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Abstract The objective of the present study was to

investigate brain activity abnormalities in the early stage of

Parkinson’s disease (PD). To achieve this goal, eyes-closed

resting state electroencephalography (EEG) signals were

recorded from 15 early-stage PD patients and 15 age-

matched healthy controls. The AR Burg method and the

wavelet packet entropy (WPE) method were used to

characterize EEG signals in different frequency bands

between the groups, respectively. In the case of the AR

Burg method, an increase of relative powers in the d- and

h-band, and a decrease of relative powers in the a- and

b-band were observed for patients compared with controls.

For the WPE method, EEG signals from patients showed

significant higher entropy over the global frequency

domain. Furthermore, WPE in the c-band of patients was

higher than that of controls, while WPE in the d-, h-,

a- and b-band were all lower. All of these changes in EEG

dynamics may represent early signs of cortical dysfunction,

which have potential use as biomarkers of PD in the early

stage. Our findings may be further used for early inter-

vention and early diagnosis of PD.
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Introduction

Parkinson’s disease (PD) is a common progressive neuro-

degenerative disorder of the central nervous system (Valls-

Sole et al. 2002). Nowadays, PD affects about 1 % of the

worldwide population over 55 years of age, and the num-

ber of PD patients in the elderly population has increased

all the years recorded (Betarbet et al. 2002; Wooten et al.

2004). The motor clinical symptoms of PD, such as resting

tremor, rigidity and postural instability (Savitt et al. 2006),

result from dopaminergic deficiency in the basal ganglia. In

addition, PD is also characterized by the presence of non-

motor impairments including cognitive dysfunction, even

in the early stage of PD (Cooper et al. 1991). However, the

diagnosis of PD based on clinical symptoms is very diffi-

cult, especially in the early stage when there is no

remarkable motor features and obvious cognitive dys-

function. Nonetheless, characterization of PD from the

perspective of neuroscience provides us with an alternative

way for exploring and quantifying corresponding brain

functional neuronal mechanisms and improving diagnostic

certainty (Valls-Sole et al. 2002).

Electroencephalography (EEG) is a non-invasive tech-

nique that records the electrical field produced by the

neural electrical activity in the brain with good temporal

resolution and high test-retest reliability, which is

increasingly recognized as a fundamental hallmark of

cortical integrative functions. It has been shown that

quantifying EEG rhythms could provide an important

biomarker for a lot of neuropsychiatric disorders, such as

schizophrenia, major depressive disorder, Alzheimer’s
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disease, epilepsy and so on (Gandal et al. 2012; Hampel

et al. 2010; Kheiri et al. 2012; Leuchter et al. 2009). This

is critical for early intervention and early diagnosis, which

is important for the efficient treatment of disease.

Several studies have shown EEG rhythm abnormalities

in PD patients by using traditional fast Fourier transform

method (FFT) or nonlinear time series methods (e.g. cor-

relation dimension, LZ complexity) (de Weerd et al. 1990;

Neufeld et al. 1988, 1994; Pezard et al. 2001; Soikkeli

et al. 1991; Stoffers et al. 2007; Stam et al. 1995; Tanaka

et al. 2000). These studies indicated that quantifying EEG

may be useful in studying cognitive decline in PD, how-

ever, it is still unclear what kinds of measures might be

useful. Moreover, studies usually included patients in

advanced stages of PD. Hence, it is not known whether

these quantitative EEG measures could reflect the changes

in the early stage of PD patients relative to controls.

Therefore, it is still necessary to use new analysis methods

to analyze EEG signals of patients in the early stage of PD.

New analysis methods together with EEG in the early stage

of PD may contribute to reveal more important information

underlying brain dysfunctions, which would be lost if

analysis were restricted to traditional methods.

Nowadays, many novel methods are suggested for EEG

signal processing. The AR Burg method is a recently

developed technique to estimate power spectrum, which is

widely used to estimate EEG of migraine, epileptic and

alcoholic subjects (Akben et al. 2011; Faust et al. 2008).

Compared with classical spectrum estimation methods (e.g.

FFT), it can reduce the spectral losses and give better

frequency resolution (Akin et al. 2000), and furthermore, it

is very close to the true values. From a physiological point

of view, spectral power in the EEG describes the activity of

cortical pyramidal cells arranged in parallel and space-

averaged over cortex (Nunez et al. 2001). Wavelet packet

entropy (WPE) is a subtler multi-resolution method based

on wavelet packet transform (WPT) and Shannon entropy

(Coifman et al. 1990; Ocak et al. 2009). WPT is applied to

extract different kinds of dynamic EEG rhythms accu-

rately, and when combined with Shannon entropy, WPE

can characterize the complexity of EEG rhythms.

The purpose of our study was to investigate whether

patients in the early stage of non-demented PD shows

electrophysiological indices of brain dysfunctions. To

achieve this goal, we used both the AR burg method and

the WPE method to quantify EEG signals, and further

explored the differences between early-stage non-demented

PD patients group and age-matched healthy controls group

from the aspects of both power and complexity in the

pattern of eye-closed resting state oscillatory brain activity.

To our knowledge, this is the first time that these two

methods are applied to study the brain activity in the early

stage of PD.

Materials and methods

Subjects

Fifteen voluntary patients with a clinical diagnosis of idi-

opathic PD (7 males and 8 females, mean age 57.2 ± 7.7

years, range 47–69 years) were involved in our study. The

mean duration of PD was 3.7 ± 1.6 years (range

1–6.2 years). The Hoehn and Yahr (H-Y) stage (Hoehn

et al. 1967) was 1-2, 6 were in stage 1, 5 were in stage 1.5,

4 were in stage 2. The scores for the Mini-Mental-Status

examination (MMSE) were 28.1 ± 1.2 (range 27–30),

which was within normal limits. Exclusion criteria inclu-

ded atypical parkinsonism, use of neuroleptic drugs, anti-

depressants, dopamine blocking agents, or alcohol abuse,

presence of other neurological or psychiatric conditions,

and any other severe illness. All PD patients were receiving

levodopa (L-dopa) drugs (Sinemet) in order to reduce the

heterogeneity in the medication, and withdrew from

L-dopa for at least 12 h before the study.

Fifteen age-matched healthy subjects (9 males and 6

females, mean age 58.4 ± 8.6, range 48–68 years) served

as controls. They were healthy and intellectual, with no

symptoms or history of neurological or psychiatric illness.

All of them were normal by neurological examination. The

scores of the MMSE for controls were 29.0 ± 0.8 (range

28–30). Both PD subjects and controls were right handed

and without deficits in hearing.

Our study was performed with the approval of the local

ethics committee. All subjects volunteered for this exper-

iment. They were introduced to the nature of the experi-

ment and their informed written consent was obtained

according to the declaration of Helsinki.

EEG recordings

Subjects were seated upright in a recliner in a quiet and

dimly shielded room with eyes closed to attain a state of

relaxed wakefulness. They were told in advance that any

movements should be tried to avoid during the experiment,

such as body actions, eye movement/blink. EEG recording

was continuous during the whole experiment. The record-

ing provided us with sufficient data to intercept EEG sig-

nals free of artifacts.

During recording, an EEG technician and neurophysi-

ologist were present to monitor the quality of on-line EEG

signals and to observe the performance status of subjects.

When there was a sign of behavior, we usually made a

mark in time without disturbing the subject. Furthermore, if

there were sustained movements and/or EEG drowsiness,

subject would be cued verbally and coached until record-

ings were free from artifacts. EEG signals were recorded

on a Bio-logic Ceegraph-Vision system using 20 Ag–AgCl

352 Cogn Neurodyn (2013) 7:351–359

123



electrodes set on the scalp according to the international

10–20 system, as shown in Fig. 1. Linked ears were used as

a reference. EEG impedances were kept below 5 kX. EEG

signals were recorded at a sampling rate 256 Hz.

The digitized EEG data were processed in a MATLAB

environment (version 7.12.0.635, R2011a). Manual off-line

inspection was first performed to locate and remove EEG

signals related to behaviors according to the markers we

had made. Furthermore, in order to eliminate the sustained

effect of behaviors or sound cues on the EEG signals, the

following 5-min length data after the markers were usually

not taken into consideration. Clearly visible disturbances in

the data were also deleted manually. Then, the data were

digitally filtered with cut-off frequencies at 0.5–55 Hz in

order to reduce artifacts components caused by residual

myoelectricity and noise. Electrooculogram artifacts were

further corrected according to the method proposed by

Elbert et al. (1985). For each subject, we intercepted 80 s

epoch from multichannel EEG signals free of artifacts for

analysis.

Analysis method

AR Burg method

The AR Burg method is a powerful tool to estimate the

power spectrum of signals. The spectrum estimation pro-

cedure has two steps. First, estimate the parameters of the

model-based method from a given data sequence x(n),

0 B n B N - 1. Then, compute the power spectral density

(PSD) estimate from these estimates.

The AR method is a model-based (parametric) method,

which is based on modeling the data sequence x(n) as the

output of a linear system characterized by a rational

structure. Since AR parameters can be estimated easily by

solving linear equations, the AR method is one of the most

frequently used parametric methods. In the AR method,

data can be modeled as the output of a causal, all-pole,

discrete filter whose input is white noise. The AR method

of order p (AR(p)) is expressed as the following equation

xðnÞ ¼ �
Xp

k¼1

aðkÞxðn� kÞ þ wðnÞ ð1Þ

where a(k) are the AR coefficients and w(n) is the white

noise of variance equal to r2. AR(p) model can be

characterized by AR parameters a½1�; a½2�; . . .; a½p�; r2
� �

:

PSD is

PARðf Þ ¼
r2

Aðf Þj j2
ð2Þ

where Aðf Þ ¼ 1þ a1e�j2pf þ � � � þ ape�j2pfp:

In our study, AR coefficients are estimated by the Burg

method, which is a recursive algorithm (Kay et al. 1988). It

ensures a stable AR model and is computationally efficient

(Akben et al. 2011). The Burg method is based on mini-

mizing the forward and backward prediction errors and

estimates the reflection coefficient.

From the estimates of AR parameters by the Burg

algorithm, PSD estimation is formed as (Akben et al. 2011;

Kay et al. 1981, 1988)

P̂BURGðf Þ ¼
êp

1þ
Pp

k¼1 âpðkÞe�j2pfk
�� �� ð3Þ

where êp is the total least squares error. The model order

p of the AR method is determined by using Akaike infor-

mation criterion (AIC). In our study, the model order is

taken as p = 10.

Wavelet packet entropy method

The wavelet analysis is a widely used method in processing

non-stationary signals. Wavelet coefficients can efficiently

provide both full information and a direct estimation of

local energies at different scales.

WPT can be viewed as a generalization of classical

wavelet transform (WT), both of which are orthogonal

wavelet decomposition procedure where a signal is passed

through several filters. However, there are more processing

filters used in WPT than that is used in WT. Figure 2a

shows the decomposition process of a signal using WT into

approximation and detail coefficients. Because WT

decomposes only approximations of the signal and suc-

cessive details are never reanalyzed, important information

located in higher frequency components will be lost. To

obtain good and adjustable frequency resolutions at high

frequencies, WPT method is proposed (Coifman et al.

1990). Unlike WT, WPT not only decomposes approxi-

mations of the signal but also details. It holds the important

information located in higher frequency components than
Fig. 1 Locations of EEG scalp electrodes according to the interna-

tional 10–20 system
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WT in certain applications. The top level of WPT is the

time representation of the signal, whereas the bottom level

has better frequency resolution. Therefore, WPT can pro-

vide a better multi-resolution and time-frequency analysis

for non-stationary data. Many literatures have demon-

strated that WPT is one of the most promising methods for

the feature extraction from EEG signals (Adeli et al. 2003;

Ocak et al. 2009; Yang et al. 2006).

For n-level decomposition, WPT generates a full

decomposition tree, as depicted in Fig. 2b. Corresponding

to the wavelet, there are two finite impulse filters, i.e. a

low-pass filter h(k) and a high-pass filter g(k). Using these

two filters, the wavelet packet function can be defined as

w2i�1
jþ1 ðtÞ ¼

ffiffiffi
2
p X1

k¼�1
hðkÞwi

jð2t � kÞ

w2i
jþ1ðtÞ ¼

ffiffiffi
2
p X1

k¼�1
gðkÞwi

jð2t � kÞ
ð4Þ

where w (t) is the mother wavelet function. The recursive

relations between the jth level and the (j ? 1)th level for

signal S(t) are

S2i�1
jþ1 ðtÞ ¼

X1

k¼�1
hðkÞSi

jð2t � kÞ

S2i�1
jþ1 ðtÞ ¼

X1

k¼�1
gðkÞSi

jð2t � kÞ
ð5Þ

Thus, wavelet coefficients Ck
j at position k of level j can

be expressed as

C
j
k ¼

Z1

�1

f ðtÞwi
jðtÞdt ð6Þ

A detailed mathematical description of WPT is shown in

literature (Coifman et al. 2008; Mallat 1989). In our study,

wavelet packet algorithm is implemented by using DB5

function as mother wavelet with a scale of 32 (Wiklund

et al. 1997; Torrence et al. 1998).

Then, the wavelet energy corresponding to the position

indices at the sth level can be calculated as

Ei ¼ Cs
i

�� ��2 ð7Þ

and the total energy can be obtained from

Etotal ¼
X

i

Ei ¼
X

i

Cs
i

�� ��2 ð8Þ

where position index i ¼ 0; . . .; 2s � 1: The relative

wavelet energy in our work is defined as

pi ¼
Ei

Etotal

ð9Þ

The total relative energy can be easily found to be
P

i

pi = 1. Then, following the definition of Shannon entropy

(Wiklund et al. 1997), WPE and WPE for each resolution

level ði ¼ 1; 2; . . .;NÞ can be defined as (Wang et al. 2011;

Yang et al. 2006)

WPEi ¼ �pi log2 pi

WPE ¼ �
X

i

WPEi
ð10Þ

If the entropy value is greater than one, the component has a

potential to reveal more information about the signal and it

needs to be decomposed further in order to obtain simple

frequency component of the signal (Shinde et al. 2004). WPE

gives a measure of signal disorder or complexity, and provides

distinctive features about the signal.

Statistical analysis

Each subject was characterized by relative power or WPE

computed from EEG signals. All statistical analysis with

regard to group differences was conducted by independent-

samples t test. P values less than 0.01 was considered

statistically significant difference between PD patients and

controls. Because t test was applied with criterion variables

of power in four different frequency bands and WPE in five

different frequency bands, Bonferroni correction of P val-

ues was required for multiple comparisons correction.

Therefore, in different frequency band, we tested the sta-

tistical significance of power at the alpha level 0.01/

4 = 0.0025, and WPE at the alpha level 0.01/5 = 0.002

after correction.

(a)

(b)

Fig. 2 Decomposition trees for a three-layer wavelet transform and

b three-layer wavelet packet transform
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Results

AR Burg method for spectral analysis

EEG contains different specific frequency bands. Features

in sub-bands are particularly important to characterize

different brain states. The standard frequency bands of

interest were d-band (0–4 Hz), h-band (4–8 Hz), a-band

(8–13 Hz) and b-band (13–30 Hz), respectively. The rel-

ative power in each sub-band can be obtained by dividing

the power in each sub-band by the total power estimated by

the AR Burg method.

Figure 3 shows the d-, h-, a- and b-band relative powers

of 20 EEG channels for two groups. It can be found that

there was an increase in d-band relative power of 20 EEG

channels for PD patients, while a decrease in a- and b-band

relative powers. However, there was no consistent trend of

h-band relative powers for different electrodes. Most EEG

electrodes showed an increase in h-band relative power for

PD patients, while several other electrodes decreased, such

as Fp1, Fp2, F7, F3, Fz and Oz.

Further spectral analysis results in the d-, h-, a- and b-

band are summed up in Fig. 4 and Table 1. It can be seen

that there were an increase in d- and h-band relative

powers, and a decrease in a- and b-band relative powers for

PD patients compared with controls. Moreover, differences

were statistically significant in d-, a- and b-band relative

powers between PD patients and controls observed by the

AR Burg method (P \ 0.0025).

Wavelet packet entropy for complexity analysis

EEG signals were decomposed by five levels in our study.

The lowest frequency resolution can be estimated as

Df ¼ 1

25

fs

2
¼ 4Hz ð11Þ

where fs is sampling rate 256 Hz. There are 25 = 32 sub-

bands of wavelet packet at the 5th level whose corre-

sponding frequency ranges are f1 : ½0; 4�; f2 : ½4; 8�; f3 :
½8; 12�; f4 : ½12; 16�; . . .; f31 : ½120; 124�; f32 : ½124; 128�:
The new frequency bands have similar bands with the

traditional frequency bands derived from the clinical EEG

signal analysis. Specifically, d-band is f1:1–4 Hz, h-band is

f2 :4–8 Hz, a-band is f3: 8–12 Hz, b-band is f4 -

f8:12–32 Hz, and c-band is f9 - f32:[32 Hz. Thus, specific

rhythm of EEG signals can be extracted by WPT.

Figure 5a is the brain topography of WPE for two

groups. Compared with controls, it can be observed that

there was an increase in WPE of different EEG channels in

PD patients except channel Fz, Cz and Oz. In addition,

notched boxplot was used for visualizing the distributions

of WPE values averaged over 20 EEG electrodes for PD

patients and controls, as shown in Fig. 5b. It can be found

that the increase of WPE in the patients was significant

different compared with controls (P \ 0.001).

We further investigated how WPE distributes over dif-

ferent sub-bands. Figure 6 shows the WPE values of dif-

ferent sub-bands. For two groups, WPE in all sub

Fig. 3 Relative powers of 20

EEG channels in the d-, h-, a-

and b-band for PD patients and

controls

Cogn Neurodyn (2013) 7:351–359 355

123



frequency bands were not equal to each other, which was

relatively bigger in lower sub-bands (f1–f17) than that in

higher sub-bands (f18–f32). For different sub-bands, the

comparative results of WPE values between PD patients

and controls were different. For example, in the relatively

lower sub-bands (f1–f8), WPE of PD patients was smaller

than that of controls, while it was higher in sub-bands

(f9–f12). For sub-bands (f13–f14), WPE of patients was lower

relative to controls again. There were peak values of WPE

for two groups, with a higher WPE in f15 and lower WPE in

f16 for patients compared to controls. For sub-bands (f17–

f32), there were almost no difference between two groups,

except f27 and f31. In these two sub-bands, WPE of patients

was bigger than that of controls.

Based on the results of WPE in 32 sub-bands, WPE

values for 5 basic EEG bands were computed, as shown in

Fig. 7. It can be clearly found that WPE in the d-band, h-

band, a-band and b-band for PD patients were all lower

than that for controls, while in the c-band, it was higher

compared to controls. Statistical results (see Table 2)

revealed that differences of WPE values derived from EEG

signals between patients and controls in 5 basic EEG bands

were all statistically significant (P \ 0.002), which dem-

onstrates that the brain activity of PD patients was obvi-

ously more complex than that of controls in lower EEG

bands.

Discussion

It is widely known that PD is a predominantly motor dis-

order caused by dopaminergic deficiency in the basal

ganglia (Pezard et al. 2001). However, non-motor impair-

ment involved cognitive dysfunction has frequently been

observed in the early stages of PD (Cooper et al. 1991).

Cognitive status was correlated with electrophysiological

signals (e.g. EEG) over specific frequency band. Conse-

quently, an understanding of the neural basis in PD is

essential, both from a prognostic perspective as well as for

the development of targeted therapeutic strategies. It has

been shown that EEG analysis, such as linear or non-linear

methods, could depict more global indices of brain func-

tions, which can reflect the disturbed subcortico-cortical

mechanisms in patients with advanced PD and/or dementia

(de Weerd et al. 1990; Neufeld et al. 1988, 1994; Soikkeli

∗
∗

∗

Fig. 4 Relative powers in the d-, h-, a- and b-band of EEG signals

for PD patients and controls averaged over the 20 electrodes. Standard

errors are represented with vertical lines. *Significant difference

between two groups with P \ 0.0025 after Bonferroni correction

Table 1 Results of independent-samples t test for d-, h-, a- and b-

band relative powers between PD patients and controls

Sub-band t value P value

d-Band 4.40 7.51936e-005

h-Band 2.99 0.0049

a-Band -3.59 0.0009

b-Band -4.17 0.0002

(a)

(b)

Fig. 5 a Brain topography of WPE between PD patients and

controls; b Boxplot of WPE derived from EEG signals averaged

over the 20 electrodes between PD patients and controls

Fig. 6 WPE of EEG signals over different sub-bands for PD patients

and controls
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et al. 1991; Stam et al. 1994, 1995; Tanaka et al. 2000).

Thus, the goal of our study is to search for the EEG

abnormalities in less advanced cases of PD without

dementia. Furthermore, most of the patients in our study

are in the early stage. It has been demonstrated that the

changes of brain dynamics in the early stage of PD can be

characterized by the AR Burg method and WPE measure

relative to controls.

As for the AR Burg method, we found an increase of the

relative powers in the d- and h-band, and a decrease in the

a- and b-band for PD patients compared to controls,

relating to slowing of resting state oscillatory brain activ-

ity. The increase of h-band relative power for PD patients

was not significantly different relative to controls, while the

differences in the d-, a- and b-band were statistically

significant.

Over the years, several studies have focus on spectral

analysis of the brain activity in PD patients, which is still a

controversial issue. Pezard et al. (2001) used traditional

FFT method to characterize spectral power in different

EEG frequency bands, and found a significant decrease of

b-band power in non-demented PD patients of the early

stages relative to controls. In addition, Olde Dubbelink

et al. (2013) used another brain activity recording tech-

nique, i.e. Magnetoencephalography (MEG), to study early

changes in early-stage non-demented PD patients, which

revealed an increase in h power over time, along with a

decrease in a power in contrast to healthy controls. The

results of our recorded EEG signals in the early stage of PD

observed by the AR Burg method are in line with these

previous studies. Moreover, Stoffer et al. (2007) noted

extensive changes in oscillatory brain activity from MEG

signals when comparing untreated patients in the first

clinical stages of PD to controls, which showed widespread

increase in h power as well as overall decrease in b power

that are similar to our results, while an enhancement of a
power that is just the opposite of our findings.

So far, there are only a few studies related to PD in the

early stage, and the majority of previous findings in PD

have focus on the non-demented or demented patients

without exact stages. Recent studies using EEG or MEG

have noted that there was stronger increase of power in

demented as compared to non-demented PD patients (Ca-

viness et al. 2007; Neufeld et al. 1994; Soikkeli et al.

1991), and the latter showed the increase of power in low

frequency domain (Bosboom et al. 2006; Kotini et al.

2005; Serizawa et al. 2008; Moazami-Goudarzi et al.

2008), or even in all frequency bands (Tanaka et al. 2000)

in comparison with controls. For example, Soikkeli et al.

(1991) reported an increase of h activity and a decrease of

b power in demented PD patients using FFT analysis of

EEG data obtained with a single occipital electrode, and

Neufeld et al. (1994) also suggested consistent trend of

increase in the d- and h-band and a significant decrease in

the a-band for demented PD patients, but both of them did

not obtain similar results in non-demented patients relative

to controls. For non-dement PD, Serizawa and Moazami-

Goudarzi et al. presented higher spectral power over low

frequency domain and diffuse slowing of EEG compared

with healthy controls (Serizawa et al. 2008; Moazami-

Goudarzi et al. 2008). MEG studies carried out by Bos-

boom and Kotini et al. showed similar results that relative

h power was diffusely increased and b power concomi-

tantly decreased in the non-demented PD patients relative

to controls (Bosboom et al. 2006; Kotini et al. 2005).

These results indicated that PD must be associated with the

slowing of oscillatory brain activity, which are quite

comparable with our findings. On the contrary, Tanaka

et al. (2000) reported that there was an increase of a power

relative to controls, which is quite different from previous

studies including ours.

With regard to the WPE method, we observed that EEG

signals of PD patients in the early stage were characterized

by a higher WPE over the global frequency domain. WPE

is an index that can quantify the complexity of the signal,

which is model independent. The higher WPE indicated

EEG signals for PD patients were more complex compared

to controls, which means that the quality of prediction of

EEG dynamics decreased more rapidly in PD patients than

that in controls. Pezard et al. (2001) also found that EEG of

early-stage PD patients was characterized by a higher

entropy using local entropy, which is comparable with our

∗
∗

∗

∗

∗

Fig. 7 WPE in the d-, h-, a-, b- and c-band of EEG signals for PD

patients and controls averaged over 20 electrodes. Standard errors are

represented by vertical lines. *Significant difference between two

groups with P \ 0.002 after Bonferroni correction

Table 2 Results of independent-samples t test for WPE in the d-,

h-, a-, b- and c-band between PD patients and controls

Sub-band t value P value

d-Band -9.07 4.78354e-011

h-Band -13.50 4.44089e-016

a-Band -7.73 2.60722e-009

b-Band -10.26 1.66123e-012

c-Band 14.24 1.11022e-016
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results observed by relative WPE. However, some previous

studies got different results by using nonlinear times series

analysis methods. For example, Muller et al. (2001) found

that in the resting state, correlation dimension of EEG

signals revealed only slight differences between the early-

stage PD patients and healthy controls, while Stam et al.

(1995) found that there was a decrease in Kolmogorov

entropy and correlation dimension for PD patients, which

indicated a complexity decrease in PD patients relative to

controls. In addition, MEG studies by Gomez et al. (2011)

also showed that the oscillatory brain activity of PD

patients in the early stage was less complex than that of

controls by using LZ complexity measure.

Furthermore, we also found that WPE in the d-, h-, a-

and b-band for PD patients were all lower relative to

controls, while it was higher in the c-band. The increase of

WPE in the c-band for PD patients indicated the c-band

activity was more complex, while the other four basic

bands all become relatively ordered. Recent studies both on

animals and humans have suggested that c-band activity

played an important role in attention as well as working

and long-term memory (Herrmann et al. 2004). Hence, it

can be concluded that c-band activity getting more com-

plex may be considered as a reflection of dysfunction in PD

patients. Besides, it has been reported that b-band oscilla-

tory activity in the basal ganglia associated with the

pathology that gave rise to tremor in PD (Levy et al. 2000).

b-band activity getting more ordered detected in our

studies may be related to the symptoms of resting tremor in

PD patients. Moreover, it has been shown the resting tre-

mor in PD was associated with an altered balance between

b and c oscillations in the motor circuits of the subthalamic

nucleus (STN) (Weinberger et al. 2009). By computing

WPE, we have shown a decrease of WPE in the b-band and

an increase in the c-band for PD patients compared with

controls. This can be regarded as a marker of the altered

balance between b and c oscillations.

In addition, several confounding factors, such as

experiment state (e.g. rest of specific task), ages, disease

severity, medication and size, should be considered that

may have influence on the studies. It has been shown that

brain oscillatory was abnormal in PD patients during per-

formance of specific tasks (Muller et al. 2001; Wang et al.

2012), but different task performance design of these

studies made it difficult for us to compare and interpret.

This is one of the main reasons why most of the recent

studies choose eye-closed resting state to investigate. In

addition, it has been reported that a loss of physiological

complexity often accompanied aging (Kyriazis 2003), so

we selected aged-matched subject as controls. In our study,

to minimize the effects of medication on experiment

results, although EEG was recorded at least 12 h after the

last dose of medication, we could not fully rule out

medication effects on the power or complexity differences

between patients and controls. Besides, the variance with

earlier reports may also possibly be due to the size of the

patient group, the disease severity of the selected patients,

or even the property of the algorithm itself in different

studies.

Conclusions

In conclusion, this study presents the AR Burg method and

WPE as novel methods to study the oscillatory brain

activity from EEG signals in the early-stage PD patients

without dementia. Our findings demonstrated the useful-

ness of the AR Burg method and the WPE method in

detecting abnormalities dynamics associated with PD.

Relative power and wavelet entropy depicted several sig-

nificant differences of EEG between PD patients of the

early stage and controls. The decrease in b-band relative

power and the increase of WPE may represent the early

signs of subcortico-cortical dysfunction in PD patients. PD

is a complicated neurodegenerative disease, and there must

be a lot of information underlying brain activity. Therefore,

as a step forward, it is necessary to apply new analysis

methods to extract more typical features from EEG signals

of PD patients in the early stage, and further make classi-

fication analysis based on those characteristic indices,

which may have potential use as biomarkers of PD in the

early stage and provide an objective technique for the early

diagnosis of PD.
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