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Abstract According to biological knowledge, the central

nervous system controls the central pattern generator

(CPG) to drive the locomotion. The brain is a complex

system consisting of different functions and different

interconnections. The topological properties of the brain

display features of small-world network. The synchroni-

zation and stochastic resonance have important roles in

neural information transmission and processing. In order to

study the synchronization and stochastic resonance of the

brain based on the CPG, we establish the model which

shows the relationship between the small-world neural

network (SWNN) and the CPG. We analyze the synchro-

nization of the SWNN when the amplitude and frequency

of the CPG are changed and the effects on the CPG when

the SWNN’s parameters are changed. And we also study

the stochastic resonance on the SWNN. The main findings

include: (1) When the CPG is added into the SWNN, there

exists parameters space of the CPG and the SWNN, which

can make the synchronization of the SWNN optimum. (2)

There exists an optimal noise level at which the resonance

factor Q gets its peak value. And the correlation between

the pacemaker frequency and the dynamical response of

the network is resonantly dependent on the noise intensity.

The results could have important implications for biologi-

cal processes which are about interaction between the

neural network and the CPG.

Keywords Small-world neural network � CPG �
Synchronization � Stochastic resonance

Introduction

The neurons have the ability of receiving environmental

stimuli, information transmission and processing. Neurons

can demonstrate various types of activity; tonically spiking,

bursting as well as silent neurons are frequently observed in

electrophysiological experiments (Rabinovich et al. 2006).

Through these different spiking modes, the nervous system

can deliver and process the biological neural information.

Many models have explained the spiking activities,

especially the Rulkov’s model (Rulkov 2002). Rulkov

et al. (2004) established the model that replicates the

dynamics of spiking and spiking-bursting activity of real

biological neurons. Rulkov (2001) also modeled the indi-

vidual dynamics of each cell with a simple two-dimen-

sional map that produces chaotic bursting behavior similar

to biological neurons. Therefore, the Rulkov’s two-

dimensional neural map model can be used to simulate the

brain neuron. Through evidence from biological experi-

ments, the researchers have found the brain has many

features of a small-world network (Reijneveld et al. 2007;

Liao et al. 2011; Li and Li 2011; van den Heuvel et al.

2008). The small world structure of neural networks

reflects an optimal configuration associated with rapid

synchronization and information transfer, minimal wiring

costs, resilience to certain types of damage, as well as a

balance between local processing and global integration

(Hong et al. 2002). The synchronization and the stochastic

resonance are two important characters in the brain (Wang

and Wong 2013; Gao and Wang 2012). Wang et al. (2013)

studied the properties of equilibria and phase synchroni-

zation involving burst synchronization and spike synchro-

nization of two electrically coupled HR neurons. Yu et al.

(2012a) investigated the stochastic resonance in the

SWNN.
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Since Matsuoka (1985, 1987) established the CPG

model, the CPG has been widely applied to robot control,

modeling and motion simulation of human and made great

progress (Liu et al. 2011; Wu and Ma 2010) because the

CPG has a salient property that it generates rhythmic

movements. It is well known that the central nervous sys-

tem plays a key role in humans’ locomotion. The accurate

movement, such as walking gait, requires cognitive pro-

cesses, which are controlled by neural circuits involving

the system (Takakusaki and Okumura 2008). The basic

mechanisms of locomotion control are located in the spinal

cord, and the spinal cord is composed of the CPG, pattern

formation and motor output (Drew et al. 2004).

Many researchers have studied the relationship between

the neural network and the locomotion. Harris-Warrick

(2011) thought that neuromodulators determine the active

neuronal composition in the CPG and it is not possible to

model the function of neural networks without including

the actions of neuromodulators. Maria (2010) proposed that

locomotion requires a plethora of sensorimotor interactions

that occur throughout the nervous system, and sensory

feedback plays a crucial role in the rhythmical muscle

activation pattern. However, few researchers explained the

effects on the brain based on the CPG. In this paper, we

focus on the synchronization and stochastic resonance of

the SWNN based on the CPG and hope our findings have

important implications for weak CPG signal detection and

information propagation across neural networks.

This paper is organized as follows. In Section ‘‘Model

between the SWNN and the CPG’’, a new model showing

the interaction between the SWNN and the CPG is pre-

sented according to biological knowledge and numerical

simulation. Detailed analysis for the synchronization and

the stochastic resonance of the SWNN based on the CPG is

shown in Section ‘‘Analysis on synchronization and sto-

chastic resonance’’. The conclusions and future works are

made in the last section.

Model between the SWNN and the CPG

In this paper, a two-dimensional map (Rulkov 2001) is

used to simulate the dynamics of individual neuron in the

SWNN. The temporal evolution of each unit is described

by.

xi;nþ1 ¼
ai

1þ x2
i;n

þ yi;n þ I
syn
i;n ðxi;nÞ

yi;nþ1 ¼ yi;n � cxi;n � b

8
<

:
ð1Þ

where xn is the fast dynamical variable representing the

transmembrane voltage of the neuron and yn is the slow

dynamical variable denoting the slow gating process. The

first variable can emulate the spiking-bursting activity of a

neuron, depending on the value of the parameter a, whereas

the latter variable undergoes a slow temporal evolution due

to the small value of the parameters b and c, which model the

action of an external dc bias current or the synaptic inputs to

the cell. I
syn
i;n ðxi;nÞ is the coupling term, the form of which

depends on the network topology chosen to describe the

neural network. For a commonly investigated model of the

neural network, global coupling network, the coupling term

usually considers the mean field produced by all the neurons.

I
syn
i;n ðxi;nÞ ¼

e
ki

XM

j¼1

xj;n

where M is the number of neurons in the ensemble, and we

assume that each unit i is connected with a set M com-

prising ki; other units are randomly chosen along the net-

work. The parameter e is the coupling strength.

According to Eq. 1, the different states of the chaotic

neural map can be obtained by modulating the parameter a
when b and c are set as 0.001,as shown in Fig. 1.

The algorithm of Watts and Strogatz (1998) is used to

design the small-world network: starting with a network on

a ring, in which each network node is connected to its

k nearest neighbors on each side of the ring and connections

(edges) are selected at random with the probability p. By

increasing the probability p the architecture of the network

is tuned between two extremes, regular (p = 0) and random

(p = 1) networks. Small-world networks are characterized

by intermediate value of the probability 0 \ p \ 1.These

networks have a small value of characteristic path length L,

comparable with that of a random network, while get a large

value of clustering coefficient C, just like a regular network.

The shortest path length is defined as the average number of

edges in the shortest path between any two vertices, and the

clustering coefficient is the fraction of edges between the

neighbors with respect to maximum possible.

In the following we consider a small-world network con-

taining N = 200 map-based neurons, which is obtained from

a regular ring with different values of rewiring probability

p and k = 6 (Yu 2012b). In view of the diversity of neurons in

the real biological system, we set a = 4.2 and b = c=0.001,

so that each uncoupled neuron produces chaotic bursts.

In order to quantitatively characterize the synchroniza-

tion of the SWNN, we calculate the synchronization

coefficient d (Yu 2012b), which is described as:

dðnÞ ¼ 1

N

XN

i¼1

½xiðnÞ�2 �
1

N

XN

i¼1

xiðnÞ
" #2

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T

XT

n¼1

dðnÞ

v
u
u
t

8
>>>>>><

>>>>>>:

ð2Þ
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where T is the simulation time. The synchronization

coefficient d can describe the spatiotemporal synchroniza-

tion of the neuronal firing effectively. The synchronization

becomes stronger when the value of the parameter d is

close to zero. When d = 0, the state of all neurons is

complete synchronization.

Another useful diagnostic of synchronization is the mean

field of the ensemble and it is defined as (Yu et al. 2011).

Xn ¼
1

N

XN

j¼1

xj;n

The state of synchronized bursting in the SWNN is

characterized by the large amplitude oscillation of a

macroscopic mean field, whereas small amplitude

fluctuations mark the absence of synchronization. A

quantitative measure of synchronization is the variance of

mean field oscillation Var(X). The synchronization

becomes stronger when the value of the variable

Var(X) is close to 1. When Var(X) = 1, the state of all

neurons is complete synchronization.

According to above SWNN model, we calculate the

synchronization coefficient and Var(X), and the plots are

exhibited in Fig. 2. In Fig. 2, the rewiring probability p is

varied in the interval [0, 1] in step of 0.1 and coupling

strength coefficient e is in the interval [0.01, 0.1] in step of

0.01.

From Fig. 2a, we can see that there exists an optimum

interval where the synchronization is the best. In Fig. 2a, the

optimum interval of the coupling strength coefficient e is

[0.07, 0.08], and the rewiring probability p is [0.2, 1]. In

Fig. 2b, with the increasing of the strength coefficient e, the

synchronization of the SWNN becomes stronger. However,

when e[ 0.08, the value of the Var(X) is smaller than

e = 0.08 and becomes stable. This result is in accordance with

the result in Fig. 2a. In the following, we use synchronization

coefficient to show the synchronization of the SWNN.

In order to confirm the number of network nodes which

are connected with the CPG, we consider eleven patterns

which include one node, 10, …, 100 nodes and the step is

10. The rewiring probability p is set as 0.6 and the coupling

coefficient e is in the interval [0.01, 0.1] in step of 0.01.

Then the diagram of the synchronization coefficient is

shown in Fig. 3.

From Fig. 3, we can see that the synchronization coef-

ficient is becoming bigger with the increase of the number

of the nodes. In other words, the synchronization is opti-

mum when the number of nodes is one. This result is in

accordance with physiological phenomenon (Gao and

Wang 2011). In central nervous system, when signal is

Fig. 1 Different states of the chaotic neural map. a Silence and a = 2. b Spikes and a = 2.2. c Bursts of spikes and a = 4.2. d Tonic spikes and

a = 5
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imposed on one neuron, spikes are accordingly generated

in the neuron and transmitted to other neurons by means of

synaptic coupling. Most neurons communicate with each

other by the means of spike trains, which is believed to

support information processing in the brain.

According to physiological principle, the signals from

the central nervous system are transmitted to the CPG, and

information from the CPG is transmitted to the central

nervous system via ascending tract neurons (Takakusaki

and Okumura 2008). Then we apply the periodic signal of

the CPG to one arbitrarily neuron who has maximal

number of neighbors (Wang et al. 2006). Stam et al. (2010)

and Ponten et al. (2010) used a network of 32 connected

neural masses to demonstrate how an interaction between

dynamics and connectivity can explain the emergence of

complex network features. This network model considers

the average activity in relatively large groups of interacting

excitatory and inhibitory neurons. They all showed that the

average properties like mean voltage and firing rates are

efficient to understand the signals and structural connec-

tivity of the brain. Therefore, the SWNN is taken as a

whole and the mean value of all neurons is added to the

input of the CPG. Then the new model between the SWNN

and the CPG is shown by.

In Fig. 4, the variable ysm denotes the mean value of all

neurons, and the left part is CPG model (Matsuoka 2011;

Zhang 2004) which includes the extensor neuron and the

flexor neuron. The two variables u1 and u3 (u2 and u4) are

coupled together in such a way that the output of one

variable suppresses the other variable, and vice verse.

Together with other parameters, the reciprocal inhibition

works to produce a stable oscillation. The output of one

neuron is added to the other neuron and the output of the

CPG is v1. The model of the CPG can be described by.

Fig. 2 Contour plot of the synchronization coefficient d and Var(X) in the SWNN. a Contour plot of the synchronization coefficient d. b Var(X)

Fig. 3 The diagram of the

synchronization coefficient with

different number of nodes
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Tr _u1 þ u1 ¼ �du3 � wgðu2Þ þ e

Tr _u2 þ u2 ¼ �du4 � wgðu1Þ þ e

Ta _u3 þ u3 ¼ gðu1Þ
Ta _u4 þ u4 ¼ gðu2Þ
v1 ¼ gðu1Þ

8
>>>>>><

>>>>>>:

ð3Þ

The function g(�) is a piecewise linear function defined

by g(u) = max(o,u), which represents a threshold property

of the neurons. These variables u1, u3 and v1 represent the

membrane potential and the firing rate of the neuron,

respectively. Self-inhibitory input u2 and u4 represent an

adaptation or fatigue property that ubiquitously exists in

real neurons. The parameter e denotes the tonic input.

Parameters w and d represent the strength of mutual and

self inhibition, respectively; parameters Tr and Ta are the

time constants that determine the reaction times of

variables u1, u3 and u2, u4. In the following these

parameters are set as Tr = 0.1, Ta = 2Tr, w = d=2.5 and

e = 2 (Matsuoka 2011).

Analysis on synchronization and stochastic resonance

The synchronization on the SWNN based on the CPG

The frequency of the CPG is proportional to 1/Tr or 1/Ta

and the amplitude of the CPG is proportional to the

parameter e (Matsuoka 2011). In this paper, we modulate

the values of the parameter Tr and e to change the fre-

quency and amplitude of the CPG. In order to investigate

the effects on the SWNN when the frequency of the CPG is

varied, the parameter Tr is in the interval [0.1, 0.19] in step

of 0.01. The rewiring probability p is varied in the interval

[0, 1] in step of 0.1 and the coupling strength coefficient e
is in the interval [0.01, 0.1] in step of 0.01. Then the

diagram of the synchronization coefficient is obtained in

Fig. 5. Figure 5a–d correspond to p = 0.1, 0.5, 0.7, 1,

respectively. However, Tr = 0.15 and the parameter p is

varied in Fig. 5e.

Comparing with no signal input, the synchronization of

the SWNN is changed because of the CPG input. When

Tr = 0.15 and e = 0.08, the synchronization is optimum in

Fig. 5a–d. From Fig .5e, we also can see that there exists an

optimum rewiring probability whose value is 0.5 or 1.

Now we investigate effects on the SWNN when the

amplitude of the CPG is varied. The parameter e is in the

interval [1, 10] in step of 1 and Tr = 0.15. Then the dia-

gram of the synchronization coefficient is obtained in

Fig. 6. Comparing with no signal input, the synchroniza-

tion of the SWNN is changed because the amplitude of the

CPG is varied. With the increase of the parameter e, the

synchronization of the SWNN becomes weaker. There

exists optimum parameters space where p = 1, e = 1 and

e = 0.08.

When no signal is added to the SWNN, in other words,

no perturbation, therefore, the synchronization of the

SWNN is better. However, neurons, an important class of

excitable systems, are constitutive elements of the biolog-

ical brain (Gao and Wang 2011). The signal above a small

threshold can make the nervous system undergo large

excursions before eventually returning to the original rest

state. From Figs .5 and 6, we can see this phenomenon. In

Figs .5e and 6e, it is obvious that increasing the parameter

p lead to an enhancement of synchronization of the SWNN

when coupling coefficient is 0.08 (Ozer et al. 2009). From

Figs. 5a–d and 6a–d, we can see the changes of two

parameters Tr and e lead to the change of the CPG signal

and it affects the synchronization of the SWNN. It dem-

onstrates that the change of the signal has effect on the

dynamical behaviors of neuronal systems (Gao and Wang

2011).

sm i

Fig. 4 The model between the

SWNN and the CPG
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The effects on the CPG with the SWNN feedback

The SWNN is taken as a whole and the mean value of all

neurons is added to the input of the CPG. Therefore, the

feedback of the SWNN can be treated as the change of the

parameter e which affects the amplitude of the CPG. The

rewiring probability p is varied in the interval [0, 1] in step

of 0.1 and the coupling strength coefficient e is in the

interval [0.01, 0.1] in step of 0.01. Then the diagram of the

mean value of the SWNN is obtained in Fig. 7.

From Fig. 7a, the mean value of the SWNN is the

maximum when e = 0.04 and p = 1 and the minimum is

Fig. 5 Synchronization coefficient with different value of p and Tr. a p = 0.1. b p = 0.5. c p = 0.7. d p = 1. e Tr = 0.15
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obtained when e = 0.08 and p = 1. In Fig .7b and Fig .7c,

the change of the SWNN output affects the amplitude of

the CPG output. Then the brain can modulate the CPG and

control locomotion. This result is in accordance with the

result in (Takakusaki and Okumura 2008).

Stochastic resonance

The temporal evolution of each unit, along with the

Gaussian noise and the coupling term, is described by (Yu

2012b).

Fig. 6 Synchronization coefficient with different value of p and e. a p = 0.1. b p = 0.5. c p = 0.7. d p = 1. e e = 1
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xi;nþ1 ¼
ai

1þ x2
i;n

þ yi;n þ I
syn
i;n ðxi;nÞ þ Iext

i ðnÞ þ niðnÞ

yi;nþ1 ¼ yi;n � cxi;n � b

8
><

>:

ð4Þ

where Iext
i ðnÞ is the CPG input signal, and ni(n) is Gaussian

noise whose mean value is zero and the variance is r.

In order to quantitatively characterize the correlation of

temporal output series of each excitable unit xi(n) with the

pacemaker’s frequency w, we calculate the Fourier coef-

ficients Q(i) (Yu Yu 2012b), which is defined as:

Fig. 7 Mean value of the SWNN with different value of p and CPG output. a Mean value of the SWNN with different value of p. b CPG output

with maximum of SWNN. c CPG output with minimum of SWNN

Fig. 8 The dependence of Q on

the noisy variance for different

value of the parameter e

224 Cogn Neurodyn (2014) 8:217–226

123



Q
ðiÞ
sin ¼

1

T

XT

n¼1

2xiðnÞ sinðxnÞ

QðiÞ
cos
¼ 1

T

XT

n¼1

2xiðnÞ cosðxnÞ

QðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

QðiÞ2
sin
þ QðiÞ2

cos

q

8
>>>>>>>><

>>>>>>>>:

ð5Þ

where T is the operation period of the pacemaker and

w = 1/Tr. Since the Fourier coefficients are proportional to

the square of the spectral power amplification, which is

frequently used as a measure for stochastic resonance, here,

we use Q as a resonance factor, which is computed as the

average value of all Q(i) (Yu 2012b), which is described as:

Q ¼ 1

N

XN

i¼1

Qi ð6Þ

The Gaussian noise is added in all nodes of the SWNN,

and the periodic signal of the CPG is applied to one

arbitrarily neuron who has maximal number of neighbors.

Other parameters are set as p = 1, Tr = 0.11 and e = 1.

Then the dependence of Q on the noisy variance for

different value of the parameter e is plotted in Fig. 8.

It can be observed that there exists an optimal noise

level at which Q gets its peak value, i.e., the temporal

coherence between the temporal output series of each

excitable unit and the frequency w achieves an optimum.

Thus, it confirms the existence of pacemaker-driven sto-

chastic resonance in the SWNN. Moreover, larger noise

intensities are needed to evoke the optimal response with

increasing e. This result is in accordance with the result in

(Yu et al. 2012a).

Conclusions

According to biological knowledge and numerical simu-

lation, the model between the SWNN and the CPG is

established. The periodic signal of the CPG is applied to

one arbitrarily neuron who has maximal number of

neighbors. The synchronization of the SWNN is analyzed

when the amplitude and frequency of the CPG are changed

and the effects on the CPG when the rewiring probability

p and the coupling coefficient e are changed. And we also

study the stochastic resonance. From analysis, we can see

that the synchronization of the SWNN depends on the

structure of the CPG and the SWNN, such as the rewiring

probability p, coupling coefficient e, the CPG frequency

parameter Tr and the amplitude parameter e. There exists

an optimal noise level at which the resonance factor Q gets

its peak value. And the correlation between the pacemaker

frequency and the dynamical response of the network is

resonantly dependent on the noise intensity. Considering

the relationship between the brain and the locomotion, the

results could have important implications for many bio-

logical processes which are about the neural network.

Neuroanatomic studies reveal that neurons with similar

connectional and functional features are grouped into

clusters which called cortical areas or subcortical nuclei

(Zamora-López et al. 2011). Then the synchronization and

the stochastic resonance on the modular neuronal network

containing several subnetworks are deserved further

investigation.
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