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Abstract Motivated by studies on the dynamics of hetero-

geneously interacting systems in neocortical neural networks,

we studied heterogeneously-coupled chaotic systems. We

used information-theoretic measures to investigate directions

of information flow in heterogeneously coupled Rössler sys-

tems, which we selected as a typical chaotic system. In bi-

directionally coupled systems, spontaneous and irregular

switchings of the phase difference between two chaotic

oscillators were observed. The direction of information

transmission spontaneously switched in an intermittent man-

ner, depending on the phase difference between the two sys-

tems. When two further oscillatory inputs are added to

the coupled systems, this system dynamically selects one of

the two inputs by synchronizing, selection depending on the

internal phase differences between the two systems. These

results indicate that the effective direction of information

transmission dynamically changes, induced by a switching of

phase differences between the two systems.

Keywords Synchronization � Information flow � Chaos �
Hetero-interaction

Introduction

Biological systems frequently contain repetitions of similar

structures. One of the most striking examples is the

mammalian neocortex. The typical neocortex is composed

of six layers, each containing specific neuron subtypes.

Although similar structures have been observed in most of

the neocortex, each subregion carries out a different type of

information processing (Mountcastle 1997; Felleman and

Van Essen 1991). Moreover, the existence of certain

degrees of anatomical and functional hierarchies among

subregions is widely known (Felleman and Van Essen

1991). Anatomical studies (Rockland and Pandya 1979;

Felleman and Van Essen 1991) revealed that ascending (or

feedforward) and descending (or feedback) pathways have

different topologies: feedforward connections mainly

originate in layer III neurons and terminate in layer IV,

while feedback connections originate in layer V and VI

neurons and terminate in layers I/II and VI. Felleman and

Van Essen (1991) used this layer specificity of projections

as a criterion for identifying hierarchical relationships

between subregions.

It is hypothesized that such heterogeneity of connections

may contribute to functional differentiation between higher

and lower regions. Nevertheless, it remains unclear how

these heterogeneous connections relate to functional dif-

ferences among subregions.

Complex dynamic behaviors of interacting elementary

systems have been intensively studied in the field of non-

linear dynamics (e.g., Kuramoto 1984; Kaneko and Tsuda

2001). In most cases, however, types of connections between

elementary systems are assumed to be uniform throughout

networks. Even in the case of heterogeneous connections,

studies have been limited to uniformly distributed random

connections, or to random connections with Gaussian
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distributions. Yet differences in dynamic behavior between

subregions in the neocortex are expected to be induced by the

asymmetry of the connections between subregions. Func-

tional differentiation may thereby emerge.

In this paper, we investigate a mathematical mechanism

of differentiation of dynamic behaviors induced by asym-

metric couplings, which we call hetero-interactions. For

this purpose, we take a constructive approach in which we

try to extract the essence of the dynamics by investigating

simpler but typical dynamical systems. In particular, we

study the origin of role differentiation as driver and

receiver. Estimating the structure of communication among

neuronal groups from observed multiple dynamic signals

has become an active topic in the neurosciences. Coherent

oscillation is one of the key mechanisms assumed to sub-

serve for neuronal communication (Tass et al. 1998; Engel

et al. 2001; Varela et al. 2001; Fries 2005; Rodriguez et al.

1999; Klausberger et al. 2003). In this paper, we utilize

information-theoretic methods to investigate the phase

relationship between two chaotic oscillators.

In section ‘‘Models and methods’’, we describe coupled

chaotic oscillator models, and describe an information-

theoretic method for analyzing information flow. In sec-

tions ‘‘Uni-directional connections’’ and ‘‘Bi-directional

connections’’, we study the dynamics of uni-directionally

coupled systems and bi-directionally connected systems,

respectively. Section ‘‘Selective switching of external

information’’ describes a selective switching of external

signals. Section ‘‘Summary and discussion’’ presents a

summary and discussion.

Models and methods

Heterogeneously interacting Rössler chaotic oscillators

As a first example, consider two interacting Rössler systems

as a simple hetero-interactive system. Assume two chaotic

oscillators whose states at time t are represented by three-

dimensional vectors Xj(t) = (xj(t), yj(t), zj(t))
T (j = 1, 2)

(Fig. 1).

These dynamics are given by

_Xj ¼ FðXjÞ þ KkjðXk � �XÞ; ð1Þ

where

FðXjÞ ¼
�ðyj þ zjÞ
xj þ ayj

bþ zjðxj � cÞ

0
@

1
A ð2Þ

represents the dynamics of an uncoupled Rössler system, and

a = 0.15, b = 0.2, and c = 10 are constants. In the interac-

tion term, k = 2 for j = 1 and k = 1 for j = 2, respectively.

The matrices K12 and K21 represent feedforward (ascending)

and feedback (descending) connections, respectively. To keep

the time averages of interaction terms at almost zero, we

introduce a vector �X, the time average of the state vectors

under the uncoupled condition. To normalize interaction

terms we use the diagonal matrix S = diag (rx, ry, rz), ele-

ments of which are given by the standard deviation of the

respective variable in the uncoupled system. The feedforward

connection matrix is set to be K12 = k12SC12S
-1, where k12 is

a control parameter for the connection strength, and each

(m, n) component of the matrix C12 is 1 if and only if there

exists a connection from the n-th variable of system 1 to the m-

th variable of system 2, and 0 otherwise. The matrix K21 is also

determined in a similar way with the control parameter k21.

For simplicity, here we study two chaotic oscillators which

have at-most one connections in one direction. Thus, only one

element is nonzero in C12 and in C21.

For numerical integrations of Eq. (1), we used the

fourth-order Runge–Kutta method with a time step of 0.01,

which is small enough to yield robust results and is used in

previous studies using coupled Rössler oscillators [for e.g.,

Wilmer et al. (2010)].

Wavelet transform

The phase relation between two oscillatory systems pro-

vides useful information about the dynamic relationship

between interacting systems (Tass et al. 1998; Rodriguez

et al. 1999; Lachaux et al. 2000; Rosenblum and Pikovsky

2001; Mizuhara et al. 2005). Here we determine the

instantaneous phases hj(t) (j = 1,2) of the chaotic oscilla-

tors by means of wavelet transform with a complex Morlet

wavelet (Lachaux et al. 2000). The wavelet coefficient as a

function of time t and frequency f is defined as follows:

Wjðt; f Þ ¼
Zþ1

�1

Wt;f ðsÞxjðsÞds;

where Wt;f ðsÞ is a complex conjugate of the Morlet wavelet

defined at frequency f and time t by:

x1

y1

z1

x2

y2

z2

K12

(feedfoward)

K21

(feedback)
X1 X2

Fig. 1 A schematic diagram of heterogeneously-connected Rössler

systems
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Wt;f ðsÞ ¼
ffiffiffiffiffiffiffiffi

2

pr2
w

s
expði2pf ðs� tÞÞ exp �ðs� tÞ2

2r2
w

 !
; ð3Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

and rw determines the half width of the

Gaussian function. We use rw = nc/(2p f) with nc = 8,

which is approximately the number of waves appearing in

the function defined by Eq. (3) (Lachaux et al. 2000). The

parameter nc also determines the frequency resolution of

the analysis, as it provides the width of the frequency

interval for which phases are measured. The instantaneous

phase hjðtÞ 2 S1 and the amplitude Aj(t) C 0 are defined as

the argument and the amplitude of the complex value

Wj(t, f), respectively:

AjðtÞ expðihjðtÞÞ � Wjðt; f Þ: ð4Þ

The phase difference between two chaotic oscillators is

defined as

/ðtÞ � h2ðtÞ � h1ðtÞ ðmod 2pÞ: ð5Þ

To measure the degree of phase locking between two

systems, independent of their amplitudes, we use a phase-

locking value (PLV) r, defined as

r � hei/ðtÞit
�� ��; ð6Þ

where h�it denotes the time average over the entire time

series (Lachaux et al. 2000). The mean phase difference is

defined by

h/i � arghei/ðtÞit: ð7Þ

We use f = 0.16, but the results in this paper are not

sensitive to f as long as its deviation from the intrinsic

frequency of the chaotic oscillations is not large. There

exist several methods which determine instantaneous phase

from time series, including Hilbert transform, wavelet

transform, or an simple method using an angle in (x, y)

plane. Among them, Hilbert transform and wavelet trans-

form are often used in the field of neuroscience because of

their usefulness for analyzing noisy experimental data. Le

Van Quyen et al. (2001) discussed the comparison of two

methods and concluded that difference is minor and these

two methods are essentially same. In accordance with Le

Van Quyen et al. (2001), when we used Hilbert transfor-

mation method instead of wavelet transform to estimate

phase, essentially same results as shown in this papers were

obtained.

Transfer entropy

Information-theoretic approaches are widely used to ana-

lyze nonlinear systems (Shaw 1981; Fraser and Swinney

1986; Kaneko 1986; Matsumoto and Tsuda 1985, 1987,

1988; Schreiber 2000). Mutual information is often used as

a measure of interdependency between coupled systems

(Kaneko 1986; Matsumoto and Tsuda 1987, 1988). Due to

its symmetric nature, mutual information is not always

sufficient to determine the direction of information flow

between systems, although the quantity of information

flowing from a certain state to other states can be estimated

by introducing time-dependent mutual information.

Schreiber (2000) extended the concept of mutual infor-

mation to define a measure called transfer entropy (TE) that

captures the amount of directed information exchanged

between two time series.

In this paper, the information flow between two phase

variables is calculated using TE. The phase variables are

first discretized into one of 64 bins of uniform size. We use

the notation hl
1ðtÞ � ðh1ðtÞ; . . .; h1ðt � ðl� 1ÞsÞÞ and hm

2 ðtÞ
� ðh2ðtÞ; . . .; h2ðt � ðm� 1ÞsÞÞ for vectors of dimensions

l and m, respectively, made by delay reconstruction with

the time step s. Note that h1
l (t) and h2

m(t) have 64l and 64m

distinct states, respectively. Let pijk(h1(t ? s), h1
l (t), h2

m(t))

be the joint probability that h1(t ? s) lies in the i-th state,

h1
l (t) in the j-th state, and h2

m(t) in the k-th state. Let

pjk(h1
l (t), h2

m(t)) be the marginal probability distribution of

h1
l (t) and h2

m(t), and pijk(h1(t ? s)|h1
l (t), h2

m(t)): pijk(h1(t ?

s), h1
l (t), h2

m(t))/pjk (h1
l (t), h2

m(t)) be the conditional proba-

bility. Also, let pij(h1(t ? s)|h1
l (t)) be the similarly defined

conditional probability. TE from h2 to h1 with time step s is

defined by a form of Kullback entropy:

T2!1ðsÞ �
X
i;j;k

pijkðh1ðt þ sÞ; hl
1ðtÞ; h

m
2 ðtÞÞ

log2

pijkðh1ðt þ sÞjhl
1ðtÞ; hm

2 ðtÞÞ
pijðh1ðt þ sÞjhl

1ðtÞÞ
: ð8Þ

Using the conditional Shannon entropy Hð�j�Þ, TE is also

represented by the difference of conditional Shannon

entropies:

T
2!1ðsÞ ¼ H h1ðt þ sÞjhl

1ðtÞ
� �

� H h1ðt þ sÞjhl
1ðtÞ; hm

2 ðtÞ
� �

;

where the first term on the right represents uncertainty about

the state transition of h1 given its current state, and the

second term represents uncertainty about the state transition

of h1, given the current state of both itself and h2. If the

transition probability of h1 does not depend on h2, infor-

mation about the current state of h2 does not improve pre-

dictions about the future state of h1, and the second term has

the same value of uncertainty as the first, so TE becomes

zero. On the other hand, if uncertainty decreases by adding

the information of h2, it is considered that the states of h2 are

correlated to the state transition of h1. In this sense, TE

quantifies the amount of directed information transfer.

Hereafter, we treat the case l = m = 1. It is reported

that the values of TE are sensitive to the choice of the time

step s, and that its dependence is not trivial, particularly for
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calculations from continuous signals (Kaiser and Schreiber

2002). Hence, we do not fix the value of s, but treat TE as a

function of s.

Because numerical estimation of TE in the case of

continuous variables is dependent on the size of partitions,

we have to carefully choose an appropriate range of par-

tition sizes for analyzing finite data. Theoretical basis and

practical issues about numerical estimation of TE via dis-

cretization of continuous variables are discussed by Kaiser

and Schreiber (2002) in detail. A simple method which

uses uniform bin size is computationally less demanding

than other sophisticated methods such as adaptive bin

sizing and kernel estimation, but sometimes becomes

problematic, especially when available amount of data is

limited. In the present study, because our model is rela-

tively simple and acquisition of enough amount of data is

easy, we adopt a simple fix-sized bin method. If infinite

data is available, Eq. (8) converges to a theoretical value as

decreasing the width of bin. When the data size is finite,

however, a finite sample effect appears if too small bin size

is used. Thus, we have to chose intermediate bin width

around which we can find plateau region when we draw the

TE as a function of bin width (Kaiser and Schreiber 2002).

We graphed TE as a function of the logarithm of the bin

size, then determined the bin size used for analysis as 2p/

64, because of the fairly flat slope of the graph around this

value. In numerical simulations, after cutting a transient

trajectory (104 time units), a time series with length

8.0 9 105 time units and 0.2 sampling interval were used

for calculating TE.

Uni-directional connections

To verify the reliability of the present analysis, we studied

information transmission between two chaotic oscillators

with uni-directional connections. In the case that only a

connection from x1 to y2 exists, which we will denote by

x1 ! y2, a small connection strength (k12 \ 0.01) is

enough to establish phase synchronization (r [ 0.9)

between the two chaotic oscillators. Figure 2 shows the

PLV, the mean phase difference, and the ratio of the fre-

quency as a function of the connection strength k12. When

the connection strength k12 was increased slightly from

zero, strong phase synchronization between two oscillators

with about p/2 phase difference took place (Fig. 2a, b).

Figure 2c indicates that one-to-one frequency locking was

established with small connection strength. In the case that

strong coupling, 1:1 phase locking is broken and the fre-

quency of the driven oscillators (X2) become larger than the

driving one (X1). In this case, so-called phase slips, i.e.,

rapid jumps of the relative phase about 2p occurs.

Figure 3a shows typical trajectories of x1(t) and x2(t) in

the case where k12 = 0.04. Due to the presence of chaotic

dynamics, the distribution of the phase difference did not

show a sharp delta-like peak but rather a Gaussian-like

shape (Fig. 3b). We calculated TE between the two phase

variables h1 and h2 (Fig. 3c). In the figure, the abscissa

denotes s=hTi, which is the time step normalized by the

mean period of cycle hTi � 6:04. Transfer entropy from h1

to h2 was larger than in the opposite direction, regardless of

the choice of time step. The value of TE in the opposite

direction, along which there are no actual connections, was

negligible (T1!2ðsÞ[ T2!1ðsÞ � 0). Figure 3d shows the

maximums of TE, maxs T1!2ðsÞ and maxs T2!1ðsÞ, in both

directions as functions of the feedforward connection

strength k12. The direction of information flow between

two systems was correctly detected by TE whether 1:1

phase locking was present or absent. These maximums

were found at a relatively large s=hTi & 20 (Fig. 3c),

which may reflect the existence of slow dynamics on the

phase variables.
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Fig. 2 a The phase locking value, b the mean phase difference, and

c the frequency ratio as a function of the connection strength in a uni-

directionally connected system. For each k12, the average values of

eight samples from different initial conditions are plotted. In a, b,

c and all figures below, error bars indicate standard errors of means
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Bi-directional connections

Feedback effects on phase synchronization

Next, we investigate the phase dynamics in the case of

heterogeneously bi-directional connections z1 ! z2 and

x2 ! x1. We denote this type of connection as zz–xx.

We fixed the strength of the feedforward connection k12

to 0.01 and changed the strength of the feedback connec-

tion k21. Figure 4a shows the distribution of the phase

difference /(t) as a function of k21.

In the case that only the feedforward connection z1 ! z2

exists (k12 = 0.01 and k21 = 0, the left boundary of Fig. 4a),

degree of phase locking is not strong: the phase difference is

broadly distributed on the unit circle, although mean fre-

quencies of the two oscillators are same. With a small increase

of the strength of the feedback connection, however, phase

locking between the chaotic oscillators with a phase difference

of about -p/2 emerges. On the other hand, when the feedback

strength was strong enough (k21 & 0.005), nearly in-phase

synchronization appeared. Figure 4b shows a dependence of

PLV on k21. PLV takes a local maximum value at k21&0.0019,

then decreases, and again increases to nearly 1 at k21 = 0.005.

To quantify information flow between two systems and to

estimate the driver-response relation, we calculated TEs and

their maximums, maxs T1!2ðsÞ and maxs T2!1ðsÞ, which are

depicted in Fig. 4c by crosses and solid lines, and open cir-

cles and dashed lines, respectively. This shows that the

increase in strength of the feedback connection enhanced the

information transmission not only in the feedback direction

but also in the feedforward direction in the parameter range

k21 \ 0.002. In this case, TE in the feedforward direction

was larger than in the opposite direction. On the other hand,

in the case of stronger feedback strength (k21 [ 0.003), the

dominant direction of information flow was reversed

(max T2!1ðsÞ[ max T1!2ðsÞ).

Spontaneous switching of the phase difference

and the direction of information flow

Intermediate connection strengths around k21 = 0.003

resulted in intermittent transitions of the phase difference /
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Fig. 3 a Typical trajectories of x1 and x2, b distribution of the phase

difference /, and c transfer entropy (TE), in the case of k12 = 0.04.

The abscissa is the normalized time step s=hTi, where hTi is the mean

period of the oscillation. d TE maximums as a function of connection

strength k12
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Fig. 4 The case of bi-directional couplings. Each figure is depicted

as a function of the strength of feedback connections k21. a The

distribution of phase differences. Brighter shading indicates higher

density. b Phase locking values. c TE maximums
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(t) between two states located near 0 and -p/2 (Fig. 5a).

As suggested by the scaling factor of the horizontal axis in

the figure, such switching dynamics have an extremely

slow timescale as compared with the inherent periods of

the chaotic oscillations. The phase difference shows a

bimodal distribution (Fig. 5b). Figure 5c shows TEs cal-

culated from whole time series, and indicates that infor-

mation flows comparably into both directions.

To investigate whether the dominant direction of infor-

mation transfer changes with phase difference transitions, we

calculated the state-dependent transfer entropy as follows.

First, we divided the whole time series into two sub-time

series, which are the collections of sub-intervals denoted by

SA ¼ ftj/th\/ðtÞ�/th þ pð mod 2pÞg and SB ¼ ftj � p
\/ðtÞ�/th or /th þ p\/ðtÞ� pg, respectively, where

/th = - 0.9 is marked by a star in Fig. 5b. TEs were then

calculated separately for each sub-time series, which we

denote by TA
�!�ðsÞ and TB

�!�ðsÞ, respectively (Fig. 5d). We

calculated the state-depending TE by replacing probabilities

in Eq. (8) with conditional probabilities. Although these

conditional probabilities were estimated from data of dis-

continued subsections, simulation time was long enough so

that robust results were obtained. A striking feature was

observed in that there exists an asymmetry in the amount of

information flow and dominant directions of the information

flows are different between two sub-time series SA and SB, that

is, TA
2!1 [ TA

1!2 and TB
2!1\TB

1!2. These results suggest that

even when the physical strength of a connection is unchanged,

the effective direction of information flow and the driver-

response relation between two systems can change, induced

by a change of the phase relation.

When the connection was stronger, different types of

behavior appeared. For example, In the case that k12 = 0.03

and k21 = 0.0045, the dynamics of the two oscillators fell

into a periodic attractor, where estimation of the direction of

information flow is difficult (Kaiser and Schreiber 2002).

With further increasing connection strength, chaotic

attractor appears again. In the case that k12 = 0.04, domi-

nant direction of information flows again switched as the

feedback strength was increased. However, unlike Fig. 4a, a

shift of the phase differences is not observed. Detailed

analysis of complex sensitivity of the dynamics to the

parameters is beyond the scope of the present study.

Similar chaotic transitions of phase differences and sim-

ilar features of information flows were also observed in the

case of other connection types, such as xy–xy connections

(Fig. 6) and yx–yx connections (Figure not shown). In all

three cases (zz–xx, xy–xy, yx–yx), there is a common rela-

tion between the phase difference and the directions of

information flow. Information flow in one direction is larger

when the phase differences falls into a state, which is

observed if the connection in the same direction is stronger.

For example, in zz–xx case, the direction 1! 2 corresponds

to the phase difference -p/2 and the direction 2! 1 cor-

responds to the in-phase state. This correspondence between

the phase difference, the connection strength and the direc-

tion of information flow holds in all three cases.

These commonality of the switching phenomena in two-

coupled chaotic systems may suggest that the switching of
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Fig. 5 Intermittent transitions of the phase difference, accompanied

by switching the direction of information flow. Here, k12 = 0.01 and

k21 = 0.003. a Trajectories of /(t), b distribution of the phase

difference, c TEs calculated from whole time series, and d state-

dependent TEs (see text for definitions)
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information flows can generally be observed when a cou-

pled system has several quasi-stable states (quasi-attractors

or attractor ruins) and transitions among them, such that

chaotic itinerancy (Tsuda 1992, 2001) occur. A study of the

detailed mechanism of such transitions in the present sys-

tem will be published elsewhere.

Selective switching of external information

In the previous section, it was shown that the direction of

information flow can change, caused by transitions of the

phase difference of two chaotic oscillations. When we

introduce external inputs and regard the system’s behavior

as outputs, it is interesting to investigate whether the

transitions of the phase difference between chaotic oscil-

lators affect the input-output relations. In this section, we

consider two independent external inputs and study the

dependence of input-output relations on the phase differ-

ence, regarding this dynamical system as an information

channel.

We consider the two mutually coupled chaotic oscilla-

tors X1, X2 and two additional input chaotic oscillators Y1,

Y2, whose connections are shown in Fig 7a. Two inde-

pendent systems Y1 and Y2 send input signals to systems X1

and X2, respectively, via connection matrix Kin. The cou-

pled dynamics of these systems are described by

_Yj ¼ FðYjÞ; ð9Þ
_Xj ¼ FðXjÞ þ KkjðXk � �XÞ þ KinðYj � �XÞ; ð10Þ

where j = 1 or 2, and accordingly k = 2 or 1. In the fol-

lowing, we used an x! y connection for both K12 and K21,

and an x! x connection for Kin.

Figure 7c shows distributions of the phase differences

between X1 and other systems. The phase difference between

X1 and X2, denoted by /X1X2
, shows a bimodal distribution as

in the case of the previous section, while phase differences

between X1 and two input systems show single peaks. As in

the previous section, we split the time series into two sub-

time series, defined by SA ¼ ftj � p\/X1X2
ðtÞ� 0g and

SB ¼ ftj0\/X1X2
ðtÞ� pg, and separately calculated several

measures for each sub-time series. Distributions of phase

differences between X1 and other systems in each sub-time

series are shown in Fig. 7d. The lower figure of Fig. 7d

shows that when the phase difference between X1 and X2 was

around p/2, the phase of X1 tended to lock to that of Y1, which

sends an input signal to X1 directly. On the other hand, the

upper figure in Fig. 7d shows that when the phase difference

between X1 and X2 was around -p/2, the phase of X1 was

strongly correlated to that of Y2, which did not connect to X1

directly, rather than Y1. This tendency became evident when

comparing PLVs between chaotic oscillators calculated

from sub-time series SA and SB (Fig. 7e). We also calculated

state-dependent TE separately from sub-time series SA and

SB, respectively, the maximums of which were depicted in

Fig. 7f. In the sub-time series SB, information transmission

from X1 to X2 is larger than in the opposite direction, and X1

receives more information from Y1 than from Y2. In contrast,

in SA information transmission from X2 to X1 is larger than in

the opposite direction, and X1 receives more information
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from Y2 than from Y1. As expected by considering the sym-

metry between X1 and X2, X2 also received more information

from Y1 than from Y2 in SB, and vice versa in SA (figure not

shown to avoid redundancy). These results suggest that two

mutually connected chaotic oscillators dynamically select

one of the two input systems to receive information by

changing the phase difference between X1 and X2. Thus, the

phase difference acts as a dynamic switch, through which

one of the two inputs is selected as an output.

Summary and discussion

Using information-theoretic measures, directions of infor-

mation flows in heterogeneously connected Rössler sys-

tems were investigated. It is observed that the direction of

information transmission spontaneously switched in an

intermittent manner, depending on the phase difference

between the two systems. When two independent chaotic

inputs are added to the connected system, the system

dynamically selects one of the two inputs to receive,

effectively by synchronization depending on the internal

phase differences between two mutually connected chaotic

oscillators. These results indicate that effective directions

of information transmission can dynamically change,

induced by a switching of phase difference between two

systems without modifying the strength of the connections.

Much attention has been paid to the phase dynamics of

coupled chaotic oscillators (for e.g., Rosenblum et al.

1996, 1997; Belykh et al. 2001; Osipov et al. 2003; Li and

Zheng 2007; Wilmer et al. 2010; Ouchi et al. 2011).

Numbers of methods has been proposed for estimation of
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driver-response relationships from observed time series

(Quiroga et al. 2000; Schreiber 2000; Rosenblum and Pi-

kovsky 2001; Paluš and Vejmelka 2007; Wilmer et al.

2010). One of the novelties of our results lies in the finding

that the driver-response relation temporally switches

without changing connection strength among subsystems.

These results shed light on the distinction between ’effec-

tive’ or ’functional’ connectivity and anatomical connec-

tivity (Aertsen et al. 1989; Fujii et al. 1996).

The information-theoretic approach presented here will

be useful for understanding dynamic change in structures

of information flows in the brain. Dynamic switchings of

information flow induced by shifts of the phase difference

may related to the flexibility of the patterns of neuronal

interactions. Related findings have been reported in the

hippocampus (Klausberger et al. 2003). Some distinct

brain states are characterized by rhythmic oscillations such

as slow waves and theta oscillations, and some types of

interneurons dynamically change their firing activities and

then phase relations to their post-synaptic target neurons in

a state-dependent manner. Further, Womelsdorf et al.

(2007) recently discovered that mutual interaction among

neural groups depends on phase relations between rhythmic

activities within the groups. Although the direction of the

information flow was not discussed in detail in their study,

our present study and further studies along this line may

provide a theoretical basis for such dependence of neural

interactions on phase relations and its relation to hetero-

geneous neuronal structure. In these respect, studies of

dynamic alternations of the driver-response relation and the

direction of information flow among different neuron

populations are quite important, and are expected to be

further studied.

In addition, in the brain system, spontaneous shifts

between perceptual states have been reported, for e.g,

perceptual rivalry such as ambiguous figure perception and

binocular rivalry. (Inoue and Nakamoto 1994; Murata et al.

2003). Because our present study provide a simple model

yielding spontaneous switchings of the information flow, it

may be applicable to explain such complex phenomena in a

future study.

Acknowledgments We would like to thank H. Fujii for fruitful

discussions. This work was supported by a Grant-in-Aid for Scientific

Research on Innovative Areas ‘‘The study on the neural dynamics for

understanding communication in terms of complex hetero systems

(No. 4103)’’ (21120002) of The Ministry of Education, Culture,

Sports, Science, and Technology, Japan.

References

Aertsen AM, Gerstein GL, Habibm MK, Palm G (1989) Dynamics of

neuronal firing correlation: modulation of ‘‘effective connectiv-

ity’’. J Neurophysiol 61:900–917

Belykh V, Belykh I, Mosekilde E (2001) Cluster synchronization

modes in an ensemble of coupled chaotic oscillators. Phys Rev E

63(3):036216

Engel A, Fries P, Singer W (2001) Dynamic predictions: oscillations

and synchrony in top–down processing. Nat Rev Neurosci

2:704–716

Felleman D, Van Essen D (1991) Distributed hierarchical processing

in the primate cerebral cortex. Cereb Cortex 1:1–47

Fraser AM, Swinney HL (1986) Independent coordinates for strange

attractors from mutual information. Phys Rev A 33:1134–1140

Fries P (2005) A mechanism for cognitive dynamics: neuronal

communication through neuronal coherence. Trends Cogn Sci 9:

474–480

Fujii H, Ito H, Aihara K, Ichinose N, Tsukada M (1996) Dynamical

cell assembly hypothesis? Theoretical possibility of spatio-

temporal coding in the cortex. Neural Netw 9:1303–1350

Inoue M, Nakamoto K (1994) Dynamics of cognitive interpretations

of a necker cube in a chaos neural network. Progress Theoret

Phys 92:501–508

Kaiser A, Schreiber T (2002) Information transfer in continuous

processes. Physica D Nonlinear Phenom 166:43–62

Kaneko K (1986) Lyapunov analysis and information flow in coupled

map lattices. Physica D Nonlinear Phenom 23:436–447

Kaneko K, Tsuda I (2001) Complex systems: chaos and beyond: a

constructive approach with applications in life sciences.

Springer, Berlin

Klausberger T, Magill P, Márton L, Roberts J, Cobden P, Buzsáki G,
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