1

y2
j t � sij tð Þ
� �

ð16Þ

It follows from (15) and (16) that
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DþV tð Þ�
Xn

i¼1

� 1

2
diy

2
i tð Þþ 1

di

Xn

k¼1

a
��2

ik
k2

k

Xn

j¼1

y2
j tð Þ

(

þ 1

di

Xn

k¼1

b
��2

ik
l2
k

Xn

j¼1

y2
j t � sij tð Þ
� �

)

¼
Xn

i¼1

� 1

2
di þ

Xn

j¼1

Xn

k¼1

1

dj

a
��2

jk
k2

k

" #
y2

i tð Þ

þ
Xn

i¼1

Xn

j¼1

Xn

k¼1

1

dj

b
��2

jk
l2ky2

i t � sij tð Þ
� �

� pV tð Þ þ qV t � s tð Þð Þ ð17Þ

where p ¼ � min
1� i� n

dif g þ 2
Pn

j¼1

Pn

k¼1

1
dj

a
��2

jk
k2

k , q ¼ 2
Pn

j¼1

Pn

k¼1

1

dj

b��2jk l2k , t 2 ðtk�1; tk�; k 2 Nþ. For t = tk, from the second

equation of (1), we get

V tþk
� �

¼ a2
kV t�k
� �

ð18Þ

For any r[ 0, let t tð Þ be a unique solution of the fol-

lowing impulsive delay system

_t ¼ pt tð Þ þ qt t � s tð Þð Þ þ r; t 6¼ tk

t tkð Þ ¼ a2
kt t�k
� �

; t ¼ tk; k 2 Nþ

t sð Þ ¼ / sð Þj j2; �s� s� 0

8
><

>:
ð19Þ

Note that V sð Þ� / sð Þj j2¼ t sð Þ, for�s� s� 0. Then it

follows from (17), (18) and Lemma 2 that

t tð Þ�V tð Þ� 0; t� 0 ð20Þ

By the formula for the variation of parameters, it follows

from (19) that

t tð Þ ¼ W t; 0ð Þv 0ð Þ þ
Z t

0

W t; sð Þ½qv s� s sð Þð Þ þ r�ds

where W t; sð Þ; t; s� 0 is the Cauchy matrix of linear system

y tð Þ ¼ py tð Þ; t 6¼ tk

y tkð Þ ¼ a2
kt t�k
� �

; t ¼ tk; k 2 Nþ

�
ð21Þ

According to the representation of the Cauchy matrix, one

can obtain the following estimation

W t; sð Þ ¼ ep t�sð Þ
Y

s\tk � t

a2
k : ð22Þ

For any t [ 0, if there exist an s such that there are Ni

destabilizing impulses and Mj stabilizing impulses in the

interval (s, t), then from Assumption 1, we can easily get

Ni� t�s
ni
þ 1, Mj� t�s

fj
� 1, then it follows from Assump-

tion 1 and (22) that

W t; sð Þ� ep t�sð Þ
YN

i¼1

YM

j¼1

lij j
2t�s

ni
þ2 cij j

2t�s
fj
�2

�
YN

i¼1

YM

j¼1

lij j2 cij j�2
e

pþPþ
PN
i¼1

2 ln lij j
ni
þ
PM
j¼1

2 ln cjj j
fj

� �
t�sð Þ

Re�a t�sð Þ

ð23Þ

where R ¼
QN

i¼1

QM
j¼1

li

ci

���
���
2

, a ¼ � Pþ
PN

i¼1
2 ln lij j

ni
þ

	

PM
j¼1

2 ln cjj j
fj
Þ. Let g ¼ R sup�s� s� 0 / sð Þj j2 then we can get

that

t tð Þ� ge�at þ
Z t

0

Re�a t�sð Þ qv s� s sð Þð Þ þ r½ �ds ð24Þ

Let h tð Þ ¼ t� aþ Rqets. It follows from a� Rq [ 0 that

h 0ð Þ\0, lim
v!þ1

h tð Þ ¼ þ1, and h
�

tð Þ[ 0. Therefore there

is unique k [ 0 such that h kð Þ ¼ 0.On the other hand, it is

obvious that R�1a� 1 [ 0. Hence,

t tð Þ ¼ / tð Þj j2� g� ge�kt þ r
R�1a� q

; �s� t� 0

ð25Þ

So it suffices to prove

t tð Þ� ge�kt þ r
R�1a� q

; for t [ 0:

By the contrary, there exist t [ 0 such that

t tð Þ� ge�kt þ r
R�1a� q

:

We set

t� ¼ inf t [ 0; t tð Þ� ge�kt þ r
R�1a� q

� 
:

Then t�[ 0 and t t�ð Þ� ge�kt þ r
R�1a�q

. Thus, for t 2 0; t�ð Þ,

t tð Þ� ge�kt þ r
R�1a� q

:

From (24) and (25), one observes that

v t�ð Þ� ge�at� þ
Zt�

0

Re�a t��sð Þ½qv s� s sð Þð Þ þ r�ds

� e�at�

(
gþ r

R�1a� q
þ
Zt�

0

Re�as½q ge�k s�s sð Þð Þ þ r
R�1a� q

� �

þ r�ds

)
\ge�kt� þ r

R�1a� q

ð26Þ
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This is a contradiction. Thus, tðtÞ� ge�kt þ r
R�1a�q

, for

t [ 0, holds. Letting r! 0, we can get from (15) that

V tð Þ� t tð Þ� ge�kt. By Definition 1, the solution y(t) of the

memristive neural network (1) is exponentially stable. This

completes the proof.

In order to show the influence of the stabilizing impulses

and destabilizing impulses clearly, we assume that both the

destabilizing and stabilizing impulses are time-invariant,

i.e., for i ¼ 1; 2. . .;N; j ¼ 1; 2; . . .;M, li ¼ l; cj ¼
c; ni ¼ n; fj ¼ f; tik" ¼ tk"; tjk" ¼ tk". Then we get the

following corollary.

Corollary 1 Consider the memristive neural networks

(1). Suppose that Assumptions 1 and 2 hold. Then, the

memristive neural network (1) with time-invariant impulses

will be globally exponentially stable if the following

inequality holds

a� Rq [ 0;

where

R ¼ l
c

����

����
2

; a ¼ � pþ 2 ln lj j
n
þ 2 ln cj j

f

� �
;

¼ � min
1� i� n

dif g þ 2
Xn

j¼1

Xn

k¼1

1

dj

a
��2

jk
k2

k ; q ¼ 2
Xn

j¼1

Xn

k¼1

1

dj

b
��2

jk
l2k :

Here, a
��

jk
¼ maxf �ajk

�� ��; ajk

�� ��g;b
��

jk
¼ maxf �bjk

�� ��; bjk

�� ��g;i; j; k ¼
1; 2; . . .; n.

Proof Corollary 1 can be similarly proved as Theorem 1.

So the process will be omitted here.

Numerical example

In this section, we will present an example to illustrate the

effectiveness of our results. Let us consider a two-dimen-

sional memristive neural network

dx1 tð Þ
dt
¼�d1 x1ð Þx1 tð Þþa11 x1ð Þf1 x1ð Þþa12 x1ð Þf2 x2ð Þ

þb11 x1ð Þg1 x1 t�s tð Þð Þð Þþb12 x1ð Þg2 x2 t�s tð Þð Þð Þþ I1

dx2 tð Þ
dt
¼�d2 x2ð Þx2 tð Þþa21 x2ð Þf1 x1ð Þþa22 x2ð Þf2 x2ð Þ

þb21 x2ð Þg1 x1 t�s tð Þð Þð Þþb22 x2ð Þg2 x2 t�s tð Þð Þð Þþ I2

:

8
>>>>>>>>><

>>>>>>>>>:

ð27Þ

where

d1 x1ð Þ¼
1:2; x1 tð Þj j\1

1; x1 tð Þj j[1

�
d2 x2ð Þ¼

1; x2 tð Þj j\1

1:2; x2 tð Þj j[1

�

a11 x1ð Þ¼

1

6
; x1 tð Þj j\1

�1

6
; x1 tð Þj j[1

8
><

>:
a21 x1ð Þ¼

1

5
; x1 tð Þj j\1

�1

5
; x1 tð Þj j[1

8
><

>:

a21 x2ð Þ¼

1

5
; x2 tð Þj j\1

�1

5
; x2 tð Þj j[1

8
><

>:
a22 x2ð Þ¼

1

8
; x2 tð Þj j\1

�1

8
; x2 tð Þj j[1

8
><

>:

b11 x1ð Þ¼

1

4
; x1 tð Þj j\1

�1

4
; x1 tð Þj j[1

8
><

>:
b21 x1ð Þ¼

1

6
; x1 tð Þj j\1

�1

6
; x1 tð Þj j[1

8
><

>:

b21 x2ð Þ¼

1

7
; x2 tð Þj j\1

�1

7
; x2 tð Þj j[1

8
><

>:
b22 x2ð Þ¼

1

3
; x2 tð Þj j\1

�1

3
; x2 tð Þj j[1

8
><

>:

Therefore,

D ¼ 1 0

0 1

� �
; A
��
¼

1

6

1

5
1

5

1

8

0
B@

1
CA; B

��
¼

1

4

1

6
1

7

1

3

0
B@

1
CA:

Let s tð Þ ¼ 1:8þ 0:5sin tð Þ, I1 ¼ I2 ¼ 0, fi að Þ ¼ gi að Þ ¼
1
2

aþ 1j j � a� 1j jð Þ: By simple calculation, we get

ki ¼ li ¼ 1; i ¼ 1; 2; p ¼ �0:7532; q ¼ 0:4436. For the

time-varying impulses, we Choose the impulsive strengths

of destabilizing impulses l1 ¼ l2 ¼ 1:2, the impulsive

strength of stabilizing impulses c1 ¼ c2 ¼ � � � ¼ 0:9, and

the lower bounds of stabilizing n1 ¼ n2 ¼ 0:5. According

to Corollary 1 that the neural network (27) can be stabilized

Fig. 2 State trajectories of the memristive neural networks (10) with

different conditions: a without impulses (blue); b the maximum

impulsive interval of the stabilizing impulsive is 0.2 (green). (Color

figure online)
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if the maximum impulsive interval f of the stabilizing

impulsive sequence is not more than 0.2755. If we let

tk" � t k�1ð Þ" ¼ 0:5,tk# � t k�1ð Þ# ¼ 0:2 the whole impulses

can be described as, t0" ¼ 0; tk" ¼ t k�1ð Þ" þ 0:5k for

destabilizing impulses and t0# ¼ 0:09; tk# ¼ t k�1ð Þ# þ 0:2k

for stabilizing impulses then the corresponding trajectories

of the impulsive neural networks (1) are plotted as shown

in Fig. 2, where one observes that, when f\0:2755, the

neural networks (1) can be stabilized.

Conclusions

In this paper, we investigated the exponential stability

analysis problem for a class of general memristor-based

neural networks with time-varying delay and time-varying

impulses. To investigate the dynamic properties of the

system, under the framework of Filippov’s solution, we can

turn to the qualitative analysis of a relevant differential

inclusion. By using the Lyapunov method, the stability

conditions were obtained. A numerical example was also

given to illustrate effectiveness of the theoretical results.
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