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Abstract The effect of noise on the pattern selection in a

regular network of Hodgkin–Huxley neurons is investi-

gated, and the transition of pattern in the network is mea-

sured from subexcitable to excitable media. Extensive

numerical results confirm that kinds of travelling wave

such as spiral wave, circle wave and target wave could be

developed and kept alive in the subexcitable network due

to the noise. In the case of excitable media under noise, the

developed spiral wave and target wave could coexist and

new target-like wave is induced near to the border of

media. The averaged membrane potentials over all neurons

in the network are calculated to detect the periodicity of the

time series and the generated traveling wave. Furthermore,

the firing probabilities of neurons in networks are also

calculated to analyze the collective behavior of networks.

Keywords Neuronal networks � Spatiotemporal patterns �
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Introduction

Noise plays an important role in changing the dynamics of

media. For example, noise can induce and enhance the

synchronization of neurons in network and coupled oscil-

lators (Neiman and Russell 2002; Zhou and Kurths 2002;

He et al. 2003; Xu et al. 2007; Kiss et al. 2003; Qu et al.

2012; Shi et al. 2008). Particularly, various of ordered

spatiotemporal patterns and coherence resonance could be

induced in the network by an optimized noise (Garcia-

Ojalvo et al. 1993; Buceta et al. 2003; Perc 2005; Tang et al.

2012; Liu et al. 2010; Li et al. 2009; Du et al. 2010). More

interesting, distinct transition of patterns could be induced

by the fluctuation of bifurcation parameters (Vanag and

Epstein 2001; Brusch et al. 2004; Xie et al. 2006; Ouyang

and Felesselles 1996; Zhou and Ouyang 2000). Spiral wave

is a special kind of spatiotemporal pattern, which is proved

to exist in neocortex (Huang et al. 2004; Wu et al. 2008;

Huang et al. 2010) and cardiac tissue (Garfinkel et al. 2000;

Bursac et al. 2004). (Neiman and Russell 2002; Huang et al.

2010) show that spiral wave can play an active role in

communicating signals in neuron systems. On the other

hand, the appearance and breakup of the spiral wave often

indicate harmful things in biological system. Modern

medical science shows that the instability of the spiral wave

in the cardiac tissue can possibly cause death due to ven-

tricular fibrillation (Davidenko et al. 1992; Jalife 2000).

Therefore, it is very important to study the evolution of

spatiotemporal patterns in biological systems. A subexcit-

able medium is defined as one, in which a wave cannot grow

in a limited time and space, i.e. a subexcitable medium

cannot support any wave propagations, otherwise, it is

defined as the excitable one (Hildebrand et al. 1995; Jung

et al. 1998). Previous works show that noise can initiate

and sustain wave behavior under subexcitable medium
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(Sagues et al. 2007; Hempel et al. 1999; Kadar and Wang

1998; Wang et al. 1999; Jia et al. 2004; Alonso et al. 2002a,

b; Hou and Xin 2002). In the reference Jia et al. (2004), it is

shown that the boundary of subexcitable BZ reaction

medium is excitable and can be seen as a wave sources, but

no waves propagate inside medium in the absence of noise.

However, in the presence of a noisy electrical field, several

wave fronts emerge and propagate forward in the medium.

References (Alonso et al. 2002a, b; Hou and Xin 2002)

show that spatiotemporal noise can sustain spiral wave

propagation in the subexcitable media. References (Lindner

et al. 2004; Garca-Ojalvo and Schimansky-Geier 2000;

Garca-Ojalvo et al. 2001; Sendiña-Nadal et al. 1998; Ullner

et al. 2003) summarize and describe the influence of noise

on the spatiotemporal structure exhibited in an excitable

medium. For example, it was reported that noise can induce

pulse propagation (Garca-Ojalvo and Schimansky-Geier

2000; Garca-Ojalvo et al. 2001), and the propagation speed

of planar pulses can be enhanced by noise (Sendiña-Nadal

et al. 1998). In the reference (Garcia-Ojalvo and Schiman-

sky-Geier 1998), it is shown that noise can induce complex

spiral wave dynamics.

In this paper, the effect of Gaussian white noise on spatio-

temporal dynamics of a two-dimensional square lattice

Hodgkin–Huxley (H–H) neuron model (Hodgkin and Huxley

1952) is investigated. The numerical simulation results show

that the formation and transition of different patterns can be

controlled by noise in subexcitable and excitable media,

respectively. The line wave cannot travel inside the subexcit-

able network of neurons in the absence of noise. However,

when a Gaussian white noise is introduced into all neurons, it is

found that line waves can be changed into spiral wave or target

wave and can sustain propagation in the networks of neurons.

In excitable neuronal networks, it is found that a sustained

propagating spiral wave and a target wave can be converted

into each other in the presence of noise. The results of this work

show the more phenomena to prove that noise could enhance

excitability of system than previous works.

Model and numerical simulation

The famous H–H model is often used to describe the electric

activity of a neuron, and the nearest-neighbor coupling H–H

neural network in the presence of noise is described as:

Cm

dVij

dt
¼ gkn4

ijðVK � VijÞ þ gNam3
ijhijðVNa � VijÞ

þ gLðVL � VijÞ þ Iij þ DðViþ1j þ Vij�1

þ Vijþ1 þ Vi�1j � 4VijÞ þ SnijðtÞ; ð1Þ

dyij

dt
¼ ayðVijÞð1� yijÞ � byðVijÞyij ðy ¼ m; h; nÞ; ð2Þ

am ¼
0:1uðTÞðVij þ 40Þ

1� expð�ðVij þ 40Þ=10Þ ;

bm ¼ 4uðTÞ expð�ðVij þ 65Þ=18Þ;
ð3Þ

ah ¼ 0:07uðTÞ expð�ðVij þ 65Þ=20Þ;

bh ¼
uðTÞ

1þ expð�ðVij þ 35Þ=10Þ ;
ð4Þ

an ¼
0:01uðTÞðVij þ 55Þ

1� expð�ðVij þ 55Þ=10Þ ;

bn ¼ 0:125uðTÞ expð�ðVij þ 65Þ=80Þ;
ð5Þ

Integer subscripts i and j denote the positions of neurons in

the two-dimensional network. Vij is the membrane potential

of the neuron at the site (i,j). The variables m, n, and h

describe the gating parameters of neuronal ion channels. D

is the coupling coefficient, which has the same physical

unit as conductance. The dimensionless S is the noise

intensity. The Gaussian white noise n(t) with the statistical

correlation \n(t)[ = 0, and \n(t)n(t0)[ = d(t–t0), which

holds the same physical unit as current, u(T) is the tem-

perature factor and is given by uðTÞ ¼ 3ðT�6:3
�CÞ=10�C.

Iij = I0 ? I1 is the external current, in which I0 is the

constant current, I1 is external sinusoidal stimulus, and

I1 = sin (2p 9 0.0013t) in all numerical simulations.

Other parameters are constants in simulations. The mem-

brane capacitance is assumed to be Cm = 1 lF/cm2. The

maximal potassium conductance is gK = 36 mS/cm2, the

maximal sodium conductance is gNa = 120 mS/cm2,

the leakage current conductance is gL = 0.3 mS/cm2. The

reversal potentials are VK = -77 mV, VNa = 50 mV, and

VL = -54.4 mV. Numerical simulation is carried out in a

100 9 100 neuronal network, and the 4th-order Runge–

Kutta method with a time step h = 0.02 and no-flux

boundary condition are adopted. The initial values of all

neurons are taken as Vij = -32, mij = -0.5, hij = -0.12,

nij = -0.1(i = 41, 42, 43; j = 1,2,…,50); Vij = -10,

mij = 0, hij = 0, nij = 0(i = 44, 45, 46; j = 1, 2, … ,50);

Vij = -61, mij = 0.1, hij = 0.47, nij = 0.37(i = 47, 48,

49; j = 1, 2, … ,50); and Vij = -65, mij = 0.1, hij = 0.45,

nij = 0.4 for the other neurons. These initial values are

selected to make a wave seed such that a wave could be

developed in time in an excitable network.

In order to study the collective behavior of the network,

the mean membrane potential and the firing probability of

the neurons in the network are described by (Ma et al.

2008; Li et al. 2012)

Vh is¼
1

N2

XN

j

XN

i

Vij

pðkÞ ¼ m

N2
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where N2 is the number of neurons and m is the number of

firing neurons at a certain time k. The neuron is firing if the

membrane potential Vij [ xth, where xth = -55 is thresh-

old of the membrane potential of the neuron.

By selecting appropriate values of parameters D and I0

and T, systems can become subexitable or excitable. The

value of temperature is T = 6.0 �C in numerical simula-

tions. The domains of the coupling coefficient D and the

constant current I0 for excitable and subexcitable systems

are given in Fig. 1.

The effect of noise on patterns in the subexcitable

neural network

For coupling coefficient D = 0.25, and external current

I0 = 0.23, snapshots of the membrane potential of neurons

are plotted in Fig. 2 (upper row). It is found that the

selected initial values of variables make the line wave to

form in the network, but the line wave fails to grow with

time in the absence of noise (Fig. 2 upper row), which

means that the system is subexcitable. If noise is imposed

in all neurons, with noise intensity S = 0.5, it is found that

the line wave evolves into a rotating spiral wave with time,

as shown in Fig. 2 (bottom row). These results are in

Fig. 1 The domains of parameters D and I0 for excitable and

subexcitable systems

Fig. 2 Snapshots of membrane potential of systems for I0 = 0.23, D = 0.25. The glittery dots denote firing elements. S = 0(upper row),

S = 0.5(lower row), and t = 50, 80, 150 time units (from left to right in each row)
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agreement with those reported in references (Alonso et al.

2002; Hou and Xin 2002).

If we change the parameters, such that the coupling

coefficient D = 0.063 and the external current I0 = 5, the

line wave cannot propagate with time, as shown in Fig. 3

(the upper row), and the system is subexcitable in the

absence of noise. By imposing noise with S = 0.19 on the

networks of neurons, it is found that the circle waves

appear and diffuse with time, as shown in Fig. 3 (the middle

row). Increasing the intensity of noise to S = 0.20, the target

wave is induced and propagates in the network, as shown in

Fig. 3 (the third row).

Fig. 3 Snapshots of the membrane potential of systems for I0 = 5, D = 0.063. The noise intensity S = 0.0(upper row), 0.19(middle row), and

0.20(bottom row), for t = 50, 80, 120 time units (from left to right in each row)
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The effect of noise on patterns in the excitable neural

network

The same neural network can be excitable by changing the

parameter values to I0 = 4.0, D = 0.3. A stable rotating

spiral wave can be induced and it can propagate with time

in the network of neurons in the absence of noise. When

noise is introduced into neurons in network with the noise

intensity S = 0.6, it is found that the original spiral wave is

replaced by the target wave, as seen in Fig. 4. These results

indicate that different types of regular waves can be

transformed into each other in excitable neural network by

introduction of noise.

Furthermore, it is found that the wave source of initial

wave in the original system without noise can be changed

by noise.

If we choose D = 0.41 and I0 = 5.0, the target wave can

be generated and it propagates in the network in the absence

of noise. The wave source is located near the centre of the

network. The results are shown in Fig. 5a. By calculating

the mean membrane potential of the network, it is found that

the target wave could occupy the entire network after

t [ 100. The curves of the mean membrane potential and

the firing probability are plotted in Fig. 5b, and it can be

seen that the trends of two curves are almost identical.

By introducing noise with intensity S = 0.55 into the all

neurons, it is observed that the U-shape wave appears first,

and it diffuses outside with time till it encounters the

boundary of the network of neurons, and then the system

becomes nearly homogeneous. At this time, it is found that

a new wave source appears at another site of the network,

and new wave propagates with time, and the system

becomes homogeneous after the wave encounters the

boundary of the network of neurons at about t = 350, as

shown in Fig. 6a. From the time series of the mean

membrane potential of neurons in networks, as seen in

Fig. 6b, it is found that the value of the mean membrane

potential decreases from t = 50 to t = 70 and in this time

domain the wave propagates in U-shape in network. Form

t = 70 to t = 270, the value of the mean membrane

Fig. 4 Snapshots of membrane potential of systems with D = 0.3, I0 = 4.0. S = 0.0(upper row), S = 0.6(lower row), for t = 50, 80, 150 time

units (from left to right in each row)

Cogn Neurodyn (2013) 7:431–440 435

123



potential increases with small fluctuation, which means that

new wave appears and grows in the network. For t [ 270,

the value of the mean membrane potential begins to

decrease. As the wave becomes sparse at about t = 350,

and the value of the mean membrane potential is nearly

stable at about -62, indicating that the system becomes

homogeneous again. The curve of the firing probability for

all neurons is plotted in Fig. 6b and it is found that the

tendency of firing probability is coincident with the curve

of the mean membrane potential.

If a noise intensity of S = 0.57 is imposed on all neu-

rons in the network, another phenomenon is observed.

First, the U-shape wave appears and diffuses outside with

time, and the system becomes nearly homogeneous as the

wave encounters the boundary of the network. This is also

the case for S = 0.55. But the difference is that after

becoming homogenous, two new wave sources appear at

the same time, and new waves propagate outside until the

system become homogenous again. The results are given in

Fig. 7a. The curve of the mean membrane potential of

neurons is plotted in Fig. 7b, and the trend of the curve is

similar to the system for S = 0.55. The value of the mean

membrane potential of neurons in network decreases when

initial wave diffuses outside the system. When new wave

forms and grows in the network, the value of mean mem-

brane potential increases with small fluctuation. Lastly, the

value of the mean membrane potential is nearly a stable

value of about -62 at t = 350, and the system becomes

homogeneous. The curve of the firing probability is plotted

in Fig. 7b, and the trend of the firing probability is

coincident with one of the mean membrane potential of

neurons, too.
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Fig. 5 Snapshots of membrane potential of systems with D = 0.41, I0 = 5.0, and S = 0.0, for t = 30 (a1), 50 (a2), 130 (a5) time units. b The

curve of the mean membrane potential of all the neurons(solid); the curve of the firing probability of all neurons(dash)
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Fig. 6 Snapshots of the

membrane potential of systems

with D = 0.41, I0 = 5.0,and

S = 0.55, for t = 30 (a1),

t = 50 (a2), t = 70 (a3), t = 80

(a4), t = 100 (a5), t = 130

(a6), t = 200 (a7), t = 300

(a8), t = 350 (a9) time units.

b The curve of the mean

membrane potential of all the

neurons (solid); the curve of the

firing probability of all neurons

(dash)
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Fig. 7 Snapshots of the

membrane potential of systems

with D = 0.41, I0 = 5.0 and

S = 0.57, for t = 30 (a1),

t = 50 (a2) t = 70 (a3) t = 80

(a4) t = 100 (a5), t = 130 (a6),

t = 150 (a7), t = 300 (a8),

t = 350 (a9) time units. b The

evolution of the mean

membrane potential of all the

neurons (solid); the curve of the

firing probability of all neurons

(dash)
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Conclusions

In this work, the noise-induced formation and transition of

varies patterns in subexcitable and excitable neuronal

networks are investigated in a two-dimensional network

described by the H–H model. The following novel phe-

nomena are observed.

(1) When appropriate initial and parameters values are

selected, the line wave can develope, but cannot

propagate in subexcitable neural networks in the

absence of noise. By introducing suitable intensity of

noise into all neurons, it is found not only a sustained

propagating spiral wave can be generated, but also

circle and target waves can be induced. Noise

enhances excitability of a subexcitable system.

(2) When systems are excitable, by selecting appropriate

initial and parameters values, spiral and target waves

can be formed with sustained propagation with time

in the network of neurons in the absence of noise.

After introducing appropriate intensity of noise into

all neurons, it is found that the spiral wave and the

target wave can be transformed into each other.

(3) The most interesting phenomenon is that new wave

sources can be formed in excitable system after

imposing appropriate intensity of noise on all neurons

in the network. Firstly, the sustained target wave is

developed in the network of neurons in the absence of

noise. Then, we impose noise on all neurons, and

U-shape wave is produced and diffuses with time

until the system becomes homogenous when U-shape

wave encounters the boundary of the network. Lastly,

the new wave sources appear at new sites in the

network, and new waves propagate outside until the

system become homogenous again. To analyze these

phenomena, we calculate the mean membrane

potential of all neurons in the network. It is found

that the value of the mean membrane potential

decreases with U-shape wave diffusing outside, then

it increases with time when new wave forms and

grows in the network. Lastly, the value of the mean

membrane potential is nearly a stable value at a

threshold time, and the system becomes homoge-

neous again. Furthermore, the curves of the firing

probability are plotted. It is found that the trend of the

firing probability is coincident with one of the mean

membrane potential, which indicates that the results

are reasonable and reliable.

The most important result is that the formation and

transition of various patterns are shown in the same net-

work of neurons by imposing appropriate strength of noise

on the network. We think these interesting numerical

results may have potential applications in practical system.
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