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Abstract This paper is concerned with a class of non-
linear uncertain switched networks with discrete time-
varying delays. Based on the strictly complete property of
the matrices system and the delay-decomposing approach,
exploiting a new Lyapunov—Krasovskii functional decom-
posing the delays in integral terms, the switching rule
depending on the state of the network is designed. More-
over, by piecewise delay method, discussing the Lyapunov
functional in every different subintervals, some new delay-
dependent robust stability criteria are derived in terms of
linear matrix inequalities, which lead to much less con-
servative results than those in the existing references and
improve previous results. Finally, an illustrative example is
given to demonstrate the validity of the theoretical results.
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Introduction

Recently, a class of hybrid systems (Ye et al. 1998) have
attracted many researchers’ significant attentions as they
can model several practical control problems that involve
the integration of supervisory logic-based control schemes
and feedback control algorithms. As a special class of
hybrid systems, switched networks (Brown 1989; Liberzon
2003) consist of a set of individual subsystems and a
switching rule, play an important role in research activities,
since they have witnessed the successful applications in
many different fields such as electrical and telecommuni-
cation systems, computer communities, control of
mechanical, artificial intelligence and gene selection in a
DNA microarray analysis and so on. Therefore, the sta-
bility issues of switched networks have been investigated
(Huang et al. 2005; Li and Cao 2007; Lian and Zhang
2011; Zhang and Yu 2009; Niamsup and Phat 2010). By
using common Lyapunov function method and linear
matrix inequality (LMI) approach, authors considered the
problem of global stability in switched recurrent neural
networks with time-varying delay under arbitrary switching
rule in (Li and Cao 2007). However, common Lyapunov
function method requires all the subsystems of the swit-
ched system (Liu et al. 2009) to share a positive definite
radially unbounded common Lyapunov function. Gener-
ally, this requirement is difficult to achieve. The average
dwell time method is proposed to deal with the analysis and
stability of switched networks, which is regarded as an
important and attractive method to find a suitable switching
signal to guarantee switched system stability or improve
other performance, and has been widely applied to inves-
tigate the analysis and stability for switched system with or
without time-delay. In (Lian and Zhang 2011), employing
the average dwell time approach (ADT), novel multiple
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Lyapunov functions were employed to investigate the sta-
bility of the switched neural networks under the switching
rule depending on time. Generally speaking, switching rule
is a piecewise constant function dependent on the state or
time, most of existing works focus on stability for switched
networks with switching rule dependent on time. Perhaps it
is limited by existing method and technique, to the best of
our knowledge, there are few scholars to deal with the
robust stability (He and Cao 2008; Xu et al. 2012) for
switched uncertain networks under state-dependent
switching rule (Thanha and Phat 2013; Ratchagit and Phat
2011), despite its potential and practical importance.

Due to the finite switching speed of amplifiers, time
delay especially time-varying delay is inevitably encoun-
tered in many engineering applications and hardware
implementations of networks, it is often the main cause for
instability and poor performance of system. Consequently,
the stability of networks with time-varying delay is a
meaningful research topic (Liu and Chen 2007). What the
most we concern is how to choose the appropriate
Lyapunov—Krasovskii functional, derive the better stability
criteria, which can be shown that the results has less con-
servativeness. To reduce the conservatism of the existing
results, new analysis methods such as free weighting
matrix method, matrix inequality method, input—output
approach are proposed. However, it is impossible to derive
a less conservative result by using the common Lyapunov—
Krasovskii functional, the delay central-point (DCP)
method was firstly proposed in (Yue 2004), to solve the
problem for robust stabilization of uncertain systems with
unknown input delay. In this approach, introducing the
central point of variation of the delay, the variation interval
of the delay is divided into two subintervals (Zhang et al.
2009) with equal length. The main advantage of the
method is that more information on the variation interval of
the delay is employed, and the idea of delay-decomposing
(Zhang et al. 2010; Zeng et al. 2011; Wang et al. 2012; Hu
and Wang 2011; Wang et al. 2008) has been successfully
applied in investigating the H,, control and the delay-
dependent stability analysis for discrete-time or continu-
ous-time systems with time-varying delay, which signifi-
cantly reduced the conservativeness of the derived stability
criteria. In (Zhang et al. 2010), the delay interval [0, d(7)]
was divided into some variable subintervals by employing
weighting delays, the stability results based on the
weighting delay method were related to the number of
subintervals, and the size of the variable subintervals or the
position of the variable points. Authors considered the
exponential stability analysis for a class of cellular neural
networks, constructed a more general Lyapunov—
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Krasovskii functional by utilizing the central point of the
lower and upper bounds of delay, since more information
was involved and no useful item was ignored throughout
the estimate of upper bound of the derivative of Lyapunov
functional, the developed conditions were expected to be
less conservative than the previous ones (Wang et al.
2012). Up to now, there no results have been proposed for
the switched uncertain systems with discrete time-varying
delay based on the delay-decomposing approach. There-
fore, it is of great importance to study robust stability of
switched uncertain networks with interval time-varying
delay.

Motivated by the aforementioned discussions, the pur-
pose of this paper is to deal with the robust asymptotic
stability problem for switched interval networks with
interval time-varying delays and general activation func-
tions, the activation function can be unbounded and the
lower bound of time-varying delay do not need to be zero.
Inspired by the (DCP) method in (Yue 2004), constructing
new Lyapunov—Krasovskii functional decomposing the
delays in integral terms, based on the strictly complete
property of the matrices system the delay-decomposing
approach, some new delay-dependent robust stability cri-
teria are derived in terms of LMIs, which can be efficiently
solved by the interior point method (Boyd et al. 1994). The
main novelty of this paper can be summarized as follow-
ing: (1) switching signal in the paper depends on state of
networks. (2) consider the parameters fluctuation, a new
mathematical model of the switched networks with
parameters in interval is established, it become much closer
to the actual model. (3) introduce the delay-decomposing
idea and piecewise delay method, analyzing the variation
of the Lyapunov functional in every different subintervals,
some new delay-dependent robust stability criteria are
derived. Note that the delay-decomposing approach has
proven to be effective in reducing the conservatism.

The rest of this paper is organized as follows: In
“Switched networks model and preliminaries” section, the
model formulation and some preliminaries are presented.
In “Main results” section, some delay-dependent robust
stability criteria for switched interval networks are
obtained. An numerical example is given to demonstrate
the validity of the proposed results in “An illustrative
example” section. Some conclusions are drawn in “Con-
clusion” section.

Notations Throughout this paper, R denotes the set of
real numbers, R" denotes the n-dimensional Euclidean
space, R™ * " denotes the set of all m x n real matrices.
For any matrix A, AT denotes the transpose of A,
A >0 (A < 0) means that A is positive definite (negative
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definite), * represents the symmetric form of matrix. x(z)
denotes the derivative of x(f). Matrices, if their dimensions
not explicitly stated, are assumed to have compatible
dimensions for algebraic operations.

Switched networks model and preliminaries

Consider the interval network model with discrete time-
varying delay described by the following differential
equation in the form:

{ y(t) = —Ay(t) + Big(y(1)) + Bag(y(t — (1)) + u,

1
Acd, BeBY k=12, (1)

where y(1) = (y1(1),...,ya(t))" € R" denotes the state
vector associated with n neurons; g(y) = (g1(y1),-- -
gn(yn))":R" — R" is a vector-valued neuron activation
function; u = (u1,...,u,)" is a constant external input
vector. 1(¢) denotes the discrete time-varying delay. A =
diag(ay,...,a,) > 0is an n x n constant diagonal matrix,
denotes the rate with which the cell i resets its potential to
the resting state when being isolated from other cells and
inputs; By = (bl(»f)
tion weight matrices, and A; = [A,A] = {A = diag(a;):0<

g<a<a,i=12,...n}B" = [B.B] = {Bi = (b}"):

) € R™" k = 1,2, represent the connec-

b <pl <BY ij=1,2,...n} with A = diag(a,,
a, .. an)vK = diag(aha% e '>an)7§k = (bgjk))nxmgk =
7 (k)

(sz )nxn'

Throughout this paper, the following assumptions are
made on the activation functions g;(e),j =1, 2,..., n and
discrete time-varying delay t(7):

(H1): There exist known constant scalars [; and Zi, such
that the activation function g;(e) are continuous on R and
satisfy:

i,SMSZ vsl#S2€R, 1217271
S1— 82
(H2): The time-varying delay t(7) is differentiable and
bounded with constant delay-derivative bounds:: t, < ()
<1y, () <u<1, where 1, Ty, W are positive constants.
(H3): The time-varying delay t(f) satisfies: 1, <
1(t) < ty, where 1, Ty are positive constants.

Remark 1 1In assumption (H;), the time-varying delay
7(¢) is differentiable with the derivative less than 1, it is
called ’slow delay’; when removing the derivability,
7(f) maybe show a large rate of change, hence, we call it as
"fast delay’. In this paper, we will discuss interval network
model with slow delay and fast delay respectively.

The initial value associated with (1) is assumed to be
y(s) = Y(s), W(s) is a continuous function on [ — Ty, O].

Similar with proof of Theorem 3.3 in (Balasubramaniam
et al. 2011), we can show that system (1) has one equi-
librium point y* under the above assumptions, the equi-
librium y* will be always shifted to the origin by letting
x(t) = y(t) — y*, and the network system (1) can be rep-
resented as follows:

{ (1) = —Ax(t) + Bif (x(1)) + Bof (x(t — (1)), 2)
AcA, BieBY, k=12,
where Ji(x(0)) = gi(x(1) +¥7) — & (7). and

f(0)=0,j=1,2,...,n.

The initial condition associated with (2) is given in the
form x(s) = y(s) — y* = ¢(s) = Y(s) —y*, s € [-1n,0]. It
is easy to see f(x(2)) satisfy the assumption (H;).

Based on some transformations, the system (2) can be
written as an equivalent form:

X(I) = —[A() + EAZAFA}X(I) + [310 + E121F1]f(x(t))
+ [Bao + ExZa Fof (x(t — (1)), 3)

where 24 € X, X, € 2, k=1,2.
> = {diag[511,...,51,,,...,5,,1,...,5nn] Eanxnz :

05/<1, ij=12,...n}.

A+A
Ag="5=

A-A By + B,
) HAZ[%’,‘LMZT- By = >
k B — B,
Hg) = [ﬁlj]nxn: 2 :
EA:[\/allela--v\/alnelv---aVocnlen,-na\/annen]nxnh

Fp= [\/ G11€15++ sV 1n€nye o s/ Onl1€1 5« o5/ O‘nnen]ZZXm

E,= |:\/ﬂ<1k]>el,. Y ﬁ(]l;>€1,. o \/ ﬁikl)en, co\/ ﬁg;l)e”:| ’
nxn?
Fom [V, B e ]

where ¢; € R" denotes the column vector with ith element
to be 1 and others to be O.
System (3) can be changed as

T
n?xn

%(1) = —Aox(t) + Biof (x(1)) + Baof (x(t — (1)) + EA()

(4)
where E = [Ey4, E;, E,],
—XaFax(1)
A(t) = | ZiFif(x(r))
LoFof (x(t — 1))
—Fax(1)
= diag{Zs, %1, %2} | Fif(x(r)) |,

Fof (x(r = 2(1)))

and A(r) satisfies the following matrix quadratic inequality:
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x(7) "TFr[FIT
AT (A < | fx(1) F{ || Fi
fx(e==)] LF3]LF2
x(1)
x| f(x(n)

fx(t = (1))

In this paper, our main purpose is to study the switched
interval networks, it consists of a set of interval network
with discrete time-varying delays and a switching rule.
Each of the interval networks regards as an individual
subsystem. The operation mode of the switched networks is
determined by the switching rule. According to (2), the
switched interval network with discrete interval delay can
be described as follows:

X(t) = —A%x(t) + BIf (x(t)) + B3f (x(t — <(1)), S
{NEAM BjeBY, k=12, (5)

where A;, = [A°,A”] = {A? = diag(a;, ):0<a; <a;, <a,

i=1,2,...n}BY =[BL.B]]= {B]=[b]:0<b <
bW <BY. ij=1,2,... n} with A° = diag(a,, ay,. ...
_nJ)A = diag(a,,,ay,,- - -, an,)
y k <k
Bk = [bgj,)}nXiﬁ [bl],,}nxn'
. Ag—i—ég . ZG’_AG-
A() = 2 ’ HA = [(xija]nxnz 2
Bi+B] B, —B]
BZOZ kz k7 Hén):[ﬁija}nxn: k2 k'
EX = [\/allﬂelv-“a\/ Ong€1y-+54/%nl, €nye s/ Ocnnﬁen]m(nz-
P T
FA: [1/0!11 €lyev s/ Oy Cnyev s/ XAnl, €1+ -y \/ot,m(en] 2xn

B [ B r]

o:R" — T ={1,2,...,N} is the switching signal, which
is a piecewise constant function dependent on state x(z).
For any i€ {l,2,....N}A'=A} +E\X\F\ B, = B} +
EiXiFi,and T} € £, ¥ € X, k = 1,2. This means that the
matrices (A®, BT, BY) are allowed to take values, at an
arbitrary time, in the finite set {(A!,Bl,B}), (A%
B3, B3),..., (AN, BY,B))}.

By (4), the system (5) can be written as

(1) = —AGx(t) + Biof (x(1)) + B3of (x(t — 2(1)) + E7A°(1),
(6)

where E° = [E}, ET, ES]and A°(¢) satisfies the following
quadratic inequality:

n><112

n- Xn
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) VTETTEDT]
(A”(1)"A(1) Fx(1) FO" || D)
fat—@) | LFHT] LFg)T
x(1)
x| ) (7)

fx(t = (1))

To derive the main results in the next section, the fol-
lowing definitions and lemmas are introduced.

Definition 2.1 The switched interval neural network
model (5) is said to be globally robustly asymptotically
stable if there exists a switching function o(-) such that the
neural network model (5) is globally asymptotically stable

for any A” € A;,, By € B, k=1,2.
Definition 2.2 The system of matrices {G;}quadi =

1,2,...,N, is said to be strictly complete if for every x €
R"\{0} there is i € {1,2,...,N} such that xX’Gx < 0.

Let us define N regions
Q ={xcR :x"Gx<0}, i=1,2...N.

where €); are open conic regions, obvious that the system
{G;} is strictly completely if and only if these open conic
regions overlap and together cover R" \ {0}, that is

UQ,- = R"\{0}.

Proposition 2.1 (Uhlig 1979)The system

{Gi},i=1,2,..., N, is strictly complete if there exist
N

4i>0,i=1,2,...,N, > A4 =1, such that

i=1

N
Z /liG,‘ <0.
i=1

Lemma 2.1 (Han and Yue 2007) Given any real matrix
M=M">0, for any t>0, function 1(f) satisfies

T, <w) <1ty and x(1): [—fm —1,] — R",  the
following integration is well defined:
=T, T
=1,
— (v — 1) i (s)Ri(s)ds < {x( o) ]
x(t — 1)
—1y

-M M | [x(t—r1,)
X .
M -M x(tf‘cN)
Lemma 2.2 (Zhang etal. 2009) For any constant

matrices \J; and i, and Q of appropriate dimensions,
function t(¢) satisfies 1, < 1(t) < 1y, then

(t(t) — T, + (v — (), + Q<0
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holds, if and only if
(tv — )Y, + Q<0, (ty — T,)¥, + Q<0

In the following section, we use the generalized the DCP
method, partition the interval delay into m subintervals
with equal length, be some scalars satisfying

T, =TT <1<...T, =Ty

m
Obviously, [t,,7y] = J[tj-1,7;]. For convenience, we
denote the length of the sibinterval 8 = 1; — 1,4, therefor,
for any t > 0, there should exist an integer k, such that
’E(t) S [’L'k_| , ’L'k].

Remark 2 1In this paper, we consider the case when
m = 3, interval delay is decomposed into three subinter-
vals: [1,, T1], [T1, To], and [Tp,Tx]. Let S; = {¢|r > 0, 7(¢)
€ [ty 1]} Sa ={tlt > 0, ©(r) € (11,72]} S3 = {t]t > 0,

7(t) € (2, 7n]}, in the proof of our main results, applying a
piecewise analysis method (Zhang et al. 2009) to check the

N= N1N2N3N4N5N6N7N8N9]M
= [M My M3 My Ms Mg M7 Mg Mo)S
=[815,538485 8657 S380|1Z = [Z, Zy Z3 Z4 Zs Z Z7 Zs Zo) X
= [X1 X2 X3 X4 X5 X X7 X3 Xo] Y

1
= [Yl Y2Y3 Y4Y5 Y6Y7 Yg Yg]ézg(f[\/—

=1,+20

Tn)y T1="1Tn +5; T2

Theorem 3.1 Under the assumption (Hy) and (H,), if

there exist matrices P >0, T; >0, T, >0, Q; >0,
Ri>0G=1, 2, 3, 4 and diagonal matrices 7y, =
diag{ i1 Vk2s- > Tiny > 0(k=1,2,3), and  matrices

Ni,My, Z;, Si(I1=1,2,...,9) with appropriate dimensions
such that for all m and n, the following conditions hold:
() 3&>0, i=1,2,...N,

S & =130, EGilA, Q1 @, 03) <O
(ii)

Hl 4 ®l %
variation of derivative of the Lyapunov functional in S1 $2 [ Y " —Rij <0 m=1,23 n=12 ®)
and S3 respectively.
where
[ i, * * * * * * * %
Ry —01 — Ry * * * * * * *
0 0 -0, * * * * * *
0 0 0 —0s * * * * *
IT = 0 0 0 0 -0 * * * x| <0,
0 0 0 0 0 Hgﬁ * * *
I, 0 0 0 0 0 I = =
I, 0 0 0 0 7yl TI§, To x
| (EN'P — (EN) pA] 0 0 0 0 0 I, I I, |
Main results
where

In this section, the global robust asymptotic stability of the
proposed model (5) will be discussed. By delay fractioning
approach, designing a effective switch rule and construct-
ing a suitable Lyapunov functional, a new robust delay-
dependent criterion for the global asymptotic stability of
switched network system (5) is derived in terms of LMIs.

Set G;(Al, Q1,0,03) = —(A)) P — PAy+ Q1 + 02 + 05,
Qi = {xeRn :xT(t)Gi(Ai)an7Q27Q3)x([) <0}7

i—1

g[ :Qla Q,‘ :Ql\UQ], 122,3,71\/
j=1

Ly =diag{l;[,h5,..., [}

Ly =diag{li + 11,4+ 1L,.... [, +1,}

I, =Ty + (A))gi+ Qs — Ry — 2Ly — Liyy + (F}) ' Fy

Mg = —(1— )Ty —73L1 — Liys

I, = Loy, + (Bly) P —7,Ay — (Bl )i + (F}) " F

Iy, =Bl + (Big) 71 + o — 92— 73 + (Big) i + (F))' F}
I, = (Bhy)" P — (Byy)gi+ (Fy)" F

T, = (By)" 71 + (Bhy) 1oi + (F})" F)

Mg = —(1 = w)To — 3 — 9 + (Biy)yi + (F3) " F}

I, = (E') "y, + () ¢" (B}y)"

Mg = (E)" ¢ (By)"

MMy = (E') ¢E' 1
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i 0 * * * * * * % x|
5N1T 5N2T + 5N2T * * * * % %
—oMT ONT — oMY 0O, * * * % %
' 0 ON; R, —0M;  —R,—R; * * * k%
0] = 0 ONY —oM{ R, —R; * x * x| <0,
oM[ —oNT O} @ —oN]+oM] O, O =« x x
0 ONT —M¥ 0 0 -T+oMI 0 * =
0 ON{ —oM] 0 0 -I+oM 0 0 =«
i 0 ONE —oM¥ 0 0 -I'+oml 0 0 0]
O}, = —R, — M; — 5Ms5
®),, = ON{ — N3 +3
®), = —0Nj + oM} —{
®) = —0NI +oM]
r 0 * * * * * * k%)
0 —R, * * * * * kX
ozl Ry + 671 @’233 * * * * % %
' —osT oS8T 5Z4T—3T @)344 * * * k%
0, = 0 0 0Zi Ry —0S, —Rs * x kx| <0,
—0z{ + 087 —0zZj+5 O 0, 0 0, kok ok
0 0 A —o87 0 —-T+4687 0 * x
0 0 /4 — oS8T 0 —L+4+esf 0 0 =«
L 0 0 ozt —3888 0 -I+osT 0 0 0]
), = —Ri 4023 + 073 ©},, = —Ry + 0X; + X4
®),, = —Rs — 85} — 05, @, = —ox! +o¥!
@), = 0Zg — 0Z5+3 @, = ox! — oxT+T
i T T T .
sz = —0Zy +08,— ©) = —0XI + oY —{
Oy = —0Zs + 0S5 @ = —0Xg — OX{ +1 +0Y;
@), = —0Zs — 0Zg +6 +0Sg ¢ = R, + Ry + Ry + TRy
Y, =0NY), = Y5 =0SYh = Y5, =0X Y5, =6V
[ 0 * * * * * * ok k|
0 —R; * * * * * k%
0 R1 —R1 — R2 >k * * * ok Xk
oxT oxT XTI+ R, o5, * * * ok %
e, = —oYT =24 —-oy] LT —ov{ —orl—ovs * % x| <0,
—oX] +oY] —oxi+7 03, 03, 05, 03, * ok %
0 0 0 oxT —oxT “T+6YT 0 x «
0 0 0 oXy —oY¢ —T+0ovy 0 0 =
i 0 0 0 oxy —ov! —F+ovl 0 0 0]
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then, switched interval network (5) is global robust
asymptotic stable, the switching rule is chosen as
o(x(1)) = i whenever x(t) € Q.

Proof Consider the following Lyapunov—Krasovskii
functional
V(t,x;) = Vi(t,x;) + Valt,x,) + Va(t, x,) + Va(t,x;)

+ Vs(t,x;) 9)

where
xi(t)

et +23 1 [ s
i=1 0

Vi(t,x;) = x" (¢

Va(t,x) = / [ () Tix(s) +f7 (x(5)) Tof (x(s))]dds
t—1(r)
Vs(t,x;) = /xT(s)le(s)ds—F / x7(s)Qax(s)ds

+/'W@mm+/k%mmm

t—1y

4 (1, %) —5/ / 0)R,x(0)d0ds
-1 S
t—1
+9 / / X" (0)Rpx(0)d0ds
-1, S
-1 t
+9 / / *7(0)R3x(0)d0ds
—ty S
5(t,x) = 1, // 0)R4%(0)d0ds
=1, S

Calculating the time derivative of V(¢, x,) along the
trajectory of (76) it can follow that

Vilt,x) = Pi(1) + Z/lf(xl()) i(1)

=2x" (1)P[—=AQx(r) + B of (x(1))
+Boof (x(r = 7(1)) + E'A'(1)]
+2f " (x(0))71 [~ Agx(2) + Biof (x(1))
+Boof (x(r = 7(1)) + E'A'(1)]
= 22" (1)(A5)" Px(1) + 2" (x(1)) (Bi) " Px(1)
+2f T (x(t = 1(1)) (By) " Px(1)
+2(A'(0)T (B Px(t) = 2" (x(1) )71 Age()
+2f T (x(0)71 Biof (x(1))
21T (x(1)) 71 Baof (x(t = (1)) + 2 (x(1) ) E'A (1)
(10)

319
Va(t,x:) = x" () Tix() — (1 = 2 (2))x" (¢ — (1)) Tux(t — <(t))
+T (e(O) Tof (x(1)) = (1 = £(0) )f T (x(t — (1))
Tof (x(t — (1)) <x" () Tax(t) + £ (x(1)) Taf (x(1))
— (1= p)x" (1 = (2)) Tix (1 — (1))
— (1= wf " (x(t = (1)) Tof (x(1 — (1))
(11)
Vi(t,x) = x"(£)(Q1 + Q2 + O3 + Qu)x(1)
—x (t—1,)01x(t — 1) —x' (t — 11) D> (12)

x(t —11) = x(t — 12) Q3x(t — 12)
—xT(t — t5)Qux(t — 1)

Va(t,x,) = 6°5T ()R %(t) — & / i1 ()R %(s)ds
+ AT (1R (1) 5/x<mﬂwd

+ 0% (1)Raxi(r) — 0

By applying Lemma 2.1, we have

t

Vs(t,x,) = T2 (1) Ra(2) — 1, / i1 (5)Ryx(s)ds

-1,

<o (1) Rai(1) + [x(,x(_t)fn)r[_RIT —RI;]

x(1) }

x(t — 1)

X

Based on (10)—(14), we can get

V(t,x) <xT()[(A)"P — PA) + T1 + Q1 + 02 + 0;
+ Qulx(r) + 7 (x(1) [ Blg + Bign
+ Tl (x(r)) + 2(A (1) (E)) Px(r)
+2f7 (x(t — 2(1))) (Byy) " Px(1)
127 (x(1)) 71 Bif (x(t — 7(1))
x(t — 1) 4 2f T (x(2))9, E'A' (1)
+ 21" (x(1)[(Bly)" P — 11AGJx(7)
— (1= " (¢ = (1) Thx(t — (1))
—xT(t—11)0s
xx(t =) = (1= wf" (x(t = 2(1)))
x Dof (x(t = 1(1))) — x" (1 = 12) Q3x(t — 12)

— xT(t —1,)0;
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xT (= ) Qux(t — Ty)

”Lc zx—} [_R: —R;J[xﬁ)m]

) t/ i (s)Ryx(s)ds — & 7 i (s)Ryi(s)ds
X —0 I/T $)R3x(s) (15)

By the assumption (7;), one has
[ Gei(1)) = L (][ (i (1) — Loxa(1)] <0 (16)
e — <(0) — Lt — <)t — (1) — D

— (1)) <0

It follows from (16) and (17) that

Zih,i[ﬁ(xz‘(f)) — Lx (][ (a(0)) = Lxi(0)]
x(n) 1" 20l ee” * x(1)
Zhl{f(x f))] —(L 4 1)ele; 2eieiT] {f(x(f))}

(
L] [ 2wl ] =

2 i%,%(ﬂ(t = (1)) = Lxi(r = ()] [fi(xie = 7(2)))
i=1

— Lxi(t —(1))]

:{ x(t— (1)) ] { 253l H x(t — (1)) }
fx(t=1@)] L=rla 293] Lf(x(r = (2)))

<0 (19)

where e; denotes the unit column vector with a “1” on its
ith row and zeros elsewhere.
By substituting (7) and (18), (19) into (15), it yields

V(1,x) <x"(1)Gi(A}, Q1, Qa, Q3)x(1) + 0" (1)IT' (1)
—5/ $)R1x(s ds—5/ $)Rox(s

_p / i (5)Ryx(5)ds (20)

where
' (1) = [x" (1) x" (1 - )
xxT(t — ty) x" (¢

)

(x(r = 7(1))) (A'(1)

)CT(I — ‘El)xT(t — ‘52)
— () f (x()) f"
']

@ Springer

In the following, we will consider three cases: that is
te8S,te€ S5, t€Ss.
Case 1: when 1 € Sy, i.e. ©(1) € [1,, T1].

By using Lemma 2.1, we have
-1

_5t / xT(s)RzX(s>ds<[ig::;;ﬂ_éz —R;J
<[] -

s / R [ T P
<[] N

Combing (20)—(22), and applying Newton-Leibniz formula and
adding the free weighting matrices N and M, it can be obtained

V(t,x;) §7xT(t)G,- (A, 1,02, 03)x(t) + 1" (1)IT'n(2)
~5 / T IREs)ds
[l ey
N x(t—1
o) T Sl

+ 265" (t)N {x(z — 1) —x(t —1(1)) —

+ 200" (1) {xu 1) —x(t— ) -

It is easy to deduce the followmg inequality:

s)ds = / n" (t)(—N)i(s)ds

—25n" (1)N /

t—1(1) t—1(1)

< (x(t) —ta)on" ())NR;'NTn(2) + 6

|
1 .
2]
=.
3
=
A
Z
=
!
ES
A
=
&

t

))on" (1)MRy' M" n(t)

—2n" ()M /

+0 / $)Rx(s (25)

s)ds < (t; — (¢t
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By substituting (24)—(25) into (23), it follows that
V(x(1)) <x'(1)Gi(Ap, 01, @2, 03)x(1) + 0" (1)[I1' + O}

+ (z(t) — ©,)ONR;'NT

+ (a1 — 7(0))oMR; M7 ) (26)
when m=n=1,

equivalent to
' + @) + &*NR;'N" <0 (27)

using Schur complement, (8) is

Similarly, when m = 1 and n = 2, (8) is equivalent to
' + @) + &*MR;'M" <0 (28)

From (27) and (28), by using Lemma 2.2, we can obtain
I + @ + (t(t) — 7,)0NR; 'NT + (1

— 1(t))0MR;'M" <0 (29)

Therefore, we finally obtain from (26) and (29) that
V(x(1)) <x"(1)Gi(4), 01, 0, 03)x(1) (30)

Vi=1,2,....N,t€ 8,

Case 2: when 1 € Sy, i.e. (1) € (11, 12].
Similar to case 1, we have

i I/T” T (s)Rx(s)ds < {x(t_ TII)T{_RI o [X(t_ TH)}

. x(t—1y) Ry —Ry][x(t—1)
(31)

o oomame [ [ 4]0
(32)

Combing (20), (31), (32), and applying Newton-Leibniz
formula and adding the free weighting matrices S and Z, it
can be obtained
V(1.x) <x'(1)Gi(Ay, 01, @2, Q3)x(t) +n" (1) [Ty (1)

-1

-9 / 1T ()R (s)ds

+
[\)
(o)
=
~
—~
N
N
9%}
- =
>
—
~
|
=
N—
|
>
—
-~
|
a
~—~
-~
N—
N~—
|
T
al
>
—
[}
NG
&

Then, according to a similar method in Case 1, we have
V(x(1)) <x"(1)Gi(A}, @1, 02, Q3)x(1) + 1" () [IT + O}
+ (2(t) —11)0SRy 'ST + (2 — (£))0ZR; ' Z" | (1)
(34)

when m =2, n =1, using Schur complement, (8) is
equivalent to

IT' + @), + 6’SR; 's" <0 (35)
Similarly, when m = 2 and n = 2, (8) is equivalent to
' + @), + 5*ZR;' 2" <0 (36)
From (35) and (36), by using Lemma 2.2, it yields
I 4 @) 4 (1(t) — 71)dSR, 'ST + (12 — 1(1))dZR; ' 2" <0
(37)
Therefore, we finally obtain from (34) and (37) that

V(X([)) <xT(t)Gi(A67Ql7Q25 Q3)x(t)v Vi= 1a 27 .. '7Na
tes,

(38)
Case 3: when 1 € S, i.e. 7(¢) € (12,7n].
From the above (21) and (31), we can get
V(t,x) <x"(1)Gi(A}, O1, 2, Q3)x(1) + 0 (1)T'n(t)
P / # (5)Ryi(s)ds
x(t—1) 1" [-Ri Ry 1[x(t—1,)
! [w-m] [Rl —&Hx(r—n)}
x(t—'rl) r —R, R, x(t—rl)
" [x(t - Tz)_] [ Ry *RJ L(f - 12)}
+ 260" ()X | x(t — 1) — x(t — (1)) — X(s)ds
L t—1(1)
[ 1—1()
+ 250" ()Y | x(t — t(t)) — x(t — 17) — / x(s)ds
' (39)

Similar to the analysis methods in case 1 and case 2, it
can be obtained:

V(x(1) <x"(1)Gi(Ay, @1, 02, 03)x(0),
teS;

Vi=1,2,...N,

(40)

From the above discussions, for all > 0, (8) with
m=1,2,3,n=1 and 2, we can get the following
equality:
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V(x(t)) <x"(t)Gi(A}), Q1, 02, Q3)x(t), Vi=1,2,..,N,
t>0 (41)

By the condition (i) and Proposition 2.1, the system of
matrices Gi(Ap, Q1, Q», Q3) is strictly complete. Then we

S (I=1,2,...,9) with appropriate dimensions such that
for all m and n, the following LMIs hold:

@A) 35"20,1'_: L2, .., N E>0:
S EGi(AY, 01, 02, 03) <O.

have (i)
N m+e  x
S n S S L ;oom . 0, =1,2,3,n=1,2 44
Q=R\{0}, Q(\Q=¢, i#j (42) [ Y —R;J <% m " (44)
i=1
h
Hence, for any x(7) € R", there exists i € {1, 2, ..., N} where
such that x(r) € Q;. By choosing switching rule as
o(x) = i whenever ¢(x) € Q;, from (41), it can derive
i i, * * * * * * * %
Ry —01— Ry * * * * * * *
0 0 -0, * * * * * *
0 0 0 —0s * * * * *
T = 0 0 0 0 -0 = * * x| <0,
0 0 0 0 0 Mg * * *
I3, 0 0 0 0 0 I, = *
ITg, 0 0 0 0 by Tl Igg
L (E)'P — (E) pAL 0 0 0 0 0 I, T, TI, |
V(x(f) <x"(1)Gi(A}, 01,02, 03)x(1) <0, >0  (43) "here
i AT \ iNT i
According to Definition 2.1, the switched interval H}l = (Ap)oi+ Q4 — Ra — 9oLy — Liyy + (F)) Fy
network (5) is global robust asymptotic stable. The proof Iys = —y3L1 — L1y,

is completed. O

H;l =Ly, + (Bilo)TP - V1A6 - (Bilo)gi + (FA)TFi

Next, we will consider the situation when the time- 1‘[;7 =7, Bilo + (Bim)Ty1 —y, — y; + (BilO)lTOi + (Fli)TFi
varying delay t(f) becomes the fast delay, by structuring ; i NT N iNT i
I, = (B P— (B F,) F
the different Lyapunov—Krasovskii functional, it is easy to 81 ( ?O)T ( 29)0; + A? , 2
obtain the following corollary: g; = (Byy) 71+ (Byg) ol + (F1) Fy
i T i \T - iNT pi
Corollary 3.1 Under the assumption (H) and (H3), if Igg = =73 = 73 + (Bayo)ooi + (F3) F
there exist matrices P>0, 0;>0, B> I}, = (E)'y, + (E) " (B,)"
0G=1, 2, 3, 4),anddi I matrices v, = diag{y;, i _ i i
G ), and diagonal matrices .,)k iag{ i, I, = (E )T¢T(Bz())T
Veas -« Vent > 0k =1, 2,3), and matrices N;, M, Z,, ; AT i
' ' Moy = (E') QE —1
i 0 * * * * * ok x|
ONT ONT + oNT * * * % % %
—oMmT ONT — oMY 0O, * * * Xk ok
) 0 5NZ Rz—éMZ —Rz—R3 * * * ok ok
Q) = 0 5NST —5M5T R —R3 * x kx| <0,
oMT — 6NT 0, e —0Nj 4+ 0M; O o1, I
0 ONT —oMT 0 0 —T+oMI 0 « =«
0 SNT —oMT 0 0 —T4+oMI 0 0 «
L 0 ON& —oM¥ 0 0 -I+omMl 0 0 0]
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i p sagT
®.133 = —Ry — 0M; — oM then, switched interval network (5) is global robust
(91162 = 5N6T - 5N2T +2T asymptotic stable, the switching rule is chosen as
G)"163 = _5N3T + 5M3T_g o(x(1)) = i whenever x(t) € Q.

O\ = —ON + oM:
i 0 * * * * * * ok k]
0 —R * * * * * % %
ozt R, +0Z] O, * * * Xk %
—osT oS8T AR O * * * k%

. 44

0; = 0 0 0Z{ Ry — 0S5 —Rs * * x| <0,
—0zZ{ + o8] —0zZj+; O 0,, 05, 0, * ok x
0 0 ozt —o8T 0 -T4+0687 0 % =
0 0 ozt —o8% 0 —§{+08 0 0 x
L 0 0 ozy —dS8y 0 {488 0 0 0]

@é33 = —Ry + 073 + 67 Proof By choosing the following Lyapunov—Krasovskii
9344 — —Ry— 551 — 58, functional:
O, =0zl —ozI+7 V(t,x) = Vi(t,x) + Va(t, x;) + Va(t,x,) + Va(t, x)

. T T T + Vs(t,x)

), = —0Z; +03S,—¢
®§65 = —0Z5 + 0S5 where
©) = —0Zs — 0Z; +6 +05;
i 0 * * * * * % ok
0 —R; * * * * * ok %
0 R, —R — R, * * * x % %
. oxT oxT XTI+ Ry o5, * * * ok X
Q) = —oYT =24 —-oy] LT —ov{ —ovl—ovYs * * x| <0,
—0X{ +ov] —0Xj+; O, 03, 05, @5,  x x %
0 0 0 ox¥ —ox¥ —Tyovl 0 x =
0 0 0 oXy —oYy —f+ovy 0 0 =
0 0 0 oxy —ov! ~F+ovl 0 0 0
O}, = —Ry + 0X] + 0X4

©) = —0X] +48Y]

®,,, = oX{ — 6Xj+1

©), = —0XI +6Y{—{

@, = —0Xs — OXL +1 +0Ys

366

¢ =Ry + Ry + 8°R3 + TRy
Y, =ONY, = Y5 =05y, = Y5, =X Y}, = oY
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X,(l)
Viltm) =T (Px(1) +23 1, / fi(s)ds
i=1 5

t t

Vatx) = [ K60+ [ A (9)0sx(s)ds

t—1, =1

t

+ / x"(5)Q3x(s)ds + / x"(5)Qax(s)ds

1—12 1—TN
-1, t

Vi(t,x;) =9 / iT(0)R,%(0)d0ds

-1 s
-1 1

+9 / / X" (0)Rpx(0)d0ds
—12 s

—1 t

+9 / / %7 (0)R3x(0)d0ds

t—Ty S
t t
Va(t,x:) = 1, / /)&T(H)R4X(0)d9ds
t—1, S

the derivation process of Corollary 3.1 is similar to The-
orem 3.1.

Remark 3 In (Zhang et al. 2009), author investigate the
global asymptotic stability of a class of recurrent neural
networks with interval time-varying delays via delay-
decomposing approach, the variation interval of the time
delay is divided into two subintervals with equal length by
introducing its central point, several new stability criteria
are derived in terms of LMIs. However, in this paper, we
divide the interval time delay into three subintervals, as we
all know, when the number of the divided subintervals
increases, the corresponding criteria can be improved in
results, hence, the proposed criteria expand and improve
the results in the existing literatures. Moreover, when
N = 1 and without regard to robustness in (5), the model in
our paper is degenerated as the nonlinear functional dif-
ferential equation (1) in (Zhang et al. 2009), so model
studied in (Zhang et al. 2009; Shen and Cao 2011; Liu and
Cao 2011; Phat and Trinh 2010) can be seen a special case
of the model (5).

An illustrative example
In this section, an illustrative example will be given to

check the validity and effectiveness of the proposed sta-
bility criterion obtained in Theorem 3.1.

@ Springer

Example Consider the the following second-order swit-
ched interval networks with interval time-varying delay
described by

{x-,-m = —aixi(1) + o0 () + S b fi (1 — 1(1)))

€la,. @) b bl Y, k=12,

4ai 9ij, » Pij,

v

(45)

where o(x(¢)) : R* — {1,2}, and [; =0.1,, =02, [, =

0.3, HLb=06,7,=051y=2,u=06=0.5, The
networks system parameters are defined as

1799 0 — 18.01 0
Al = ; Al = 3
0 1499 0 15.01

(017 0.1
013 —0.14)7
_ ~0.15 0.12 —0.47 0.13
By = By = )
0.15 —0.12 0.11 —0.54
_ (045 0.5
27\ 013 —052)°
1599 0 _ 1601 0
A2: aA2: P
0 16.99 0 17.01
~0208 0
BIZZ )
0  —0208
_ —0.188  0.02 —0.12 0.14
B = s 522: )
0.02 —0.188 0.05 —0.12

_ —0.09 0.16
By = )
0.07 —0.09
Solving the LMI in condition (ii) by using appropriate
LMI solver in the Matlab, the feasible positive definite

matrices P, Q;, O, O3, and diagonal matrices could be
as

1=

( 1.6853 0.0095> < 17.6516 —0.0006>

0.0095 1.6431 )’ —0.0006 17.6480 )’
( 17.6708 —0.0000) (17.6835 0.0000 )

= y 3 = ;

>~ \ ~0.0000 17.6655 0.0000 17.6809

Let & = 0.1,&, = 0.9, it can be shown that

1 —7.6637 —0.3142

Gl(A07QlaQ27Q3) = —0.3142 3.7002 7
) —0.9226 —0.3142

G2(A()7 Ql 5 QZa Q3) = —0.3142 —-2.8724

Moreover, the sum

E1G1(A), 01, 02, 03) + E:Ga(AG, 01,02, 03)

[ —1.5967 -0.3142 <0
-\ —0.3142 —2.2152
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Fig. 1 Regions Q,

Fig. 2 Regions Q,

The sets Q; and €, are given as

Q; = {(x1,x2) € R*: =7.6637x7 — 0.6284x,x, + 3.7002x3 <0},
Q= {(x1,%2) € R* : 0.9226x7 + 0.6284x,x; + 2.8724x3 > 0}.

then, the switching regions (Figs. 1, 2) are defined as

Q) = {(x1,x2) € R*: =7.6637x> — 0.6284x,x, + 3.7002x3 < 0},
Q) = {(x1,x2) € R* : =7.6637x7 — 0.6284x,x, + 3.7002x3 > 0}.

The switching rule ¢(x(f)) can be given by

_ [ ifx() e,
olt) = {2, if x(t) € Q_;.

By Theorem 3.1, this switched interval network (45) is
global robust asymptotic stable.

Conclusion

In this paper, we have proposed a new scheme of switched
interval networks with interval time-varying delay and
general activation functions. By introducing the delay
fractioning approach, the variation interval of the time
delay is divided into three subintervals, by checking the
variation of the Lyapunov functional for the case when the
value of the time delay is in every subinterval, the
switching rule which depends on the state of the network is
designed and some new delay-dependent robust stability
criteria are derived in terms of LMIs. An illustrative
example has been also provided to demonstrate the validity
of the proposed robust asymptotic stability criteria for
switched interval networks.
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