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Abstract The effects of noise on patterns and collective

phenomena are studied in a small-world neuronal network

with the dynamics of each neuron being described by a

two-dimensional Rulkov map neuron. It is shown that for

intermediate noise levels, noise-induced ordered patterns

emerge spatially, which supports the spatiotemporal coher-

ence resonance. However, the inherent long range cou-

plings of small-world networks can effectively disrupt the

internal spatial scale of the media at small fraction of long-

range couplings. The temporal order, characterized by the

autocorrelation of a firing rate function, can be greatly

enhanced by the introduction of small-world connectivity.

There exists an optimal fraction of randomly rewired links,

where the temporal order and synchronization can be

optimized.

Keywords Small-world neural network � Pattern �
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Introduction

The brain is a complex network on multiple spatial and

time scales. Neural assemblies such as local networks of

neurons transiently linked by selective interactions are

considered to be largely distributed and linked to form a

network (Varela et al. 2001). For example, a single neuron

in the vertebrate cortex may connect to more than ten

thousands postsynaptic neurons via synapses in the forming

of complex neural networks (Gerstner and Kistler 2002).

Some experiments have shown that the brain can exhibit a

small-world network (Bassett and Bullmore 2006). It sup-

ports both segregated and distributed information pro-

cessing. Analysis of the different networks shows that the

distribution of functional connections and the probability

of finding a link versus distance are both scale-free. More-

over, it displays the small characteristic path length and the

large clustering coefficient, which are the typical properties

of small-world networks. Therefore, it is feasible to employ

networks to investigate the complex phenomena of neural

systems observed in the brain cortex.

Recently, much attention has been paid to the networks

with variable random connectivity. Increasing the ran-

domness of the network topology leads to an enhancement

of temporal coherence and spatial synchronization of the

neuronal networks (Zheng and Lu 2008; Sun et al. 2008;

Gong et al. 2006; Kwon and Moon 2002). Effects of small-

world connectivity on noise-induced spatial patterns in

two-dimensional continuous neuronal networks have also

been investigated in (Perc 2005a, 2007a). Spatiotemporal

evolution and resonance dynamics of small-world networks

have further been extended to other excitable systems (Perc

2007b, c, 2008; Perc et al. 2009). It was shown that the

introduction of long range couplings can induce decoher-

ence of otherwise coherent noise-induced spatial patterns
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in the network with regular connectivity. Effects of ran-

domness on chaos and order of coupled logistic maps was

considered in (Savi 2007). Stochastic and coherence reso-

nance phenomena were already studied in one-dimensional

networks with small-world connectivity (Gao et al. 2001).

In both cases, it was reported that the introduction of

shortcut links between randomly chosen sites can increase

the global synchrony of the network. However, little

attention has been paid to the explicit analysis of effects of

the small-world connectivity on the noise-induced pattern

formation and order in two-dimensional discrete neuronal

networks.

Two-dimensional Rulkov map neuronal networks have

been regarded as alternative models for investigating the

complex dynamics of neuronal systems. It seems that the

analysis of complex neurobiological networks is compu-

tationally efficient by means of a map neuron model.

Dynamical behaviors of map neuron networks that inter-

connected by synaptic currents are very similar to those

found with Hodgkin–Huxley models and in experiments

(Rulkov et al. 2004). Spatial order out of noise has been

extensively investigated and profound phenomena have

been explored (Perc 2005b, c; Perc and Marhl 2005).

Patterns and collective phenomena are studied in networks

of nonhomogeneous oscillatory neurons and mixtures of

oscillatory and excitable neurons, with dynamics of each

neuron described by a two-dimensional (2D) Rulkov map

neuron (Wang et al. 2007). It is shown that as the coupling

strength is increased, typical patterns emerge spatially,

which propagate through the networks in the form of

beautiful target waves or parallel ones depending on the

size of networks. The influence of diversity on the

dynamics of spiking in spatially extended systems with

global or diffusive couplings, which is locally modeled by

a Rulkov map neuron, has been investigated and the

enhancement of neuronal coherence by diversity can be

shown in the coupled models (Chen et al. 2008). In the

present paper, we will investigate the effects of the noise

and small-world connectivity on pattern formation and

order in two-dimensional discrete networks.

The rest is organized as follows. In section ‘‘Network of

map neurons’’, we introduce the network of map neurons. The

spatiotemporal coherence resonance and firing synchroniza-

tion of the given network are studied in section ‘‘Spatiotem-

poral coherence resonance and firing synchronization’’.

Finally, the conclusion is made in section ‘‘Conclusion’’.

Network of map neurons

The dynamics of the Rulkov neuronal network with small-

world connectivity and noises can be described by the

following equations,

xði;jÞðnþ 1Þ ¼ f ðxði;jÞðnÞ; yði;jÞðnÞÞ þ g
X

kl

eijklðxðk;lÞðnÞ � xði;jÞðnÞÞ

þ nði;jÞðnÞ;

yði;jÞðnþ 1Þ ¼ gðxði;jÞðnÞ; yði;jÞðnÞÞ; i; j ¼ 1; 2; . . .;N
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where

f ðx; yÞ ¼ a
1þ x2

þ y;

g x; yð Þ ¼ y� bx� d;

x(i,j)(n) is the membrane potential of the neuron labeled (i,

j), and y(i,j)(n) is the variation of ion concentration. These

represent the fast and slow dynamics, respectively. The

slow evolution of y(i,j)(n) is due to the small values of the

positive parameters b and d. By choosing b = d = 0.001

� 1, we thus know that y(i,j)(n) changes slowly in com-

parison with x(i,j)(n). n is the discrete time series, while a
are control parameters of the networks. Moreover, n(i,j) is

additive spatiotemporal Gaussian noise with zero mean,

white in space and time, and variance D2 (Garcı́a-Ojalvo

and Sancho 1999), and D is noise level. The sum in Eq. (1)

runs over all lattice sites, whereby eijkl = 1 if the site (k,

l) is coupled to (i, j), whilst otherwise eijkl = 0. If the

fraction of randomly introduced shortcuts, i.e. rewired

links, p equals zero, eijkl = 1 only if (k, l) indexes one of

the four nearest neighbours of site (i, j). Thereby, we obtain

a diffusively coupled regular spatial network of excitable

units, whereby the coupling coefficient g equals the dif-

fusion constant and periodic boundary conditions of the

coupling are used such that the networks studied are spa-

tially extended square lattices. In addition, the long-rang

connections are introduced to investigate spatiotemporal

dynamics of the neuronal networks. To do this, the existing

links that form the basic square lattice will be cut and then

rewired to some other neurons on top of the basic nearest-

neighbor interactions. Namely, if p [ 0, the corresponding

fraction of links is randomly rewired, i.e. indexes k and

l are shuffled for a given fraction p of randomly chosen

sites (i, j), keeping eijkl = 1 to form a spatial network with

small-world connectivity, as described in (Perc 2007a, b, c;

Watts and Strogatz 1998).

Nonlinear dynamics of an individual Rulkov map neu-

ron, which depends on the control parameter a has been

extensively investigated (Rulkov 2001). Results showed

that when the parameter a is changed, the neuron exhibits

rich firing behaviors, such as silent, periodic and/or chaotic

spiking, spiking-bursting behaviors. For a\ 2.0, the map

exhibits a single excitable steady state. For a[ 2.0, the

excitable steady state loses its stability via a Hopf bifur-

cation, and then the neuron begins to oscillate. By setting

a = 1.99, the system thus occupies the excitable steady
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state (x*, y*) = (-1, -1.995), which are also the initial

conditions we will use in all subsequent calculations. In

what follows, we investigate the firing synchronization

and order behaviors in the network with small-world

connection.

Spatiotemporal coherence resonance and firing

synchronization

In this section, we study noise-induced temporal and

spatial dynamics of the system. Initially, without randomly

(a1)        (b1)                  (c1)

(a2)           (b2 (c2))

Fig. 1 Noise-induced spatiotemporal (bottom row) and spatial (upper

row) dynamics in the exclusively diffusive coupled neuronal network

(p = 0) for various noise levels: a1 and a2 D = 0.0013, b1 and b2

D = 0.0018, c1 and c2 D = 0.0024. Spatial profiles are depicted on a

128 9 128 square grid. Here g = 0.003

Fig. 2 The spatial structure function of x(i,j) obtained for a D = 0.0013, b D = 0.0018, c D = 0.0024. Here g = 0.003, p = 0
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rewired links, that is, p = 0, characteristic snapshots of the

spatial profile of x for three different noise levels D, are

presented in the upper row of Fig. 1 to envision the spatial

dynamics of the Rulkov map neuronal networks. By

inspecting the spatial profiles in the upper row of Fig. 1, it

is obvious that there indeed exist an intermediate value of

D, at which the coherent pattern formation in the media is

resonantly pronounced; yielding well-ordered circular

waves in the spatial profile of x (see Fig. 1b1). On the other

hand, smaller D is unable to excite the system strong

enough to evoke any particular spatial dynamics in the

media, whilst for larger D the pattern formation becomes

disordered so that the spatial profile again lacks any visible

structure or order. Furthermore, in order to capture the

essence of spatiotemporal dynamics by presenting time

traces of a firing rate function c, which simply measures the

fraction of spatial units that have values of variable x above

a certain threshold xth = -0.1 at any given time t. It can be

described as follows: suppose that m neurons fire at the

given discrete time n, then we define a function c ¼ m
N2.

Clearly, c = 0 means that none of the spatial elements is

perturbed strongly enough for x to exceed xth, whilst c = 1

indicates that all spatial units are simultaneously in the

excitable state, which constitutes global synchrony and

thus corresponds to the most ordered temporal dynamics of

the studied neuronal networks. Firing rate functions cor-

responding to the presented spatial profiles are shown in

the bottom row of Fig. 1. It is shown that for D = 0.0018

the firing-rate function c varies nearly period in time,

indicating some extended of noise-induced spatial order in

the system. In addition, its maximum value c = 0.1093

indicates the fact that at most only 10.93 % of all spatial

units can be simultaneously driven to the excitable state.

When the noise intensity is increased to 0.0024, the number

of firing neurons is increased and there are at most 20.06 %

of all neurons driven to spike at some certain time.

To enable a quantitative analysis of the observed phe-

nomenon outlined in Fig. 1, we calculate the structure

function of the system according to the equation

Q kx; ky

� �
¼\H2 kx; ky

� �
[ ; ð2Þ

where H(kx, ky) is the spatial Fourier transform of the

x-field at a particular t and \ � [ is the ensemble average

over noise realizations. It is evident that space structure

function Q can be interpreted as the space power spectrum

of the system. The results from numerical simulations for

different noise levels are presented in Fig. 2. The three

depicted panels correspond to the same values of couple

strength as used already in Fig. 1. From Fig. 2a, c, it can be

observed nicely that for small and large noise levels the

presented spectra show no particularly expressed spatial

frequency. Only for intermediate levels of noise the spatial

structure function develops several well-expressed circu-

larly symmetric rings, indicating the existence of a pre-

ferred spatial frequency induced by additive Gaussian

noise. As the noise level is increased, random fluctuations

start to dominate the spatial dynamics and thus, similar as

by small noise levels, the characteristic waterfall-like out-

lay of Q(kx, ky) vanishes and no preferred spatial frequency

can be inferred.

Moreover, we exploit the circular symmetry of the

structure function by calculating the circular average of

Q(kx, ky) according to the equation

qðkÞ ¼
Z

Xk

Qðk
!
ÞdXk; ð3Þ

where k
!¼ ðkx; kyÞ and Xk is a circular shell of radius

k ¼ j k!j. Figure 3 shows three q(k) obtained for the same

values of p and D as used in Fig. 2. In accordance with

Fig. 3 The circular averages of structure functions presented in

Fig. 2. Here g = 0.003, p = 0

Fig. 4 The dependence of SNR on D. Here g = 0.003, p = 0
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results published recently [4], it can be observed that for

p = 0 and D = 0.0018 there exists a particular spatial

frequency, marked with the thin dashed line at k = kmax,

that is greatly enhanced for intermediate D. On the other

hand, the fingerprint of spatial coherence reduces substan-

tially for D = 0.0024 (note that the peak at k = kmax it

disappears completely). To quantify the ability of each D to

extract the characteristic spatial frequency of the medium

more precisely, we calculate the signal-to-noise ratio (SNR)

as the peak height at kmax normalized with the background

fluctuations in the system; namely SNR ¼ qðkmaxÞ=eq; where

eq ¼ 1
2

q kmax � Dkað Þ þ q kmax þ Dkbð Þ½ � is an approximation

for the level of background fluctuations in the system,

whereby Dka and Dkb mark the estimated width of the peak

around kmax at the optimal D. This is the spatial counterpart

of the measure frequently used for quantifying constructive

effects of noise in the temporal domain of dynamical sys-

tems, whereas a similar measure for quantifying effects of

noise on the spatial dynamics of spatially extended systems

was also used in. Figure 4 shows how the SNR varies with

D. It is evident that there exists an optimal level of additive

Gaussian noise for which the peak of the circularly aver-

aged structure function is best resolved, thus clearly indi-

cating the existence of spatial coherence resonance in the

square-lattice map neuronal network.

Next, we analyze the noise-induced temporal and spatial

dynamics of the system also for p [ 0, that is, small-world

coupled networks. We start the study by visually inspecting

four characteristic spatial profiles of x obtained by various p at

a near optimal D for noise-induced pattern formation in the

studied excitable media. Results presented in Fig. 5 clearly

show that increasing values of p hinder coherent pattern for-

mation. Importantly, whilst spatial profiles obtained by p = 0

(a1 (b1)     (c1)

(a2)            (b2 (c2)

)

Fig. 5 Noise-induced temporal (bottom row) and spatial (upper row)

dynamics in a small-world diffusive coupled (D = 0.0018) media for

various fractions p of randomly rewired links: a1 and a2 p = 0.0001,

b1 and b2 p = 0.005, c1 and c2 p = 0.01. Spatial profiles are depicted

on a 128 9 128 square grid. Here g = 0.003

Fig. 6 Correlation time sc versus fractions p of randomly rewired

links for the Rulkov neuronal network with g = 0.003, D = 0.0018
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and p = 0.001 present compelling evidences of noise-

induced self-organization in excitable neuronal networks and

qualitatively differ only minutely, substantial spatial deco-

herence can be visually assessed already at p = 0.005. Thus if

only 0.5 % of all links constituting the planar network are

randomly rewired, spatiotemporal noisy perturbations are

unable to induce coherent patterns in the neuronal networks.

At p = 0.01, the spatial decoherence is pronounced even

more profoundly, thus indicating the destructive nature of

increasing values of p on the noise-induced spatial dynamics.

Although the intermediate values of D are no longer able to

induce coherent pattern formation in the spatial domain, there

appears nearly perfect synchrony, i.e., temporal order, in the

system, as shown in bottom row of Fig. 5. Similarly as by

p = 0, c varies periodically in time.

In what follows, we will quantify the temporal order in

the media more precisely. We calculate the autocorrelation

of the firing-rate function c according to the equation

CðsÞ ¼ \ecðtÞecðtþsÞ[
\ec2 [

; ec ¼ c�\c [ . One can see from

Fig. 5 that the correlations are indeed much more pro-

nounced for the moderate fractions p of randomly rewired

links. To describe this effect with a single quantity, the

characteristic correlation time sc can be evaluated by the

formal equation sc ¼
R1

0
C2ðtÞdt (Pikovsky and Kurths

1997). The curve of sc versus p is displayed in Fig. 6 for

g = 0.003, D = 0.0018. There is a clear peak in the curve,

indicating the occurrence of clearly ordered temporal

behavior. This shows that the system dynamics can exhibit

somewhat resonant behavior with an optimal level of p.

Conclusion

In summary, the effects of noise and the small-world

connectivity on spatial unit are studied in Rulkov map

neuronal networks. It is shown that collective behavior,

such as various spatiotemporal patterns and firing syn-

chronization can be observed in noisy environment. It is

also found that noise can induce spatial coherence reso-

nance in the diffusive neuronal network.

However, the small-world connectivity of spatial units

facilitates global synchronization of excitatory events and

thus temporal order in the system, whereas, on the other

hand hinders coherent patter formation. The constructive

effect of small-world connectivity on the temporal order is

argued to originate from the effective shortening of typical

path lengths between arbitrary spatial units, which facili-

tates information transduction among distant parts of the

network, while the disordering effect on the spatial scale is

attributed to the small-world networks that can effectively

disrupts the internal spatial scale of the media already at

small p.

For neural systems, it has been argued that excitable

media guarantee robust signal propagation through the

tissue in a substantially noisy environment (Izhikevich

2000). Results presented in this paper can be important

guidance for understanding and controlling pathological

types and evolution of waves in human brain.
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